P

Skew and Failures during
Parallel Data Processing
e

Magdalena Balazinska

Science is Facing a Data Deluge!

* Hioh- N N-Treaduen SDSS, LSST)

e Astrono
e Medicin

_ Scientists need new tools and techniques
* Biology:

to effectively analyze all this data!

Oceanod tellites

[2006—May—28 01:00:00)

\\\\\\\\\\
IIIIII

I Nuage and CQMS Projects

http://nuage.cs.washington.edu/ and http://cams.cs.washington.edu/

/GoaI: /KZS iBl= A
* Big-data analytics Cl —
* Cloud computing « Parallel Array

.* Emphasis on scientific apps . DBMS)

/

High-Performance Big-Data Analytics (Nuage) \
 SkewReduce: Skew resistant proc. of complex functions [SSDBM 2010, SOCC 2010]
* FTOpt: Fault-tolerance optimization in parallel systems [SIGMOD 2011]

* Haloop: Support for iterative MapReduce processing [VLDB 2010)

K. SciDB: Parallel array-based system [SIGMOD 2010, SIGMOD 2011] /
@asier Analytics (CQMS/Nuage) N

e ParaTimer: Progress estimation for MapReduce DAGs [SIGMOD 2010, ICDE 2010]
* SnipSuggest: Context-Aware Auto-completion for SQL [VLDB 2011]
i PerfXPlain: Performance Debugging for MapReduce Jobs [VLDB 2012]

/

—

Acknowledgments

e SkewReduce is joint work with YongChul Kwon (UW),
Bill Howe (UW), and Jerome Rolia (HP Labs)

 FTOpt is joint work with Prasang Upadhyaya and
YongChul Kwon (UW)

—

SkewReduce Motivation

* Scientists need more than relational algebra
— Complex analytics (e.g., data clustering)

— Complex objects (e.g., points in 3D or 4D space)

* MapReduce is an attractive solution
— Easy API, declarative layer, seamless scalability, ...
— User provides 2 functions: map and reduce
— Map: Read input one record at a time and process
— Reduce: Aggregate the output of Map

——

Motivation (continued)

 Butitis hardto
— Express complex algorithms and

— Get high performance (e.g., 14 h vs. 1.5 h)

 SkewReduce:

— Toward scalable feature extraction analysis

Example 1: Extracting Celestial Objects
e Input - T
— {(x,y,r,g,b,ir,uv,...) }

e Coordinates

* Light intensities

* Qutput

— List of celestial objects %8
e Star
e Galaxy

* Planet
e Asteroid

M34 from Sloan Digital Sky Survey

—

Example 2: Friends of Friends

 Simple clustering algorithm

*
A A
* |nput: « QW aal
— Points in multi-dimensional space .
* Output: ,: L.
— List of clusters o m
— Original data annotated with °® w.°
cluster ID ° °®
[)
® oo ° : ®
* Friend °
— Point within a distance threshold
* Friends of Friends
— Transitive closure of Friend
relation

—

Parallel Friends of Friends

* Partition -

* Local clustering Y

* Merge - coles 2 cs

C3°%e| %o
— P1-P2 P1 o0 P3
— P3-P4 P2 . . P4
C4® oo ° : *C6

* Merge e * C6->C3
— P1-P2-P3-P4

* Finalize

— Annotate original data

Parallel Feature Extraction

¢

Features

* Partition multi-dimensional input data
* Extract features from each partition Map

* Merge (or reconcile) features Hierarchical Reduce
* Finalize output

10

Task ID

Problem: Skew

* The top red line runs for 1.5 hours

Skew
Local Clustering
f"!;
<
¢ :
Merge
E—
5 minutes t
- r >
35 minutes Yy
i'\._
Time

Unbalanced Computation: Skew

 Computation skew
— Characteristics of algorithm

 Same amount of input data != Same runtime

o

O(N log N) ~ O(N?)

0 neighbors per particle ~ N neighbors per particle

| Solution 17
Micro partitions

e Assign tiny amount of work
to each task to reduce skew

13

| How about having micro partitions?

* It works! 16
w14 -
* But P
 Overhead! EV
s °
8 6
: s,
* To find sweet spot, needto 3
. . . 2]
try different granularities! .
256 1024 4096
of partitions

Can we find a good partitioning plan
without trial and error? .

