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Google’s Computational Environment Today

* Many datacenters around the world
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Zooming In...
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Lots of machines...
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Decomposition into Services

query
—
Ad System Super root| . _. |Spelling correction

A)

Storage Scheduling Naming

Google
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Replication

e Data loss

— replicate the data on multiple disks/machines (GFS/Colossus)

 Slow machines

— replicate the computation (MapReduce)

* Too much load

— replicate for better throughput (nearly all of our services)

* Bad latency
— utilize replicas to improve latency

— improved worldwide placement of data and services

Google
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Shared Environment

Google

Saturday, January 19, 13



Shared Environment

(:L)' )Q[C
C

Saturday, January 19, 13



Shared Environment

Google
C

Saturday, January 19, 13



Shared Environment

Google
C

Saturday, January 19, 13



Shared Environment

Bigtable
tablet server
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Shared Environment

Ccpu intensive
job

Bigtable
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Shared Environment

Ccpu intensive
job

random
:| MapReduce #1
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Shared

Environment

random
app #2

job

Ccpu intensive random

app

random

Bigtable

MapReduce #1 || tablet server
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Shared Environment

* Huge benefit: greatly increased utilization

* ...but hard to predict effects increase variability
—network congestion
—background activities
—bursts of foreground activity
—not just your jobs, but everyone else’s jobs, too

—not static: change happening constantly

* Exacerbated by large fanout systems

Google
C
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The Problem with Shared Environments

Google
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The Problem with Shared Environments
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The Problem with Shared Environments

* Server with 10 ms avg. but | sec 99%ile latency

—touch | of these: | % of requests take =1 sec

Google
C

—touch 100 of these: 63% of requests take = | sec

Saturday, January 19, 13



Tolerating Faults vs. Tolerating Variability

* Tolerating faults:

—rely on extra resources
* RAIDed disks, ECC memory, dist. system components, etc.

—make a reliable whole out of unreliable parts

* Tolerating variability:
—use these same extra resources
—make a predictable whole out of unpredictable parts

* Times scales are very different:
—variability: 1000s of disruptions/sec, scale of milliseconds
—faults: 10s of failures per day, scale of tens of seconds

Google
o
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Latency Tolerating Techniques

* Cross request adaptation
—examine recent behavior
—take action to improve latency of future requests
—typically relate to balancing load across set of servers

—time scale: | 0s of seconds to minutes

* Within request adaptation
—cope with slow subsystems in context of higher level request

—time scale: right now, while user is waiting

* Many such techniques
[The Tail at Scale, Dean & Barroso, to appear in CACM
Feb. 201 3]
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Tied Requests

Server 1 Server 2

~.

Client

Similar to Michael Mitzenmacher’s work on “The Power of Two
Choices”, except send to both, rather than just picking “best” one

Google
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Tied Requests

Server 1 Server 2

req 9

Similar to Michael Mitzenmacher’s work on “The Power of Two
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Tied Requests

req 9
also: server 1

Server 1 Server 2
reply

Client

Similar to Michael Mitzenmacher’s work on “The Power of Two
Choices”, except send to both, rather than just picking “best” one

Each request identifies other server(s) to which request might be sent o gle
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Tied Requests

req 9
also: server 1

Server 1 Server 2

7

reply
Similar to Michael Mitzenmacher’s work on “The Power of Two
Choices”, except send to both, rather than just picking “best” one

Each request identifies other server(s) to which request might be sent o gle
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Tied Requests: Bad Case

Server 1 Server 2

~.

Client
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Tied Requests: Bad Case

req 9
also: server 2

Server 1

req 9

also: server 1

Server 2

7

reply

Likelihood of this bad case is reduced with lower latency networks

Google
C
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Tied Requests: Performance Benefits

* Read operations in distributed file system client

—send tied request to first replica

— wait 2 ms, anc

— Servers cance

* Measure higher-

send tied request to second replica
tied request on other replica when starting read

evel monitoring ops that touch disk
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Tied Requests: Performance Benefits

* Read operations in distributed file system client
—send tied request to first replica
—wait 2 ms, and send tied request to second replica

— servers cancel tied request on other replica when starting read

* Measure higher-level monitoring ops that touch disk

Cluster state  Policy 50%ile  90%ile O9%ile  99.9%ile
Mostly idle No backups 19 ms 38 ms 67 ms 98 ms
Backup after2 ms 16ms 28 ms 38 ms 51 ms
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Tied Requests: Performance Benefits

