
Joint work with many collaborators

Large-Scale Data and Computation:
Challenges and Opportunities

Jeff Dean
Google

Saturday, January 19, 13



• Many datacenters around the world

Google’s Computational Environment Today

Saturday, January 19, 13



• Many datacenters around the world

Google’s Computational Environment Today

Saturday, January 19, 13



Zooming In...
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Zooming In...
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Lots of machines...
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Save a bit of power: turn out the lights...
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Cool...
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Decomposition into Services

Frontend	 Web	 Server

query

Spelling	 correction

News

Super	 root

Images

Web

Blogs
Video

Books

Local

Storage Scheduling Naming ...

Ad	 System
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• Data loss
– replicate the data on multiple disks/machines (GFS/Colossus)

• Slow machines
– replicate the computation (MapReduce)

• Too much load
– replicate for better throughput (nearly all of our services)

• Bad latency
– utilize replicas to improve latency 

– improved worldwide placement of data and services

Replication
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Shared Environment

Linux
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Shared Environment
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various other
system services

Bigtable
tablet server

random
MapReduce #1

cpu intensive
job
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random
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• Huge benefit: greatly increased utilization

• ... but hard to predict effects increase variability
–network congestion
–background activities
–bursts of foreground activity
–not just your jobs, but everyone else’s jobs, too
–not static: change happening constantly

• Exacerbated by large fanout systems

Shared Environment
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The Problem with Shared Environments
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The Problem with Shared Environments
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The Problem with Shared Environments

• Server with 10 ms avg. but 1 sec 99%ile latency
– touch 1 of these: 1% of requests take ≥1 sec
– touch 100 of these: 63% of requests take ≥1 sec
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• Tolerating faults:
– rely on extra resources

• RAIDed disks, ECC memory, dist. system components, etc.

–make a reliable whole out of unreliable parts

• Tolerating variability:
– use these same extra resources
–make a predictable whole out of unpredictable parts

• Times scales are very different:
– variability: 1000s of disruptions/sec, scale of milliseconds

– faults: 10s of failures per day, scale of tens of seconds

Tolerating Faults vs. Tolerating Variability
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• Cross request adaptation
–examine recent behavior
– take action to improve latency of future requests
– typically relate to balancing load across set of servers
– time scale: 10s of seconds to minutes

• Within request adaptation
–cope with slow subsystems in context of higher level request
– time scale: right now, while user is waiting

• Many such techniques
[The Tail at Scale, Dean & Barroso, to appear in CACM
Feb. 2013]

Latency Tolerating Techniques
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Tied Requests

Server 1

Client

Server 2

req 3

req 6

req 5

Similar to Michael Mitzenmacher’s work on “The Power of Two 
Choices”, except send to both, rather than just picking “best” one

Saturday, January 19, 13



Tied Requests

Server 1

Client

Server 2

req 9

req 3

req 6

req 5

Similar to Michael Mitzenmacher’s work on “The Power of Two 
Choices”, except send to both, rather than just picking “best” one

Saturday, January 19, 13



Tied Requests

Server 1

Client

Server 2

req 9

req 3

req 9
also: server 2

req 6

req 5

Each request identifies other server(s) to which request might be sent

Similar to Michael Mitzenmacher’s work on “The Power of Two 
Choices”, except send to both, rather than just picking “best” one

Saturday, January 19, 13



Tied Requests

Server 1

Client

Server 2

req 3

req 9
also: server 2

req 6 req 9
also: server 1

req 5

Each request identifies other server(s) to which request might be sent

Similar to Michael Mitzenmacher’s work on “The Power of Two 
Choices”, except send to both, rather than just picking “best” one

Saturday, January 19, 13



Tied Requests

Server 1

Client

Server 2

req 3

req 9
also: server 2

req 6 req 9
also: server 1

Each request identifies other server(s) to which request might be sent

Similar to Michael Mitzenmacher’s work on “The Power of Two 
Choices”, except send to both, rather than just picking “best” one

