

Skew and Failures during Parallel Data Processing

Magdalena Balazinska

University of Washington

http://www.cs.washington.edu/homes/magda/

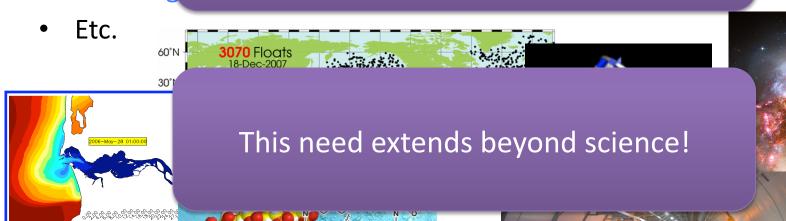
Science is Facing a Data Deluge!

- Astronomy: High-resolution, high-frequency sky surveys (SDSS, LSST)
- Medicin
- Biology:

Oceanog

Scientists need new tools and techniques to effectively analyze all this data!

tellites



Nuage and CQMS Projects

http://nuage.cs.washington.edu/ and http://cqms.cs.washington.edu/

Goal:

- Big-data analytics
- Cloud computing
- Emphasis on scientific apps

Parallel Array
 DBMS

High-Performance Big-Data Analytics (Nuage)

- **SkewReduce**: Skew resistant proc. of complex functions [SSDBM 2010, SOCC 2010]
- **FTOpt**: Fault-tolerance optimization in parallel systems [SIGMOD 2011]
- Haloop: Support for iterative MapReduce processing [VLDB 2010)
- SciDB: Parallel array-based system [SIGMOD 2010, SIGMOD 2011]

Easier Analytics (CQMS/Nuage)

- **ParaTimer**: Progress estimation for MapReduce DAGs [SIGMOD 2010, ICDE 2010]
- SnipSuggest: Context-Aware Auto-completion for SQL [VLDB 2011]
- **PerfXPlain**: Performance Debugging for MapReduce Jobs [VLDB 2012]

Acknowledgments

SkewReduce is joint work with YongChul Kwon (UW),
 Bill Howe (UW), and Jerome Rolia (HP Labs)

 FTOpt is joint work with Prasang Upadhyaya and YongChul Kwon (UW)

SkewReduce Motivation

- Scientists need more than relational algebra
 - Complex analytics (e.g., data clustering)
 - Complex objects (e.g., points in 3D or 4D space)
- MapReduce is an attractive solution
 - Easy API, declarative layer, seamless scalability, ...
 - User provides 2 functions: map and reduce
 - Map: Read input one record at a time and process
 - Reduce: Aggregate the output of Map

Motivation (continued)

- But it is hard to
 - Express complex algorithms and
 - Get high performance (e.g., 14 h vs. 1.5 h)
- SkewReduce:
 - Toward scalable <u>feature extraction analysis</u>

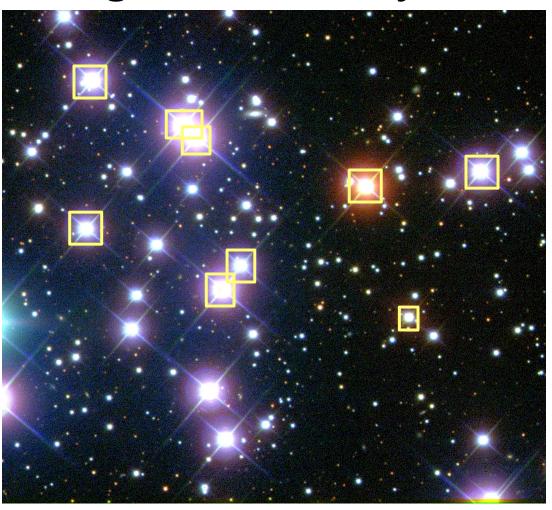
Example 1: Extracting Celestial Objects

Input

- { (x,y,r,g,b,ir,uv,...) }
 - Coordinates
 - Light intensities
 - ...