* Read operations in distributed file system client
—send tied request to first replica
—wait 2 ms, and send tied request to second replica

— servers cancel tied request on other replica when starting read

* Measure higher-level monitoring ops that touch disk -43%

Cluster state  Policy 50%ile  90%ile O%%ile  99.9%ile

Mostly idle No backups 19 ms 38 ms 67 ms 98 ms
Backup after2 ms 16ms 28 ms 38 ms 51 ms
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Tied Requests: Performance Benefits

* Read operations in distributed file system client
—send tied request to first replica
—wait 2 ms, and send tied request to second replica

— servers cancel tied request on other replica when starting read

* Measure higher-level monitoring ops that touch disk

Cluster state  Policy 50%ile  90%ile O9%ile  99.9%ile
Mostly idle No backups 19 ms 38 ms 67 ms 98 ms

Backup after2 ms 16ms 28 ms 38 ms 51 ms
+Terasort No backups 24 ms 56ms 108 ms 159 ms

Backup after2 ms 19ms 35 ms 67 ms 108 ms
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Tied Requests: Performance Benefits

* Read operations in distributed file system client

—send tied request to first replica

—wait 2 ms, and send tied request to second replica

— servers cancel tied request on other replica when starting read

* Measure higher-level monitoring ops that touch disk

Cluster state  Policy

Mostly idle No backups

Backup after 2 ms

+Terasort No backups

Backup after 2 ms

50%ile
19 ms
16 ms

24 ms
19 ms

90%ile
38 ms
28 ms

56 ms
35 ms

99%ile
67 ms
38 ms

108 ms
67 ms

-38%

99.9%ile
98 ms

51 ms

159 ms
108 ms
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Tied Requests: Performance Benefits

* Read operations in distributed file system client
—send tied request to first replica
—wait 2 ms, and send tied request to second replica

— servers cancel tied request on other replica when starting read

* Measure higher-level monitoring ops that touch disk

Cluster state  Policy 50%ile  90%ile O9%ile  99.9%ile
Mostly idle No backups 19 ms 38 ms 67 ms 98 ms

Backup after2 ms 16ms 28 ms 38 ms 51 ms
+Terasort No backups 24 ms 56ms 108 ms 159 ms

Backup after2 ms 19ms 35 ms 67 ms 108 ms

Backups cause about ~1% extra disk reads

(:0 31(
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Tied Requests: Performance Benefits

* Read operations in distributed file system client

—send tied request to first replica

—wait 2 ms, and send tied request to second replica

— servers cancel tied request on other replica when starting read

* Measure higher-level monitoring ops that touch disk

Cluster state  Policy 50%ile  90%ile O9%ile  99.9%ile
Mostly idle No backups 19 ms 38 ms 67 ms 98 ms
Backup after2 ms 16ms 28 ms 38 ms 51 ms
+Terasort No backups 24 ms 56ms 108 ms 159 ms
Backup after2 ms 19ms 35 ms 67 ms 108 ms

Backups w/big sort job gives same read latencies as no backups

w/ idle cluster!

Google
C
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Cluster-Level Services

* Our earliest systems made things easier within a cluster:
— GFS/Colossus: reliable cluster-level file system
—MapReduce: reliable large-scale computations
— Cluster scheduling system: abstracted individual machines

—BigTable: automatic scaling of higher-level structured storage

Google
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Cluster-Level Services

* Our earliest systems made things easier within a cluster:
— GFS/Colossus: reliable cluster-level file system
—MapReduce: reliable large-scale computations
— Cluster scheduling system: abstracted individual machines

—BigTable: automatic scaling of higher-level structured storage

* Solve many problems, but leave many cross-cluster issues
to human-level operators

—different copies of same dataset have different names

—moving or deploying new service replicas is labor intensive

(:O SIC
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Spanner:VWWorldwide Storage

Google
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Spanner:Worldwide Storage

* Single global namespace for data
* Consistent replication across datacenters
* Automatic migration to meet various constraints

— resource constraints
“The file system in this Belgian datacenter is getting full...”

—application-level hints

“Place this data in Europe and the U.S.”
“Place this data in flash, and place this other data on disk”

GO )gle
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Spanner:Worldwide Storage

* Single global namespace for data
* Consistent replication across datacenters
* Automatic migration to meet various constraints
— resource constraints
“The file system in this Belgian datacenter is getting full...”