Saturday, January 19, 13



Tied Requests
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Tied Requests

Server 1

Client

Server 2

req 3

req 6 req 9
also: server 1

Each request identifies other server(s) to which request might be sent

reply

Similar to Michael Mitzenmacher’s work on “The Power of Two 
Choices”, except send to both, rather than just picking “best” one
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Tied Requests

Server 1

Client

Server 2

req 3

req 6 req 9
also: server 1

Each request identifies other server(s) to which request might be sent

reply

Similar to Michael Mitzenmacher’s work on “The Power of Two 
Choices”, except send to both, rather than just picking “best” one
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Tied Requests: Bad Case

Server 1

Client

Server 2

req 3 req 5
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Tied Requests: Bad Case

Server 1

Client

Server 2

req 9
also: server 2

req 9
also: server 1

“Server 2: Starting req 9”
“Server 1: Starting req 9”
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Tied Requests: Bad Case

Server 1

Client

Server 2

req 9
also: server 2

req 9
also: server 1

reply

Likelihood of this bad case is reduced with lower latency networks
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• Read operations in distributed file system client
– send tied request to first replica
– wait 2 ms, and send tied request to second replica
– servers cancel tied request on other replica when starting read

• Measure higher-level monitoring ops that touch disk

Tied Requests: Performance Benefits
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• Read operations in distributed file system client
– send tied request to first replica
– wait 2 ms, and send tied request to second replica
– servers cancel tied request on other replica when starting read

• Measure higher-level monitoring ops that touch disk

Tied Requests: Performance Benefits

Cluster state Policy 50%ile 90%ile 99%ile 99.9%ile

Mostly idle No backups 19 ms 38 ms 67 ms 98 ms
Backup after 2 ms 16 ms 28 ms 38 ms 51 ms
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• Read operations in distributed file system client
– send tied request to first replica
– wait 2 ms, and send tied request to second replica
– servers cancel tied request on other replica when starting read

• Measure higher-level monitoring ops that touch disk

Tied Requests: Performance Benefits

Cluster state Policy 50%ile 90%ile 99%ile 99.9%ile

Mostly idle No backups 19 ms 38 ms 67 ms 98 ms
Backup after 2 ms 16 ms 28 ms 38 ms 51 ms

-43%
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• Read operations in distributed file system client
– send tied request to first replica
– wait 2 ms, and send tied request to second replica
– servers cancel tied request on other replica when starting read

• Measure higher-level monitoring ops that touch disk

Tied Requests: Performance Benefits

Cluster state Policy 50%ile 90%ile 99%ile 99.9%ile

Mostly idle No backups 19 ms 38 ms 67 ms 98 ms
Backup after 2 ms 16 ms 28 ms 38 ms 51 ms

+Terasort No backups 24 ms 56 ms 108 ms 159 ms
Backup after 2 ms 19 ms 35 ms 67 ms 108 ms
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• Read operations in distributed file system client
– send tied request to first replica
– wait 2 ms, and send tied request to second replica
– servers cancel tied request on other replica when starting read

• Measure higher-level monitoring ops that touch disk

Tied Requests: Performance Benefits

Cluster state Policy 50%ile 90%ile 99%ile 99.9%ile

Mostly idle No backups 19 ms 38 ms 67 ms 98 ms
Backup after 2 ms 16 ms 28 ms 38 ms 51 ms

+Terasort No backups 24 ms 56 ms 108 ms 159 ms
Backup after 2 ms 19 ms 35 ms 67 ms 108 ms

-38%

Saturday, January 19, 13



• Read operations in distributed file system client
– send tied request to first replica
– wait 2 ms, and send tied request to second replica
– servers cancel tied request on other replica when starting read

• Measure higher-level monitoring ops that touch disk

Tied Requests: Performance Benefits

Cluster state Policy 50%ile 90%ile 99%ile 99.9%ile

Mostly idle No backups 19 ms 38 ms 67 ms 98 ms
Backup after 2 ms 16 ms 28 ms 38 ms 51 ms

