# Berkeley Data Analytics Stack (BDAS) Overview

Ion Stoica UC Berkeley March 7, 2013



# What is Big Data used For?

- Reports, e.g.,
  - -Track business processes, transactions
- · Diagnosis, e.g.,
  - -Why is user engagement dropping?
  - –Why is the system slow?
  - -Detect spam, worms, viruses, DDoS attacks
- Decisions, e.g.,
  - -Decide what feature to add
  - -Decide what ad to show
  - -Block worms, viruses, ...

Data is only as useful as the decisions it enables

# **Data Processing Goals**



• Low latency (interactive) queries on historical data: enable faster decisions —E.q., identify why a site is slow and fix it



- Low latency queries on live data (streaming): enable decisions on real-time data
  - -E.g., detect & block worms in real-time (a worm may infect **1mil** hosts in **1.3sec**)



- Sophisticated data processing: enable "better" decisions
  - -E.g., anomaly detection, trend analysis

# Today's Open Analytics Stack... • ...mostly focused on large on-disk datasets: great for sophisticated batch applications, but slow Application Data Processing Storage Infrastructure

#### Goals



- Easy to combine batch, streaming, and interactive computations
- Easy to develop sophisticated algorithms
- *Compatible* with existing open source ecosystem (Hadoop/HDFS)

#### Our Approach: Support Interactive and Streaming Comp.

- Aggressive use of *memory*
- Why?
  - Memory transfer rates >> disk or even SSDs
  - Gap is growing especially w.r.t. disk
  - 2. Many datasets already fit into memory
  - The inputs of over 90% of jobs in Facebook, Yahoo!, and Bing clusters fit into memory
  - E.g., 1TB = 1 billion records @ 1 KB each
  - 3. Memory density (still) grows with Moore's law
  - RAM/SSD hybrid memories at horizon



High end datacenter node

#### Our Approach: Support Interactive and Streaming Comp.

- Increase parallelism
- · Why?
  - –Reduce work per node → improve latency
- Techniques:
  - Low latency parallel scheduler that achieve high locality
  - Optimized parallel communication patterns (e.g., shuffle, broadcast)
  - –Efficient recovery from failures and straggler mitigation



#### Our Approach: Support Interactive and Streaming Comp.

- Trade between result accuracy and response times
- Why?
  - In-memory processing does not guarantee interactive query processing
    - •E.g., ~10's sec just to scan 512 GB RAM!
    - Gap between memory capacity and transfer rate increasing
- Challenges:
  - -accurately estimate error and running time for...
  - -... arbitrary computations



# **Our Approach**

- Easy to combine batch, streaming, and interactive computations
  - -Single execution model that *supports* all computation models
- Easy to develop sophisticated algorithms
  - -Powerful Python and Scala shells
  - -High level abstractions for graph based, and ML algorithms
- *Compatible* with existing open source ecosystem (Hadoop/HDFS)
  - -Interoperate with existing storage and input formats (e.g., HDFS, Hive, Flume, ..)
  - -Support existing execution models (e.g., Hive, GraphLab)



# The Berkeley AMPLab

- "Launched" January 2011: 6 Year Plan
- -8 CS Faculty
- -~40 students
- -3 software engineers
- Organized for collaboration:







People

**Algorithms** 

//achines

# The Berkeley AMPLab

- Funding:
  - DARPA ata,



Expedition Grant

- -Industrial, founding sponsors
- −18 other sponsors, including























Goal: next Generation of open source analytics stack for industry & academia:

Berkeley Data Analytics Stack (BDAS)









# • Common resource sharing layer —abstracts ("virtualizes") resources to frameworks —enable diverse frameworks to share cluster Hadoop MPI Mesos Uniprograming Multiprograming



# Spark [Release, vo.7]

- In-memory framework for **interactive** and **iterative** computations
  - -Resilient Distributed Dataset (RDD): fault-tolerance, in-memory storage abstraction
- Scala interface, Java and Python APIs