Output

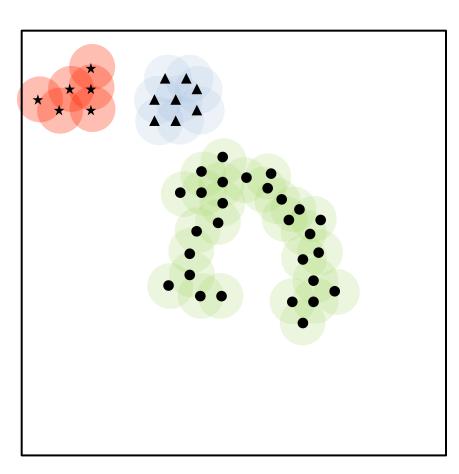
- List of <u>celestial objects</u>
 - Star
 - Galaxy
 - Planet
 - Asteroid
 - ...



M34 from Sloan Digital Sky Survey

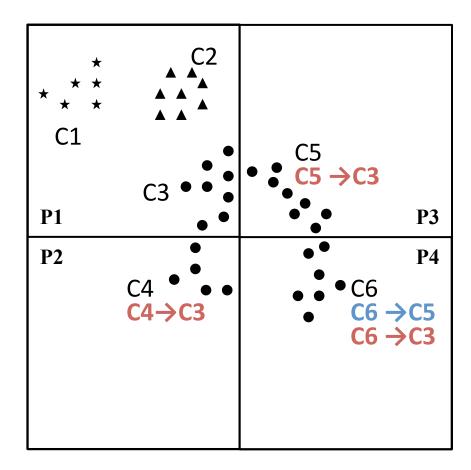
Example 2: Friends of Friends

- Simple clustering algorithm
- Input:
 - Points in multi-dimensional space
- Output:
 - List of clusters
 - Original data annotated with cluster ID
- Friend
 - Point within a distance threshold
- Friends of Friends
 - Transitive closure of Friend relation

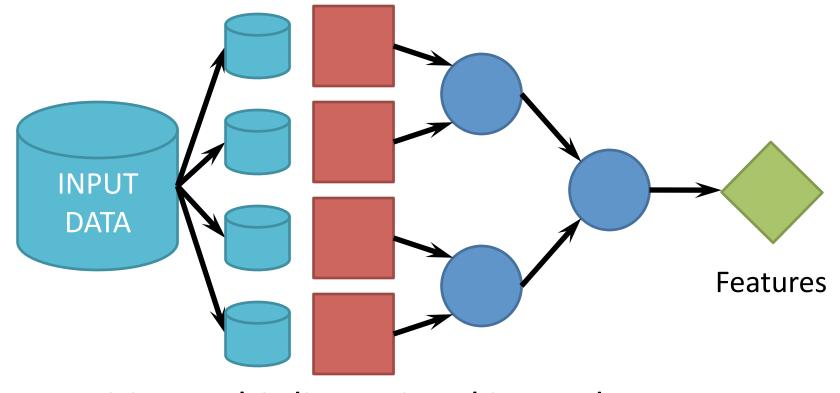


Parallel Friends of Friends

- Partition
- Local clustering
- Merge
 - P1-P2
 - P3-P4
- Merge
 - P1-P2-P3-P4
- Finalize
 - Annotate original data



