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d3.js  Data-Driven Documents

with Mike Bostock & Vadim Ogievetsky
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I spend more than half of my time 
integrating, cleansing and transforming 
data without doing any actual analysis. 
Most of the time I’m lucky if I get to do 
any “analysis” at all.

Anonymous Data Scientist
from our interview study, 2012



The Elephant in the Room



DataWrangler

with Sean Kandel, Philip Guo, Andreas Paepcke & Joe Hellerstein



Wrangler in 2 Parts…

1. Declarative data transformation language
 Tuple mapping – split, merge, extract, delete
 Reshaping – fold, unfold (cross-tabulation)
 Lookups & joins – e.g., FIPS code to US state
  Sorting, aggregation, etc.

   Informed by prior work in databases:
   Potter’s Wheel, SchemaSQL, AJAX



Wrangler in 2 Parts…

1. Declarative data transformation language

              +
2. Mixed-initiative interface for data transforms
 User: Selects data elements of interest
 System: Suggests applicable transforms via 

 search over the space of viable transforms
 Enable rapid preview and refinement
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Text Selection
Text Editing
Row Selection
Column Selection
Transform Menu
Click Quality Meter
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Map user input to 
transform operands.

Example: text highlight 
maps to row, column, and 
text selections.

Inferred text selections 
include string indices and 
regular expressions.
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Series Id: LNU02000000

Text Selection Inference
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Series Id: LNU02000000
-> ^ STR WS STR SYM WS STR NUM $

Series Id: LNU02000000
MATCH Indices 11-22
MATCH  LNU02000000
MATCH  LNU NUM 

MATCH  STR NUM  
AFTER : WS

Text Selection Inference



Map user input to 
transform operands.

Example: text highlight 
maps to row, column, and 
text selections.

Inferred text selections 
include string indices and 
regular expressions.
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Enumerate transforms 
that accept inferred 
operands as input.

Set unmatched params 
to default values.

Apply filter heuristics:
No-ops, delete-all, and 
overly sparse outputs.
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Sort transforms by:
 Toolbar selection
 Specification difficulty
 Frequency in corpus
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Comparative Evaluation with Excel

Median completion time for Wrangler at least
twice as fast in all tasks (p < 0.001).
Suggestions and visual previews used heavily.

Extract

Impute

Reshape



Difficult Transforms: Table Reshaping

Fold

Pivot



Proactive Wrangling

Proactive transform suggestion  [UIST’11]

Guide users to a proper relational table

Empty cells Delimiters

Type homogeneity



Proactive Wrangling

Proactive transform suggestion  [UIST’11]

Guide users to a proper relational table

EVALUATION:
Compare automatic vs. manual transformation

53% of transforms automatically suggested

In those cases, the top-ranked suggestion is 
preferred 77% of the time (mean rank: 1.6).
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Data Profiler [AVI’12]
with Sean Kandel, Ravi Parikh & Joe Hellerstein

Results of Automatic 
Anomaly Detection

Variables
(with induced data types)
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Data Profiler [AVI’12]
with Sean Kandel, Ravi Parikh & Joe Hellerstein
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imMens: Real-Time Visual Querying of Big Data
with Zhicheng (Leo) Liu & Biye Jiang



Perceptual and interactive 
scalability should be limited 
by the chosen resolution of 
the visualized data, not the 

number of records.



Data



Data Sampling



Data Sampling
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5-D Data Cube
Month, Hour, Day, X, Y
 ~2.3B bins
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5-D Data Cube
Month, Hour, Day, X, Y
 ~2.3B bins







Full 5-D Cube



Full 5-D Cube

For any pair of 1D or 2D binned plots, the 
maximum number of dimensions needed 
to support brushing & linking is four.



Full 5-D Cube

13 3-D Data Tiles



~2.3B bins

~17.6M bins
 (in 352KB!)

Full 5-D Cube

13 3-D Data Tiles











































Dense packing more efficient if:
 density > 25% in 3D tiles
 density > 20% in 4D tiles



Query & Render on GPU via WebGL

Pack data tiles as PNG image files,
bind to WebGL as image textures.



Query & Render on GPU via WebGL

Σ

Invoke program for each output bin.
Executes in parallel on GPU.



Query & Render on GPU via WebGL

Σ



Performance Benchmarks
Simulate interaction:
brushing & linking
across binned plots.

- imMens vs. Profiler
- 4x4 and 5x5 plots
- 10 to 50 bins

Measure time from 
selection to render.

Test setup:
2.3 GHz MacBook Pro (4-core)

NVIDIA GeForce GT 650M
Google Chrome v.23.0



~50fps querying of visual
summaries of 1B data points.



Future Work

• Visualization specification interface

• Optimization considering resource constraints

• Integration with backend databases

• Server-side tile generation policies

• Activity modeling & prefetching schemes
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Orion - Network Modeling & Analysis
with Adam Perer  [VAST’11]



GraphPrism
with Sanjay Kairam, Diana MacLean & Manolis Savva  [AVI’12]



Stanford Dissertation Browser
with Jason Chuang, Dan Ramage & Chris Manning  [CHI’12]



Termite Topic Model Viewer
with Jason Chuang & Chris Manning  [AVI’12]
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Interactive
      Data Analysis
http://vis.stanford.edu^