+Terasort No backups 24 ms 56 ms 108 ms 159 ms
Backup after 2 ms 19 ms 35 ms 67 ms 108 ms

Backups cause about ~1% extra disk reads
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– wait 2 ms, and send tied request to second replica
– servers cancel tied request on other replica when starting read
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• Read operations in distributed file system client
– send tied request to first replica
– wait 2 ms, and send tied request to second replica
– servers cancel tied request on other replica when starting read

• Measure higher-level monitoring ops that touch disk

Tied Requests: Performance Benefits

Cluster state Policy 50%ile 90%ile 99%ile 99.9%ile

Mostly idle No backups 19 ms 38 ms 67 ms 98 ms
Backup after 2 ms 16 ms 28 ms 38 ms 51 ms

+Terasort No backups 24 ms 56 ms 108 ms 159 ms
Backup after 2 ms 19 ms 35 ms 67 ms 108 ms

Backups w/big sort job gives same read latencies as no backups 
w/ idle cluster!
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• Our earliest systems made things easier within a cluster:
– GFS/Colossus: reliable cluster-level file system
– MapReduce: reliable large-scale computations
– Cluster scheduling system: abstracted individual machines
– BigTable: automatic scaling of higher-level structured storage

Cluster-Level Services
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• Our earliest systems made things easier within a cluster:
– GFS/Colossus: reliable cluster-level file system
– MapReduce: reliable large-scale computations
– Cluster scheduling system: abstracted individual machines
– BigTable: automatic scaling of higher-level structured storage

Cluster-Level Services

• Solve many problems, but leave many cross-cluster issues 
to human-level operators

– different copies of same dataset have different names
– moving or deploying new service replicas is labor intensive
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Spanner: Worldwide Storage
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Spanner: Worldwide Storage

• Single global namespace for data

• Consistent replication across datacenters

• Automatic migration to meet various constraints
– resource constraints

“The file system in this Belgian datacenter is getting full...”

– application-level hints
“Place this data in Europe and the U.S.” 
“Place this data in flash, and place this other data on disk”
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Spanner: Worldwide Storage

• Single global namespace for data

• Consistent replication across datacenters

• Automatic migration to meet various constraints
– resource constraints

“The file system in this Belgian datacenter is getting full...”

– application-level hints
“Place this data in Europe and the U.S.” 
“Place this data in flash, and place this other data on disk”

• System underlies Google’s production advertising system, among other 
uses

• [Spanner: Google’s Globally-Distributed Database, Corbett, Dean, ... et al., 
OSDI 2012]
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Higher Level Systems

• Systems that provide high level of abstraction that “just works” 
are incredibly valuable:

• GFS, MapReduce, BigTable, Spanner, tied requests, etc.

• Can we build high-level systems that just work in other 
domains like machine learning?
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Scaling Deep Learning

• Much of Google is working on approximating AI.  AI is hard

• Many people at Google spend countless person-years 
hand-engineering complex features to feed as input to 
machine learning algorithms

• Is there a better way?

• Deep Learning: Use very large scale brain simulations

• improve many Google applications

• make significant advances towards perceptual AI
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Deep Learning

• Algorithmic approach

• automatically learn high-level representations from raw data

• can learn from both labeled and unlabeled data

• Recent academic deep learning results improve on state-of-
the-art in many areas (Hinton, Ng, Bengio, LeCun, et al.):

• images, video, speech, NLP, ...