‘ S

kewReduce

An API for expressing feature-extracting applications

e A system built on top of Hadoop
— Implements the API
— Executes applications in a shared-nothing cluster

* An optimizer for automatically partitioning data

Evaluation on astronomy and oceanography data

FEATURE

FEATURE

FEATURE

SETASIDE

FINALIZE

FEATURE

SETASIDE

FEATURE

SETASIDE

OUTPUT

16

——

SkewReduce API

* Facilitates expression of feature extracting funcs
— Input: set of points in a multidimensional space
— QOutput: features and points label ' ir features

Input data Features and extra info for merge

* Serial feature extraction fu
.. _ Initial data labeled
_ proce.ss :: < Seq. of T> -> <F, Seq. of S>
* Reconcile/merge extracted features

— merge :: <F, F>-><F; Seq. of S>
* Perform any final re-labeling as needed
— finalize :: <F, S> -> <Seq. of 7>

| Partition Optimization

Serial feature extraction
Algorithm

Merge
Algorithm

* Two key algorithms: Extract features & Merge

e Can we gutomatically find a good partition plan
and schedule? .

Cost
functions

Cluster
configuration

* Goal: minimize expected total runtime

Approach

SkewReduce

Optimizer

e SkewReduce runtime plan
— Bounding boxes for data partitions

— Schedule

Runtime Plan

19

15

—

User-Provided Cost Functions

* Cost functions for feature extraction and merge:

— CostProcess(Bounding box b, sample s, rate r) - cost
— CostMerge(b1l, s1, r1, b2, s2, r2) - cost

 Example cost function for FoF:
— Build a 3D histogram of the sample data
— Compute sum of squares of frequencies

* Should satisfy 2 properties: fidelity and boundedness
— Fidelity: Lower cost means lower processing time
— Boundedness: Can we scale costs into runtimes?

Partition Plan Guided By Cost Functions

. JE S S
| WS-

Cost functions serve to make two decisions
* How (axis, point) to split a partition
— ldeally, want to split costs of partition in half
— Approach: sampling, binary search, or incremental

 When to stop partitioning
— Can the new set of partitions lead to a faster runtime?
— Must check actual expected schedule

21

Search Partition Plan

* Greedily split if total expected runtime improves
— Search the best split (axis, point)
— Evaluate costs for subpartitions and merge %
— Estimate new runtime

Original Possible Split
50

—

Evaluation

* 8 node cluster
— Dual quad core, 16 GB RAM
— Hadoop 0.20.1 + custom patch in MapReduce API

e Distributed Friends of Friends

— Astro: Gravitational simulation snapshot
* 900 M particles

— Seaflow: flow cytometry survey
* 59 M observations

Does SkewReduce work?

=
o

9 B Astro [Seaflow
w8
€ -
s 7
£6 -
[
3>]
54 7
33
e 1
1 - -
0 - N -
mmmm skewReduce
14.1 Hours
87.2 63.1 77.7 98.7 - 14.1 Minutes

Static plan yields 2 ~ 8 times faster running time

24

—

Cost Functions

* Data Size
— the number of data items in a partition

* Histogram 3D
— Model spatial index traversal pattern
— Construct equi-width 3D histogram
— Cost = sum of square of frequencies

* Histogram 1D
— 1D version of Histogram 3D

—

Completion time (Hours)

=
(¢)]

= =
N ~

(NN
o

(o]

[e)]

N

N

o

Fidelity of Cost Functions

Astro Seaflow
—_ 40 —_
m
] . 35 ! \\
- § 30 1
\\ =] /, \\
[] \ = ¢ \
. S 25 \
- < o ,/'
. ™. £ 20 -
\ \\.\ g 0.,\/‘ \\
\\ \\\ .-E N] ~\§\\ \\
i z>\\ \\\ §-15 \‘\o\\\ \
] o . S 10 T
i sl 5 1
*
T T 1 O I
Data Size Histogram 1D Histogram 3D Data Size Histogram 1D Histogram 3D
Cost Function Cost Function
* Higher fidelity = Better performance
e Seaflow -- overestimation

——

SkewReduce Summary

* Scientific analysis should be easy to write,
scalable, and with a predictable performance

e SkewReduce
— API to faciliate expression of feature extracting funcs
— Scalable execution

— High-performance in spite of skew
* Cost-based partition optimization using a data sample

—
Next Steps: SkewTune

* Key ideas:
— Ask nothing from the developer
— Make skew handling completely transparent
— Mitigate skew at runtime

 Key approach:
— As long as everyone is doing useful work, do nothing
— If resources idle, re-partition longest task remaining only
— Initial results: 4X time improvements!

—

Failures

29

| Failures in Big-Data Analysis

e At large scale, failures are the norm!

* Average of 5 worker deaths* per MapReduce job

* Availability in Globally Distributed Storage Systems. OSDI 2010.