—application-level hints

“Place this data in Europe and the U.S.”
“Place this data in flash, and place this other data on disk”

* System underlies Google’s production advertising system, among other
uses

* [Spanner: Google’s Globally-Distributed Database, Corbett, Dean, ... et al.,
OSDI 2012]

GOt )gle
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Higher Level Systems

® Systems that provide high level of abstraction that “just works”
are incredibly valuable:

® GFS, MapReduce, BigTable, Spanner, tied requests, etc.

® Can we build high-level systems that just work in other
domains like machine learning!?

Saturday, January 19, 13



Scaling Deep Learning

® Much of Google is working on approximating Al. Al is hard

® Many people at Google spend countless person-years
hand-engineering complex features to feed as input to
machine learning algorithms

® |s there a better way?

® Deep Learning: Use very large scale brain simulations
® improve many Google applications

® make significant advances towards perceptual Al
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Deep Learning

® Algorithmic approach
® automatically learn high-level representations from raw data

® can learn from both labeled and unlabeled data

® Recent academic deep learning results improve on state-of-
the-art in many areas (Hinton, Ng, Bengio, LeCun, et al.):

® images, video, speech, NLP ...

® ..using modest model sizes (<= ~50M parameters)

® We want to scale this to much bigger models & datasets
® currently: ~2B parameters, want ~10B-100B parameters

® general approach: parallelize at many levels
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Deep Networks

Input Image

(or video)
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Some scalar, nonlinear function
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Deep Networks

Some scalar, nonlinear function
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Deep Networks

Many responses at a single location.
In many models these are independent,
but some allow strong nonlinear interactions

o
o
o
o

Some scalar, nonlinear function
of local image patch

Input Image

(or video)
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Deep Networks
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Deep Networks

Multiple “maps”

% Input Image

(or video)
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Deep Networks

X Layer |

% Input Image

(or video)
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Unsupervised Training

Core idea: try to reconstruct input from just the learned representation

Reconstruction
layer
X " Layer |
A
) TR \ . Input Image
;L ' ——————n e i O G L),

-

Due to Geoff Hinton,Yoshua Bengio,Andrew Ng, and others
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% Input Image
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Partition model across

machines

Partition assignment
in vertical silos.
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Partition model across
machines
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Partition assignment

in vertical silos.
Partition ||Partition 2| Partition 3 Layer 2

i\ 1 1 1

Minimal network traffic:
The most densely connected
areas are on the same partition

Partition | Partition 2 Partition 3
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Partition model across
machines
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Partition assignment

in vertical silos.
Partition ||Partition 2| Partition 3 Layer 2

i\ 1 1 1

Minimal network traffic:
The most densely connected
areas are on the same partition

Partition | Partition 2 Partition 3

One replica of our biggest models: 144 machines, ~2300 cores
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Asynchronous Distributed Stochastic Gradient Descent

Parameter Server
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Asynchronous Distributed Stochastic Gradient Descent

Parameter Server P =p +Ap
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Asynchronous Distributed Stochastic Gradient Descent

Parameter Server
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Asynchronous Distributed Stochastic Gradient Descent
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Asynchronous Distributed Stochastic Gradient Descent

Parameter Server P =p +Ap
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Workers
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Data
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#20 Deep Learning Systems Tradeoffs

® | ots of tradeoffs can be made to improve performance.
Which ones are possible without hurting learning
performance too much!?

® For example:
® Use lower precision arithmetic
® Send | or 2 bits instead of 32 bits across network

® Drop results from slow partitions

® What'’s the right hardware for training and deploying these
sorts of systems?

® GPUs? FPGAs!? Lossy computational devices!?
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* Unsupervised Feature Learning for Still Images

* Neural Language Models
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Acoustic Modeling for Speech Recognition
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Close collaboration W|th Google Speech team

Trained in <5 days on cluster of 800 machines
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Acoustic Modeling for Speech Recognition
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Close collaboration with Google Speech team

Trained in <5 days on cluster of 800 machines

30% reduction in Word Error Rate
(“equivalent to 20 years of speech research”)
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Acoustic Modeling for Speech Recognition
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Close collaboration W|th Google Speech team

Trained in <5 days on cluster of 800 machines

30% reduction in Word Error Rate
(“equivalent to 20 years of speech research”)

Deployed in Jellybean release of Android
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Purely Unsupervised Feature Learning in Images

t

Encodep>

t

Pool

t

Encodep>

t

Pool

)

Encodep>

t
Image

Decode

Decode

Decode

Pool| 60,000 neurons at top level

* |.15 billion parameters (50x larger than
largest deep network in the literature)

* Trained on |6k cores for | week using
Async-SGD

* Do unsupervised training on one frame
from each of 10 million YouTube videos

(200x200 pixels)

*No labels!