• ... using modest model sizes (<= ~50M parameters)

• We want to scale this to much bigger models & datasets

• currently: ~2B parameters, want ~10B-100B parameters

• general approach: parallelize at many levels
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Input Image
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Deep Networks
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Input Image
(or video)

Some scalar, nonlinear function
of local image patch

}

Many responses at a single location.
In many models these are independent,
  but some allow strong nonlinear interactions

Deep Networks
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Multiple “maps”

Input Image
(or video)

Deep Networks
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Layer 1

Input Image
(or video)

Deep Networks
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Layer 1

Input Image
(or video)

Unsupervised Training

Reconstruction
layer

Due to Geoff Hinton, Yoshua Bengio, Andrew Ng, and others

Core idea: try to reconstruct input from just the learned representation
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Layer 1

Layer 2

Input Image
(or video)
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Layer 1

Layer 2

Input Image
(or video)

Reconstruction
layer
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Layer 1

Layer 2

Input Image
(or video)
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Layer 1

Layer 2

Output feature vector

Input Image
(or video)
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Layer 1

Layer 2

Output feature vector

Input Image
(or video)

Traditional
ML tools
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Layer 1

Layer 0

Layer 2

Layer 3

Partition 1 Partition 3Partition 2

Partition 1 Partition 3Partition 2

Partition model across 
machines

Partition assignment 
in vertical silos.
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Partition 1 Partition 3Partition 2

Partition 1 Partition 3Partition 2

Minimal network traffic:
The most densely connected

areas are on the same partition

Partition assignment 
in vertical silos.

Partition model across 
machines
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Layer 1

Layer 0

Layer 2

Layer 3

Partition 1 Partition 3Partition 2

Partition 1 Partition 3Partition 2

Minimal network traffic:
The most densely connected

areas are on the same partition

Partition assignment 
in vertical silos.

Partition model across 
machines

One replica of our biggest models: 144 machines, ~2300 cores
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Model

Data

Asynchronous Distributed Stochastic Gradient Descent

Parameter Server
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Data
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Asynchronous Distributed Stochastic Gradient Descent

Parameter Server

Saturday, January 19, 13



Model

Data

p’

Asynchronous Distributed Stochastic Gradient Descent

Parameter Server

Saturday, January 19, 13



Model

Data

Asynchronous Distributed Stochastic Gradient Descent

Parameter Server
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Model

Data

Asynchronous Distributed Stochastic Gradient Descent

Parameter Server p’’ = p’ + ∆p’
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Parameter Server

Model
Workers

Data
Shards

p’ = p + ∆p

∆p p’

Asynchronous Distributed Stochastic Gradient Descent
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Deep Learning Systems Tradeoffs

• Lots of tradeoffs can be made to improve performance.  
Which ones are possible without hurting learning 
performance too much?

• For example:

• Use lower precision arithmetic

• Send 1 or 2 bits instead of 32 bits across network

• Drop results from slow partitions

• What’s the right hardware for training and deploying these 
sorts of systems?

• GPUs?  FPGAs?  Lossy computational devices?
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Applications

• Acoustic Models for Speech

• Unsupervised Feature Learning for Still Images

• Neural Language Models
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Acoustic Modeling for Speech Recognition

Trained in <5 days on cluster of 800 machines

Close collaboration with Google Speech team

label

Saturday, January 19, 13



Acoustic Modeling for Speech Recognition

Trained in <5 days on cluster of 800 machines

30% reduction in Word Error Rate
(“equivalent to 20 years of speech research”)

Close collaboration with Google Speech team

label
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Acoustic Modeling for Speech Recognition

Trained in <5 days on cluster of 800 machines

30% reduction in Word Error Rate
(“equivalent to 20 years of speech research”)

Deployed in Jellybean release of Android

Close collaboration with Google Speech team

label
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Applications

• Acoustic Models for Speech

• Unsupervised Feature Learning for Still Images

• Neural Language Models
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Purely Unsupervised Feature Learning in Images

Image

Encode Decode

Pool

Encode Decode

Pool

Encode Decode

Pool
• 1.15 billion parameters (50x larger than 
largest deep network in the literature)

• Trained on 16k cores for 1 week using 
Async-SGD

• Do unsupervised training on one frame 
from each of 10 million YouTube videos 
(200x200 pixels)

•No labels!