Parallel Feature Extraction

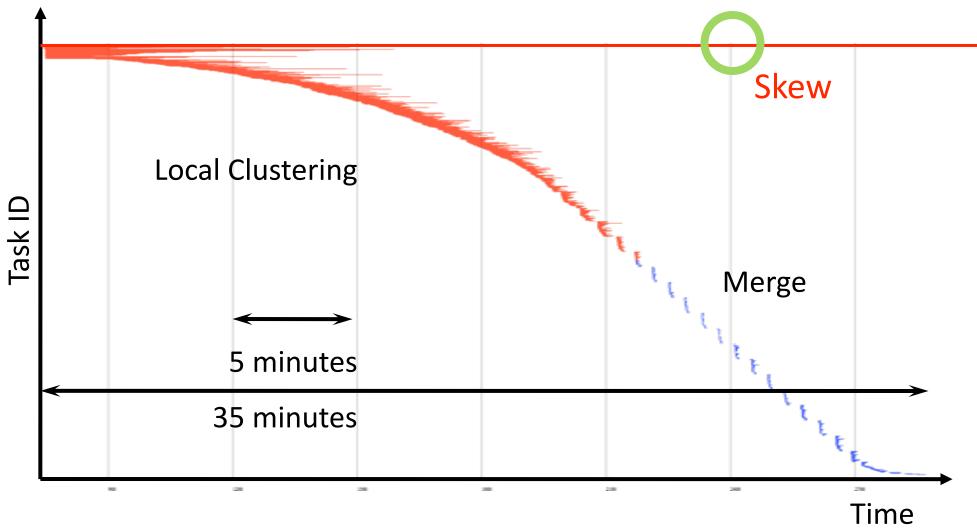


- Partition multi-dimensional input data
- Extract features from each partition

- Merge (or reconcile) features Hierarchical Reduce
- Finalize output

Map

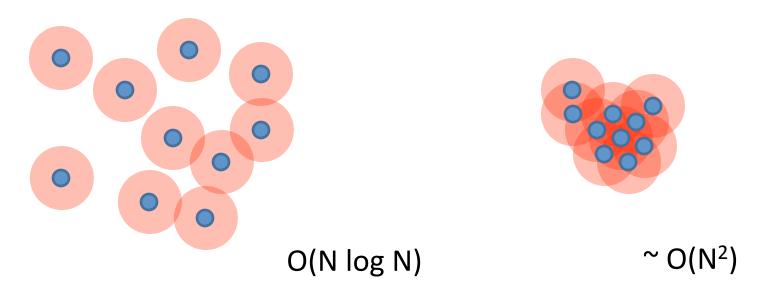
Problem: Skew



• The top red line runs for 1.5 hours

Unbalanced Computation: Skew

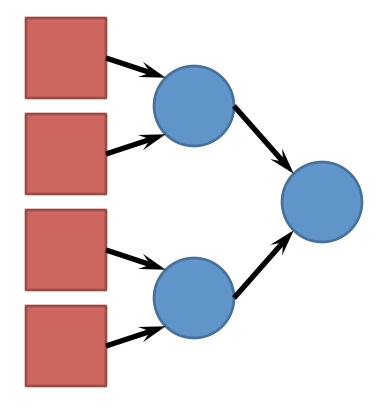
- Computation skew
 - Characteristics of algorithm
 - Same amount of input data != Same runtime



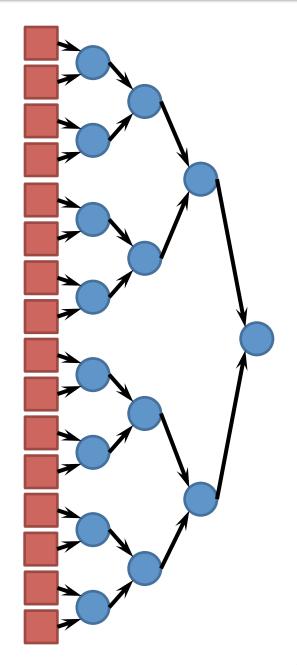
O neighbors per particle

~ N neighbors per particle

Solution 1? Micro partitions



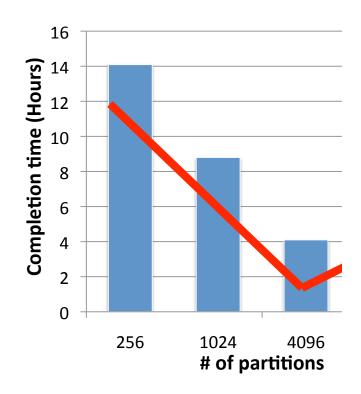
 Assign tiny amount of work to each task to reduce skew



How about having micro partitions?

- It works!
- But
- Overhead!

 To find sweet spot, need to try different granularities!