Details in our ICML paper [Le et al. 2012]
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Purely Unsupervised Feature Learning in Images

Pool| -+
O Top level neurons seem to discover
high-level concepts. For example, one
Encode>(Decode neuron is a decent face detector:
POOI Non-faces
Faces
Encode>|Decode
T 9 b
()
S
Pool 0 '
L
Encode>|Decode |‘| || ‘||I|
A il H l]i. |||||..__

Feature value
Image{Y

Saturday, January 19, 13



Purely Unsupervised Feature Learning in Images

Most face-selective neuron

Top 48 stimuli from the test set
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Purely Unsupervised Feature Learning in Images

Most face-selective neuron

Optimal stimulus
by numerical optimization

Top 48 stimuli from the test set
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Purely Unsupervised Feature Learning in Images

It is YouTube... We also have a cat neuron!

Top stimuli from the test set
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Purely Unsupervised Feature Learning in Images

It is YouTube... We also have a cat neuron!

Top stimuli from the test set Optimal stimulus
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Semi-supervised Feature Learning in Images

Are the higher-level representations learned by

unsupervised training a useful starting point for supervised
training?

We do have some labeled data, so let’s fine tune this same
network for a challenging image classification task.
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Semi-supervised Feature Learning in Images

Are the higher-level representations learned by
unsupervised training a useful starting point for supervised

training?

We do have some labeled data, so let’s fine tune this same
network for a challenging image classification task.

ImageNet:

* |6 million images

e ~21,000 categories

* Recurring academic competitions
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Aside: 20,000 is a lot of categories....

01496331
01497118
01497413
01497738
01498041
01498406
01498699
01498989
01499396
01499732
01500091
01500476
01500854
01501641
01501777
01501948
01502101
01503976
01504179
01504344

electric ray, crampfish, numbfish, torpedo
sawfish

smalltooth sawfish, Pristis pectinatus
guitarfish

stingray

roughtail stingray, Dasyatis centroura
butterfly ray

eagle ray

spotted eagle ray, spotted ray, Aetobatus narinari
cownose ray, cow-nosed ray, Rhinoptera bonasus
manta, manta ray, devilfish

Atlantic manta, Manta birostris

devil ray, Mobula hypostoma

grey skate, gray skate, Raja batis

little skate, Raja erinacea

thorny skate, Raja radiata

barndoor skate, Raja laevis

dickeybird, dickey-bird, dickybird, dicky-bird
fledgling, fledgeling

nestling, baby bird
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Aside: 20,000 is a lot of categories....

0149

roughtail stingray

, numbfish, torpedo

0149
0149
0149
0149
0149
0149
0149
0149

-

patus narinari

01499732
01500091
01500476
01500854
01501641
01501777
01501948
01502101
01503976
01504179
01504344

cownose r
manta, ma
Atlantic

devil ray
grey skat
little sk
thorny sk
barndoor

dickeybir
fledgling
nestling,

%7

manta ray

cawenaced ray, Rhinoptera bonasus

F1sh

L[]
A~ N ~vd a9 o~

baby bird
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Semi-supervised Feature Learning in Images

ImageNet Classification Results:

Pool

1 ImageNet 201 | (20k categories)
Encode~|Decode e Chance: 0.005%

) * Best reported: 9.5%
Pool

t

Encode>|Decode

t

Pool

)

Encode>|Decode

t
Image
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Semi-supervised Feature Learning in Images

ImageNet Classification Results:

Pool

1 ImageNet 201 | (20k categories)
Encode~|Decode e Chance: 0.005%

) * Best reported: 9.5%
Pool * Our network: 16% (+70% relative)

t

Encode>|Decode

t

Pool

)

Encode>|Decode

t
Image
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Semi-supervised Feature Learning in Images

Example top stimuli after fine tuning on ImageNet:

Neuron A

Neuron B

Neuron C

Neuron D

Neuron E
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Semi-supervised Feature Learnin

Example top stimuli after fine tuning on ImageNet:

Neuron F

Neuron G

Neuron H

Neuron |
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Applications

0000000

I

* Acoustic Models for Speech

* Unsupervised Feature Learning for Still Images

/
Q [0
o 100

\
O
O
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O

0 8 8

[' Neural Language Models
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Embeddings

~100-D joint embedding space

——

Fec:-r Fsoi,se

doi.pkim
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Embeddings

~100-D joint embedding space

——

@A

Fec:-r Fsoi,s@.