60,000 neurons at top level

Details in our ICML paper [Le et al. 2012]
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Purely Unsupervised Feature Learning in Images

Image

Encode Decode

Pool

Encode Decode

Pool

Encode Decode

Pool
Top level neurons seem to discover 
high-level concepts.  For example, one 
neuron is a decent face detector:

Feature value

Fr
eq

ue
nc

y

Non-faces

Faces
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Purely Unsupervised Feature Learning in Images
Most face-selective neuron

Top 48 stimuli from the test set
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Purely Unsupervised Feature Learning in Images
Most face-selective neuron

Top 48 stimuli from the test set Optimal stimulus 
by numerical optimization
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Purely Unsupervised Feature Learning in Images
It is YouTube...  We also have a cat neuron!

Top stimuli from the test set
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Purely Unsupervised Feature Learning in Images
It is YouTube...  We also have a cat neuron!

Optimal stimulus Top stimuli from the test set
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Semi-supervised Feature Learning in Images

Are the higher-level representations learned by 
unsupervised training a useful starting point for supervised 
training?

We do have some labeled data, so let’s fine tune this same 
network for a challenging image classification task.
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Semi-supervised Feature Learning in Images

Are the higher-level representations learned by 
unsupervised training a useful starting point for supervised 
training?

We do have some labeled data, so let’s fine tune this same 
network for a challenging image classification task.

ImageNet:
• 16 million images
• ~21,000 categories
• Recurring academic competitions
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01496331 electric ray, crampfish, numbfish, torpedo
01497118 sawfish
01497413 smalltooth sawfish, Pristis pectinatus
01497738 guitarfish
01498041 stingray
01498406 roughtail stingray, Dasyatis centroura
01498699 butterfly ray
01498989 eagle ray
01499396 spotted eagle ray, spotted ray, Aetobatus narinari
01499732 cownose ray, cow-nosed ray, Rhinoptera bonasus
01500091 manta, manta ray, devilfish
01500476 Atlantic manta, Manta birostris
01500854 devil ray, Mobula hypostoma
01501641 grey skate, gray skate, Raja batis
01501777 little skate, Raja erinacea
01501948 thorny skate, Raja radiata
01502101 barndoor skate, Raja laevis
01503976 dickeybird, dickey-bird, dickybird, dicky-bird
01504179 fledgling, fledgeling
01504344 nestling, baby bird

Aside:  20,000 is a lot of categories....
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01496331 electric ray, crampfish, numbfish, torpedo
01497118 sawfish
01497413 smalltooth sawfish, Pristis pectinatus
01497738 guitarfish
01498041 stingray
01498406 roughtail stingray, Dasyatis centroura
01498699 butterfly ray
01498989 eagle ray
01499396 spotted eagle ray, spotted ray, Aetobatus narinari
01499732 cownose ray, cow-nosed ray, Rhinoptera bonasus
01500091 manta, manta ray, devilfish
01500476 Atlantic manta, Manta birostris
01500854 devil ray, Mobula hypostoma
01501641 grey skate, gray skate, Raja batis
01501777 little skate, Raja erinacea
01501948 thorny skate, Raja radiata
01502101 barndoor skate, Raja laevis
01503976 dickeybird, dickey-bird, dickybird, dicky-bird
01504179 fledgling, fledgeling
01504344 nestling, baby bird

Aside:  20,000 is a lot of categories....

roughtail stingray

manta ray
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Semi-supervised Feature Learning in Images

Image

Encode Decode

Pool

Encode Decode

Pool

Encode Decode

Pool ImageNet Classification Results:

ImageNet 2011 (20k categories)
• Chance:  0.005%
• Best reported:  9.5%
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Semi-supervised Feature Learning in Images

Image

Encode Decode

Pool

Encode Decode

Pool

Encode Decode

Pool ImageNet Classification Results:

ImageNet 2011 (20k categories)
• Chance:  0.005%
• Best reported:  9.5%
• Our network:  16%  (+70% relative)
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Semi-supervised Feature Learning in Images

Neuron 5

Neuron A

Neuron B

Neuron C

Neuron D

Example top stimuli after fine tuning on ImageNet:

Neuron E
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Semi-supervised Feature Learning in Images