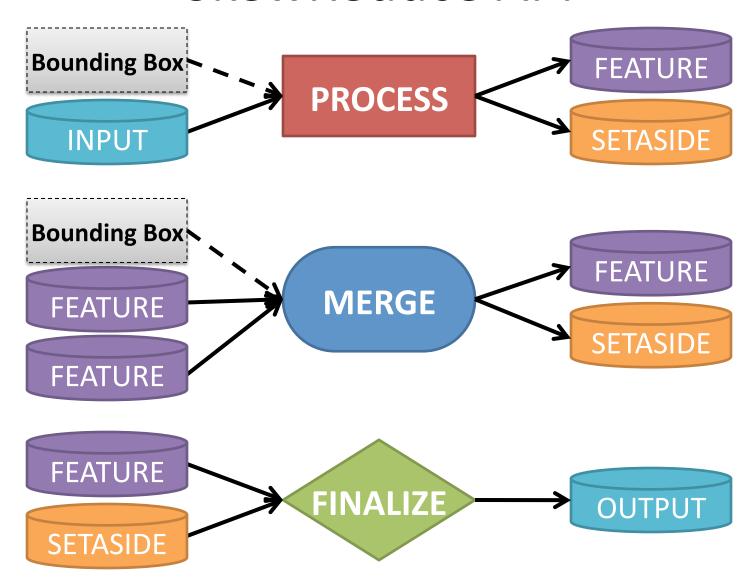


Can we find a good partitioning plan without trial and error?

SkewReduce

- An API for expressing feature-extracting applications
- A system built on top of Hadoop
 - Implements the API
 - Executes applications in a shared-nothing cluster
- An optimizer for automatically partitioning data
- Evaluation on astronomy and oceanography data

SkewReduce API



SkewReduce API

- Facilitates expression of feature extracting funcs
 - Input: set of points in a multidimensional space
 - Output: features and points labeled with their features

Input data

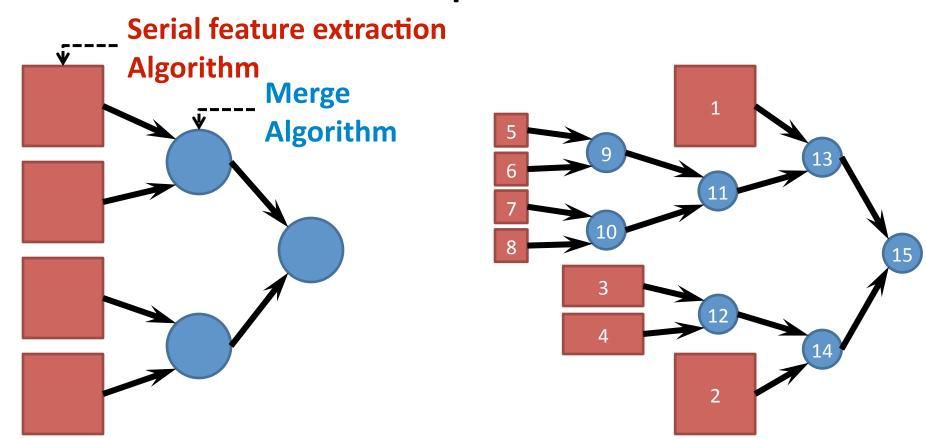
Features and extra info for merge

- Serial feature extraction fundament
 - process :: < Seq. of T> -> <F, Seq. of S>

Initial data labeled with features

- Reconcile/merge extracted features
 - merge :: <F, F> -> <F; Seq. of S>
- Perform any final re-labeling as needed
 - finalize :: <F, S> -> <Seq. of Z>

Partition Optimization



- Two key algorithms: Extract features & Merge
- Can we <u>automatically</u> find <u>a good partition plan</u> and <u>schedule</u>?