c&atpkiv\
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Embeddings

~100-D joint embedding space

SealWorld

porpoise c&atpkiv\
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Embeddings

~100-D joint embedding space

Cbama 3

SealWorld

porpoise c&otpkiv\
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Embeddings

~100-D joint embedding space

——

| —TFaris
O A
@A
Cbama 3
SealWorld
c&atpkiv\

Fec:-r Fsoi,s@.
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Neural Language Models

v
Hinge Loss // Softmax (0000000000000 00000)
(OCO0000000000)
Hidden Layers? :
(OO0000000000)
|||||||| ||||Z|| |>||||| (T11110
4 )
Word Embedding Matrix E E E E
I I I I
the cat sat on the

E | is a matrix of dimension ||Vocab|| x d

Top prediction layer has ||Vocab|| x h parameters.

Most ideas from Bengio et al 2003, Collobert & Weston 2008
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Neural Language Models

v
Hinge Loss // Softmax (0000000000000 00000)
(OCO0000000000)
Hidden Layers? :
(OO0000000000)

// \\

i
Word Embedding Matrix E E
|
a

the cat

E | is a matrix of dimension ||Vocab|| x d

Top prediction layer has ||Vocab|| x h parameters.

i

E

J

E
|

sat on the

|00s of millions of parameters,
but gradients very sparse

Most ideas from Bengio et al 2003, Collobert & Weston 2008
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Embedding sparse tokens in an N-dimensional space

Example: 50-D embedding trained for semantic similarity

Cluster 1: aPPIe

Id Distance! Adjust Word

11114 0.000000 Remove
5026 0.652580 Add fruit
14080 0.699192 Add apple
48657 0.717818 Add melon
28498 0.722390 Ad ac

C

g

:

|>
a
:

39795 0.729893 Add blueberry
35570 0.730500 Add berry

25974 0.739561 Add strawberry
46156 0.745343 Add pecan
11907 0.756422 Add potato
33847 0.759111 Add pear
30895 0.763317 Add mango
17848 0.768230 Add pumpkin
39133 0.770143 Add almond
14395 0.773105 Add tomato
18163 0.782610 Add onion
10470 0.782994 Add pie

3023 0.787229 Add tree
20340 0.793602 Add bean
34968 0.794979 Add watermelon
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Embedding sparse tokens in an N-dimensional space

Example: 50-D embedding trained for semantic similarity

Cluster 1: aPP|e Cuuster : Stqb
Cluster 1 Cluster 1

;768iumns B | :Ec;fumns B '

Id Distance? Adjust Word Id Distance! Adjust Word
11114 0.000000 Remove apple 14979 0.000000 Remove stab
5026 0.652580 Add fruit 7728 0.868853 Add punch
14080 0.699192 Add apples 469 0909304 Add shot
48657 0.717818 Add melon 12820 0.909750 Add thrust
28498 0.722390 Add peach 8934 0.939908 Add shell
39795 0.729893 Add blueberry 10880 0.951466 Add hammer
35570 0.730500 Add berry 6975 0951679 Add bullet
25974 0.739561 Add strawberry 1848 0.962053 Add push
46156 0.745343 Add pecan 10888 0.962319 Add eved
11907 0.756422 Add potato 718 0965448 Add hand
33847 0.759111 Add pear 5865 0.966663 Add rab
30895 0.763317 Add mango 4611 0967574 Add swin
17848 0.768230 Add pumpkin 302 0.975696 Add hit
39133 0.770143 Add almond 869 0976967 Add force
14395 0.773105 Add tomato 1597 0977625 Add attempt
18163 0.782610 Add onion 5977 0978384 Add finger
10470 0.782994 Add pie 6162 0978776 Add knife
3023 0.787229 Add tree 3434 0980028 Add sharp
20340 0.793602 Add bean 1504 0980160 Add struck
34968 0.794979 Add watermelon 39157 0.980219 Add slug
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Embedding sparse tokens in an N-dimensional space

Example: 50-D embedding trained for semantic similarity

Cluster 1: aPPIe Cuuster : Stqb custer : |Phone
Cluster 1 Cluster 1 Cluster 1

nglumns B ‘ | :'Eéilumns B ' 4 nglumns B )