Neuron 5

Neuron F

Neuron G

Neuron H

Neuron I

Example top stimuli after fine tuning on ImageNet:
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Applications

• Acoustic Models for Speech

• Unsupervised Feature Learning for Still Images

• Neural Language Models
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~100-D joint embedding space

dolphin

Embeddings

porpoise
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~100-D joint embedding space

dolphin

SeaWorld

Embeddings

porpoise
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~100-D joint embedding space

dolphin

SeaWorld

Embeddings

porpoise

Obama
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~100-D joint embedding space

dolphin

SeaWorld

Paris

Embeddings

porpoise

Obama
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the cat sat on the

E E E EWord Embedding Matrix

Hidden Layers?

Hinge Loss // Softmax

Neural Language Models

is a matrix of dimension ||Vocab|| x d

Top prediction layer has ||Vocab|| x h parameters.

E

Most ideas from Bengio et al 2003,  Collobert & Weston 2008
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the cat sat on the

E E E EWord Embedding Matrix

Hidden Layers?

Hinge Loss // Softmax

Neural Language Models

is a matrix of dimension ||Vocab|| x d

Top prediction layer has ||Vocab|| x h parameters.

E

Most ideas from Bengio et al 2003,  Collobert & Weston 2008

100s of millions of parameters,
but gradients very sparse}
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Example: 50-D embedding trained for semantic similarity

Embedding sparse tokens in an N-dimensional space

apple
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Example: 50-D embedding trained for semantic similarity

Embedding sparse tokens in an N-dimensional space

apple stab
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Example: 50-D embedding trained for semantic similarity

Embedding sparse tokens in an N-dimensional space

apple stab iPhone
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Neural Language Models

the cat sat on the

E E E E

• 7 Billion word Google News training set

• 1 Million word vocabulary

• 8 word history,  50 dimensional embedding

• Three hidden layers each w/200 nodes

• 50-100 asynchronous model workers

Saturday, January 19, 13



Neural Language Models

the cat sat on the

E E E E

• 7 Billion word Google News training set

• 1 Million word vocabulary

• 8 word history,  50 dimensional embedding

• Three hidden layers each w/200 nodes

• 50-100 asynchronous model workers Traditional 5-gram XXX

NLM +15%

5-gram + NLM -33%

Perplexity Scores
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Deep Learning Applications

Many other applications not discussed today:

• Clickthrough prediction for advertising

•  Video understanding

• Recommendation systems

 ...
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Thanks!  Questions...?

Further reading:

• Ghemawat, Gobioff, & Leung. Google File System, SOSP 2003.

• Barroso, Dean, & Hölzle. Web Search for a Planet: The Google Cluster Architecture, IEEE Micro, 2003.

• Dean & Ghemawat. MapReduce: Simplified Data Processing on Large Clusters, OSDI 2004.

• Chang, Dean, Ghemawat, Hsieh, Wallach, Burrows, Chandra, Fikes, & Gruber. Bigtable: A Distributed Storage System for 
Structured Data, OSDI 2006. 

• Brants, Popat, Xu, Och, & Dean.  Large Language Models in Machine Translation,  EMNLP 2007.

• Le, Ranzato, Monga, Devin, Chen, Corrado, Dean, & Ng.  Building High-Level Features Using Large Scale Unsupervised 
Learning, ICML 2012. 

• Dean et al. , Large Scale Distributed Deep Networks, NIPS 2012. 

• Corbett, Dean, ..., et al.  Spanner: Google’s Globally-Distributed Database, to appear in OSDI 2012

• Dean & Barroso, The Tail at Scale,  to appear in CACM Feb. 2013.

• Protocol Buffers.  http://code.google.com/p/protobuf/
• Snappy.  http://code.google.com/p/snappy/
• Google Perf Tools.  http://code.google.com/p/google-perftools/
• LevelDB.  http://code.google.com/p/leveldb/

See:  http://research.google.com/people/jeff and http://research.google.com/papers
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