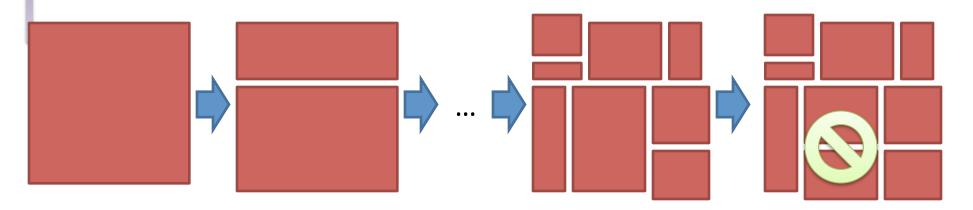
Approach Runtime Plan Sample Cost SkewReduce functions **Optimizer** Cluster configuration

- Goal: minimize expected total runtime
- SkewReduce runtime plan
 - Bounding boxes for data partitions
 - Schedule

User-Provided Cost Functions

- Cost functions for feature extraction and merge:
 - CostProcess(Bounding box b, sample s, rate r) \rightarrow cost
 - CostMerge(b1, s1, r1, b2, s2, r2) \rightarrow cost
- Example cost function for FoF:
 - Build a 3D histogram of the sample data
 - Compute sum of squares of frequencies
- Should satisfy 2 properties: fidelity and boundedness
 - Fidelity: Lower cost means lower processing time
 - Boundedness: Can we scale costs into runtimes?

Partition Plan Guided By Cost Functions



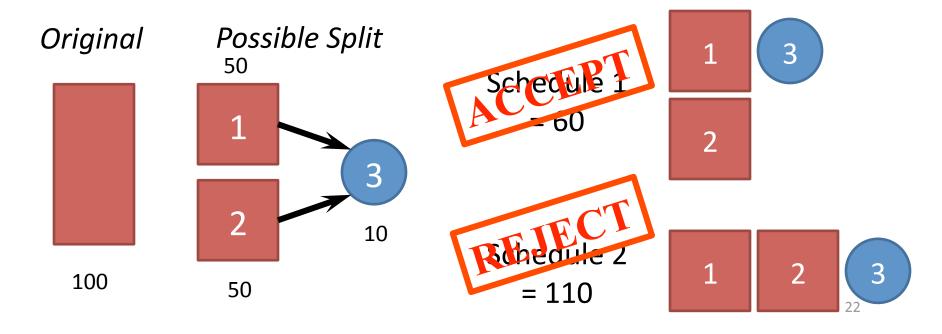
Cost functions serve to make two decisions

- How (axis, point) to split a partition
 - Ideally, want to split costs of partition in half
 - Approach: sampling, binary search, or incremental
- When to stop partitioning
 - Can the new set of partitions lead to a faster runtime?
 - Must check actual expected schedule

Search Partition Plan

- Greedily split if total expected runtime improves
 - Search the best split (axis, point)
 - Evaluate costs for subpartitions and merge

Estimate new runtime



Evaluation

- 8 node cluster
 - Dual quad core, 16 GB RAM
 - Hadoop 0.20.1 + custom patch in MapReduce API
- Distributed Friends of Friends
 - Astro: Gravitational simulation snapshot
 - 900 M particles
 - Seaflow: flow cytometry survey
 - 59 M observations

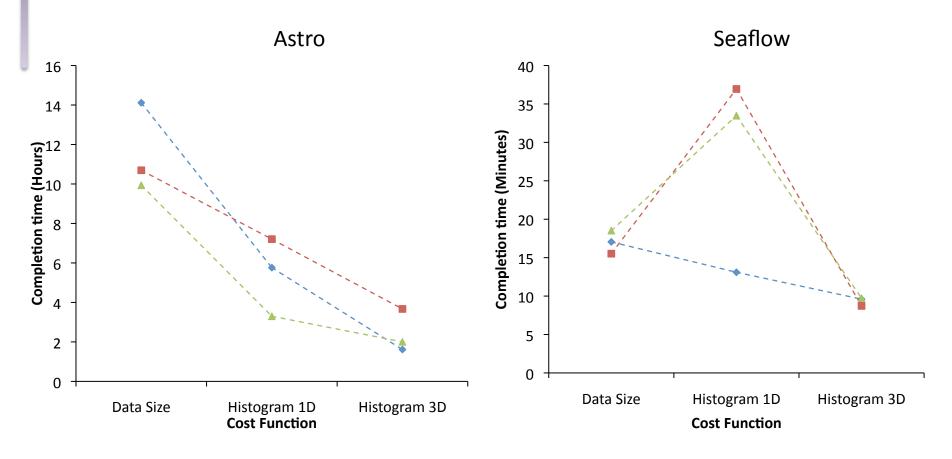
Does SkewReduce work?