Id Distance? Adjust Word Id Distance! Adjust Word Id Distance! Adjust Word
11114 0.000000 Remove apple 14979 0.000000 Remove stab 2964 0.000000 Remove iPhone
5026 0.652580 Add fruit 7728 0.868853 Add punch 6377 0.359153 Add iPad
14080 0.699192 Add apples 469 0.909304 Add shot 22542 (0.554838 Add i0S
48657 0.717818 Add melon 12820 0.909750 Add thrust 10081 0.585379 Add smartphone
28498 0.722390 Add peach 8934 0.939908 Add shell 5824 0.587948 Add iPod
39795 0.729893 Add blueberry 10880 0.951466 Add hammer 43921 0.608292 Add PlayBook
35570 0.730500 Add berry 6975 0951679 Add bullet 18025 0.653021 Add iPhones
25974 0.739561 Add strawberry 1848 0.962053 Add push 6439 0.656983 Add Android
46156 0.745343 Add pecan 10888 0.962319 Add eved 38104 0.681779 Add 3GS
11907 0.756422 Add potato 718 0965448 Add hand 8088 0.690880 Add BlackBerry
33847 0.759111 Add pear 5865 0.966663 Add grab 24581 0.696648 Add Zune
30895 0.763317 Add mango 4611 0967574 Add swin 33435 0.713150 Add Smartphone
17848 0.768230 Add pumpkin 302 0.975696 Add hit 19186 0.714883 Add Blackberry
39133 0.770143 Add almond 869 0976967 Add force 9326 0.715027 Add handset
14395 0.773105 Add tomato 1597 0977625 Add attempt 26020 0.739856 Add Droid
18163 0.782610 Add onion 5977 0978384 Add finger 30557 0.756973 Add Treo
10470 0.782994 Add pie 6162 0978776 Add knife 12057 0.762164 Add smartphone
3023 0.787229 Add tree 3434 0980028 Add sharp 6878 0.769016 Add app
20340 0.793602 Add bean 1504 0980160 Add struck 8211 0.779153 Add iTunes
34968 0.794979 Add watermelon 39157 0.980219 Add slug 28120 0.787939 Add iPads
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Neural Language Models

e 7/ Billion word Google News training set

® | Million word vocabulary

® 8 word history, 50 dimensional embedding
® Three hidden layers each w/200 nodes

® 50-100 asynchronous model workers

v

(00000000000 0@O00000)

!

(oooooooooooo)

(oooooooooooo)

// \\

1 1
E E E E
| |

I I
the cat sat on the
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Neural Language Models

e 7/ Billion word Google News training set
® | Million word vocabulary
® 8 word history, 50 dimensional embedding

® Three hidden layers each w/200 nodes Perplexity Scores

I
t sat on the

I
the C

® 50-100 asynchronous model workers Traditional 5-gram | XXX
v NLM +15%
(00000000000 0@O00000)
| 5-gram + NLM | -33%
(oooooooooooo)
(oooooooooooo)
||||4||Zﬂ Iﬁlll%lllll
4 1)
E E E E
I I
a
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Deep Learning Applications

OOOCI)OOO

ce

Many other applications not discussed today:
* Clickthrough prediction for advertising
* Video understanding

* Recommendation systems

/ \
Q [Og OO
O 189 100

0 8
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Thanks! Questions...?

Further reading:

e Ghemawat, Gobioff, & Leung. Google File System, SOSP 2003.

* Barroso, Dean, & Holzle. Web Search for a Planet:The Google Cluster Architecture, IEEE Micro, 2003.
* Dean & Ghemawat. MapReduce: Simplified Data Processing on Large Clusters, OSDI 2004.

e Chang, Dean, Ghemawat, Hsieh,Wallach, Burrows, Chandra, Fikes, & Gruber. Bigtable:A Distributed Storage System for
Structured Data, OSDI 2006.

* Brants, Popat, Xu, Och, & Dean. Large Language Models in Machine Translation, EMNLP 2007.

* Le, Ranzato, Monga, Devin, Chen, Corrado, Dean, & Ng. Building High-Level Features Using Large Scale Unsupervised
Learning, ICML 2012.

® Dean et al., Large Scale Distributed Deep Networks, NIPS 2012.
e Corbett, Dean, ..., et al. Spanner: Google’s Globally-Distributed Database, to appear in OSDI 2012
* Dean & Barroso, The Tail at Scale, to appear in CACM Feb.2013.

* Protocol Buffers. http://code.google.com/p/protobuf/

* Snappy. http://code.google.com/p/snappy/

* Google PerfTools. http://code.google.com/p/google-perftools/
* LevelDB. http://code.google.com/p/leveldb/

See: http://research.google.com/people/jeff and http://research.google.com/papers

Google
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