30

Fault Tolerance Approach 1

Streaming Query Execution (Parallel Databases)

SELECT =™ JOIN > JOIN * AGGREGATE

Output
chunk 1

N~
—— ———
Data
Output
chunk
¥Z/

Incremental results possible with “online” operators
Failures are costly

31

Fault Tolerance Approach 2

Blocking Query Execution (MapReduce)

SELECT =™ JOIN - JOIN ﬂREGATE

~n—0 o+
~n—0 o4
~n-—0 o+

{
{

Inexpensive failure recovery
Blocking fault-tolerance prevents incremental results
Overhead of materialization 32

Bottom line

Desiderata:

1. Incremental output
2. Fast completion time with failures

* How can we achieve this?
— Use non-blocking fault-tolerance techniques
— SKIP: Skipping over un-needed inputs
— MATERIALIZE: Non-blocking materialization
— CHECKPOINT: Incremental checkpoints

* Each technique has a tradeoff. Which ones to use?

——

Tradeoff in Fault-tolerance Techniques

Skeleton Query Processing Engine

e Uses TCP connection to connect different operators
* Developed in JAVA using Apache MINA

* Pluggable fault-tolerance algorithms

17 machines. 8 cores of 2.5 GHz. 16 GB RAM. Two 7.2K RPM

Exclusive access to cores and disks
Each operator assigned an equal number of cores and disks

One failure in experiments
Half-way through the normal runtime.
For n operator query, execute n times, fail a different operator each time.

Fault-Tolerance Strategy Performance

)
QUERY

AGGREGATE

¢

JOIN

¢

JOIN

¢

SELECT

—

450
400
350
300
250
200
150
100

50

Runtime (s)

B Runtime without failures M Recovery time

70%

Restart SKIP MATERIALIZECHECKPOINT

Fault-tolerance plan

35

Does One Strategy Always Win?

Is the optimal strategy to checkpoint?

QUERY

JOIN
JOIN

JOIN

SELECT

B Runtime without failures M Recovery time

Restart SKIP MATERIALIZE CHECKPOINT

Fault-tolerance plan

36

I Takeaway

Is the optimal strategy to checkpoint?

Depends on the query!

To choose from multiple fault-tolerance plans is useful!

In fact, choose at the granularity of operators
and not just queries

37

FTOpt Components

o o o o o o / \
OPTIMIZER
CLUSTER S)

FTOPT: approach to enable heterogeneous fault-tolerance and
automatic strategy selection

|nte_raCt'°”_Pr_Ot°CO| Novel contributions
Offline Optimizer

38

Interaction Protocol

Aim: Make pipeline-of-operators fault-tolerant
using operator-level fault-tolerance

Solution: Abstract the local fault-tolerance properties
required for global correctness

39

—

Heterogeneous Fault-Tolerance Protocol

 Want each operator to pick preferred FT strategy
* Simple protocol based on ideas from homogeneous FT:

Rule 2: Upon request, must replay output tuples
— >~

Rule 3: If operator acks a tuple, it will never ask for it again

Rule 1: All tuples have unique IDs

Rule 4: must remember
last tuple received

* QOperators are now individually recoverable
e Data can keep flowing without interruption

—
How Failure Recovery Works?

o] {0

Step 1: Operator O, crashes and restarts

Step 2: O, asks O, for last tuple it received Rule 4 Rule 1

Step 3: Optionally, O, recovers any saved state from stable storage

Step 4: O, asks O, to replay any needed data | Rule 1 Rules2 & 3

Step 5: O, sends only new data to O,

—

Optimization Program

Objective is the expected total runtime:
T = Blocking Delay + Processing time
+ E[# of failures * recovery time]

Challenge: Need accurate estimates of execution times
under normal operation and during recovery

Why is this hard?

Operator behavior can be non-linear
Fault-tolerance can be non-linear

Solution: model operators using convex constraints

Heterogeneous Fault-Tolerance

. . : . Optimizer selected
B Runtime without failures B Recovery Time P

Hybrid plan
450 7 ~
400 // QUERY
350 AGGREGATE
& 300 - (CHECKPOINT)
(V) _
E 250 JOIN
£ 200 - (Skip)
& 150 - |
OIN
100 7 (Skip)
50 - T
0 - SELECT
(MATERIALIZE)

Restart Skip Materialize = Checkpoint Hybrid \

J

Fault-tolerance plan

Hybrid plan is 21% better than any uniform plan and 33% better than restart43

| FTOpt Summary

FTOpt
e Protocol: Support fault-tolerance mix-and-match
. Optimizer: Cost-based optimization

Runtime differences of up to 70%!
Extra details in the paper:

e Operator models within convex constraints framework
. User-Defined Operators (UDOs)
. Protocol implementation and extensibility

. Additional experiments: sensitivity, impact of UDOs, etc.

—

Conclusion

* Big-data analytics plays important role today
— In science
— In industry
* Many challenges to big-data analytics
— Today we discussed skew and failures
— Nuage project strives for high-performance analytics
— CQMS project studies usability aspects

 Please visit our websites for more information!

http://nuage.cs.washington.edu/ and http://cams.cs.washington.edu/