Static plan yields 2 ~ 8 times faster running time

Cost Functions

- Data Size
 - the number of data items in a partition
- Histogram 3D
 - Model spatial index traversal pattern
 - Construct equi-width 3D histogram
 - Cost = sum of square of frequencies
- Histogram 1D
 - 1D version of Histogram 3D

Fidelity of Cost Functions



- Higher fidelity = Better performance
- Seaflow -- overestimation

SkewReduce Summary

 Scientific analysis should be easy to write, scalable, and with a predictable performance

SkewReduce

- API to faciliate expression of feature extracting funcs
- Scalable execution
- High-performance in spite of skew
 - Cost-based partition optimization using a data sample

Next Steps: SkewTune

Key ideas:

- Ask nothing from the developer
- Make skew handling completely transparent
- Mitigate skew at runtime

Key approach:

- As long as everyone is doing useful work, do nothing
- If resources idle, re-partition longest task remaining only
- Initial results: 4X time improvements!

Failures

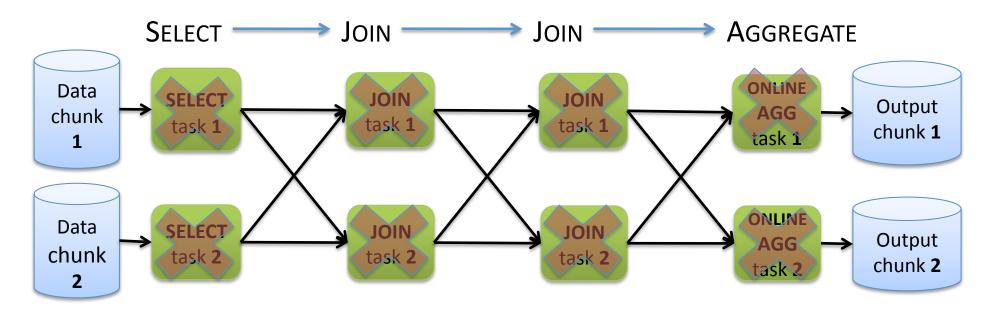
Failures in Big-Data Analysis

- At large scale, failures are the norm!
- Average of 5 worker deaths* per MapReduce job

³⁰

Fault Tolerance Approach 1

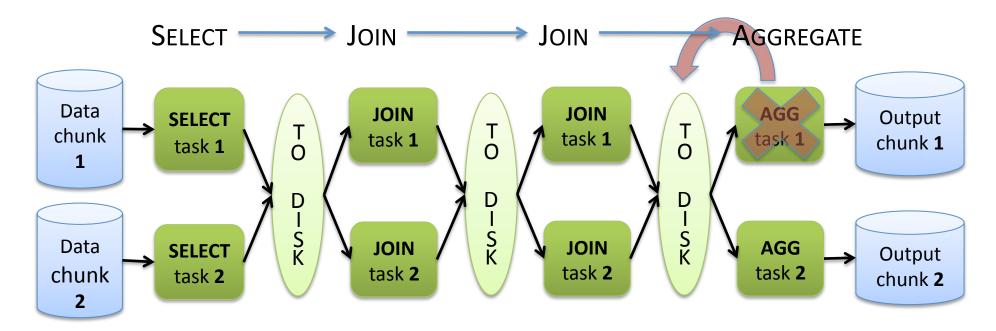
Streaming Query Execution (Parallel Databases)



Incremental results possible with "online" operators Failures are costly

Fault Tolerance Approach 2

Blocking Query Execution (MapReduce)



Inexpensive failure recovery

Blocking fault-tolerance prevents incremental results

Overhead of materialization

Bottom line

Desiderata:

- 1. Incremental output
- 2. Fast completion time with failures
- How can we achieve this?
 - Use non-blocking fault-tolerance techniques
 - SKIP: Skipping over un-needed inputs
 - MATERIALIZE: Non-blocking materialization
 - CHECKPOINT: Incremental checkpoints
- Each technique has a tradeoff. Which ones to use?