#### **Our Solution**

- Resilient Distributed Data Sets (RDD)
  - -Partitioned collection of records
  - -Immutable
  - -Can be created only through deterministic operations from other RDDs
- Handle of each RDD stores its lineage:
  - -Lineage: sequence of operations that created the RDD
- Recovery: use lineage information to rebuild RDD

# **RDD Example**

- Two-partition RDD A= $\{A_1, A_2\}$  stored on disk
  - 1) Apply f() and cache → RDD B
  - 2) Shuffle, and apply  $g() \rightarrow RDD C$
  - 3) Aggregate using  $h() \rightarrow D$



# **RDD Example**

• C<sub>1</sub> lost due to node failure before h() is computed



# **RDD Example**

- C<sub>1</sub> lost due to node failure before h() is computed
- $\bullet$  Reconstruct  $C_{\scriptscriptstyle 1},$  eventually, on a different node







# **Spark Community**



- 3000 people attended online training in August
- 500+ meetup members
- 14 companies contributing























# **Spark Streaming [Alpha Release]**

- Large scale streaming computation
- Ensure exactly one semantics
- Integrated with Spark  $\rightarrow$  unifies **batch**, **interactive**, and **streaming** computations!



### **Existing Streaming Systems**

- Traditional streaming systems have a eventdriven **record-at-a-time** processing model
  - -Each node has mutable state
  - –For each record, update state & send new records
- State is lost if node dies!
- Making stateful stream processing be faulttolerant is challenging



28

# **Spark: Discretized Stream Processing**

Run a streaming computation as a series of very small, deterministic batch jobs

- Chop up the live stream into batches of X seconds
- Spark treats each batch of data as RDDs and processes them using RDD operations
- Finally, the processed results of the RDD operations are returned in batches



29

# **Spark: Discretized Stream Processing**

Run a streaming computation as a series of very small, deterministic batch jobs

- Batch sizes as low as ½ second, latency ~ 1 sec
- Potential for combining batch processing and streaming processing in the same system



30

#### **Performance**

Can process **6 GB/sec (60M records/sec)** of data on 100 nodes at **sub-second** latency

- Tested with 100 streams of data on 100 EC2 instances with 4 cores each





# **Comparison with Storm and S4**

Higher throughput than Storm

- Spark Streaming: 670k records/ second/node
- Storm: 115k records/second/node
- Apache S4: 7.5k records/second/node



# Recovers from faults/stragglers within 1 sec Failure Happens 2.0 1.5 0.5 0.0 0.15 30 45 60 75 Sliding WordCount on 10 nodes with 30s checkpoint interval







# Tachyon [Alpha Release, this Spring]

- High-throughput, fault-tolerant in-memory storage
- Interface compatible to HDFS
- Support for Spark and Hadoop



# BlinkDB [Alpha Release, this Spring]

- Large scale approximate query engine
- Allow users to specify error or time bounds
- Preliminary prototype starting being tested at Facebook



# SparkGraph [Alpha Release, this Spring]

- GraphLab API and Toolkits on top of Spark
- Fault tolerance by leveraging Spark



# MLbase [In development]

- Declarative approach to ML
- Develop scalable ML algorithms
- Make ML accessible to non-experts







Batch

Spark

Streaming

Interactive

#### **Summary**

#### Holistic approach to address next generation of Big Data challenges!

- Support interactive and streaming computations
  - -In-memory, fault-tolerant storage abstraction, low-latency scheduling,...
- Easy to combine batch, streaming, and interactive computations
  - -Spark execution engine supports all comp. models
- Easy to develop sophisticated algorithms
  - -Scala interface, APIs for Java, Python, Hive QL, ...
  - -New frameworks targeted to graph based and ML algorithms
- Compatible with existing open source ecosystem
- Open source (Apache/BSD) and fully committed to release high quality software
  - -Three-person software engineering team lead by Matt Massie (creator of Ganglia, 5<sup>th</sup> Cloudera engineer)

# Thanks!