Tradeoff in Fault-tolerance Techniques

Skeleton Query Processing Engine

- Uses TCP connection to connect different operators
- Developed in JAVA using Apache MINA
- Pluggable fault-tolerance algorithms

17 machines. 8 cores of 2.5 GHz. 16 GB RAM. Two 7.2K RPM

Exclusive access to cores and disks

Each operator assigned an equal number of cores and disks

One failure in experiments

Half-way through the normal runtime.

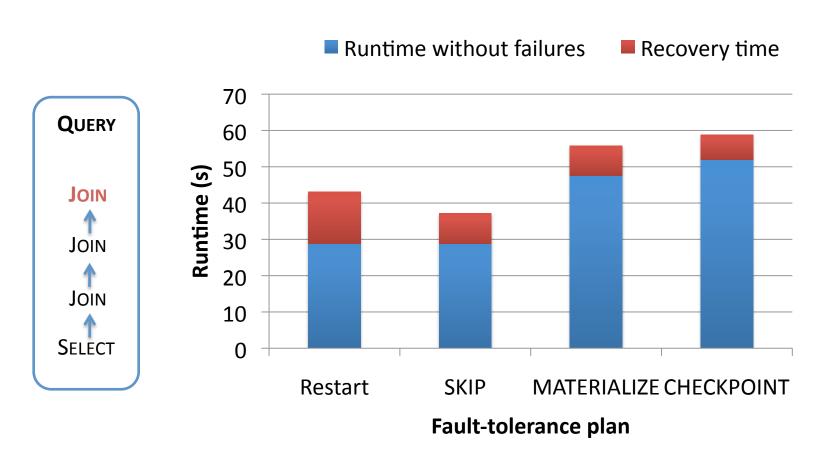
For *n* operator query, execute *n* times, fail a different operator each time.

Fault-Tolerance Strategy Performance



Does One Strategy Always Win?

Is the optimal strategy to checkpoint?



Takeaway

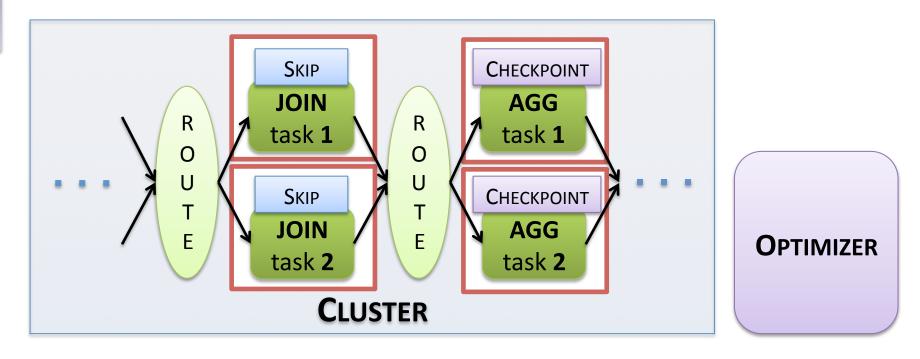
Is the optimal strategy to checkpoint?

Depends on the query!

To choose from multiple fault-tolerance plans is useful!

In fact, choose at the granularity of operators and not just queries

FTOpt Components



FTOPT: approach to enable heterogeneous fault-tolerance and automatic strategy selection

Interaction Protocol
Offline Optimizer

Novel contributions

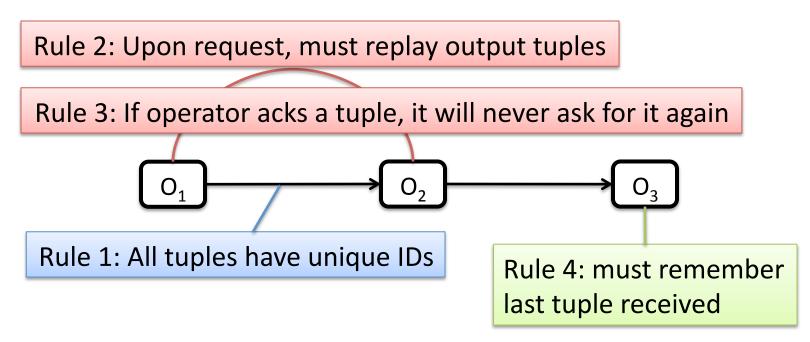
Interaction Protocol

Aim: Make pipeline-of-operators fault-tolerant using operator-level fault-tolerance

Solution: Abstract the **local** fault-tolerance **properties** required for **global** correctness

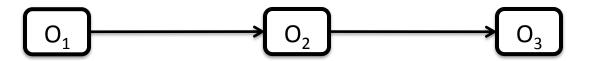
Heterogeneous Fault-Tolerance Protocol

- Want each operator to pick preferred FT strategy
- Simple protocol based on ideas from homogeneous FT:



- Operators are now individually recoverable
- Data can keep flowing without interruption

How Failure Recovery Works?



Step 1: Operator O₂ crashes and restarts

Step 2: O₂ asks O₃ for last tuple it received

Rule 4

Rule 1

Step 3: Optionally, O₂ recovers any saved state from stable storage

Step 4: O₂ asks O₁ to replay any needed data

Rule 1

Rules2 & 3

Step 5: O₂ sends only new data to O₃

Optimization Program

Objective is the **expected total runtime:**

```
T = Blocking Delay + Processing time
+ E[# of failures * recovery time]
```

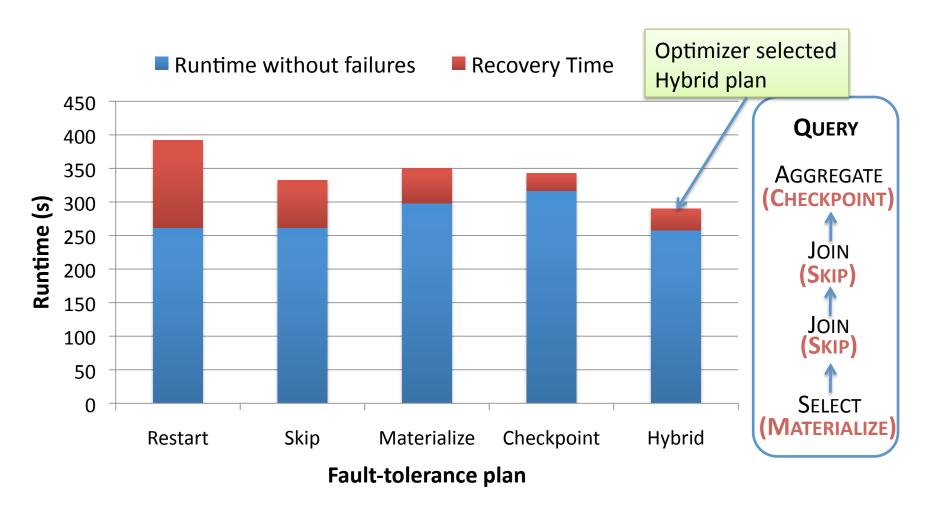
Challenge: Need **accurate** estimates of **execution times** under **normal operation** and during **recovery**

Why is this hard?

Operator behavior can be non-linear Fault-tolerance can be non-linear

Solution: model operators using **convex constraints**

Heterogeneous Fault-Tolerance



Hybrid plan is 21% better than any uniform plan and 33% better than restart

FTOpt Summary

FTOpt

- Protocol: Support fault-tolerance mix-and-match
- Optimizer: Cost-based optimization

Runtime differences of up to 70%!

Extra details in the paper:

- Operator models within convex constraints framework
- User-Defined Operators (UDOs)
- Protocol implementation and extensibility
- Additional experiments: sensitivity, impact of UDOs, etc.

Conclusion

- Big-data analytics plays important role today
 - In science
 - In industry
- Many challenges to big-data analytics
 - Today we discussed skew and failures
 - Nuage project strives for high-performance analytics
 - CQMS project studies usability aspects
- Please visit our websites for more information!

http://nuage.cs.washington.edu/ and http://cqms.cs.washington.edu/