Programming and Debugging
Large-Scale Data Processing Workflows

Christopher Olston and many others
Yahoo! Research

Context

* Elaborate processing of large data sets
e.g..

* web search pre-processing

e cross-dataset linkage
* web information extraction

i) » storage &
ingestion . >
processing

serving

11!

&9

Context

storage & workflow manager =25
processing e.g. Nova ‘

dataflow programming
framework

e.g. Pig

distributed

sorting & hashing
e.g. Map-Reduce

Overview

scalable file system
e.qg. GFS

Debugging aides:
* Before: example data generator _
- During: instrumentation framework

Gadget * After: provenance metadata manager - 9 ’
=

Detail:
Inspector

Pig: A High-Level Dataflow Language

and Runtime for Hadoop

Web browsing sessions with “happy endings.”

Visits
Visits

Pages
VP
UserVisits

Sessions
HappyEndings

store

load ‘/data/visits’ as (user, url, time);
foreach Visits generate user, Canonicalize(url), time;

load ‘/data/pages’ as (url, pagerank);

join Visits by url, Pages by url;

group VP by user;

foreach UserVisits generate flatten(FindSessions(*));
filter Sessions by BestIsLast(¥*);

HappyEndings into '/data/happy endings';

€9

vs. map-reduce: less code!

"The [Hofmann PLSA E/M] algorithm was implemented in pig in 30-35 lines of
pig-latin statements. Took a lot less compared to what it took in implementing
the algorithm in Map-Reduce Java. Exactly that's the reason | wanted to try it
out in Pig. It took 3-4 days for me to write it, starting from learning pig.”

-- Prasenjit Mukherjee, Mahout project

1/20 the lines of code 200 1/16 the development time

250

Minutes
= = N

o1 © U1 O
o O O O O
| | | |

Pig Hadoop Pig

performs on par with raw Hadoop

vs. SQL:
step-by-step style;
lower-level control

"I much prefer writing in Pig [Latin] versus SQL. The step-by-step method of
creating a program in Pig [Latin] is much cleaner and simpler to use than the
single block method of SQL. It is easier to keep track of what your variables

are, and where you are in the process of analyzing your data.”

-- Jasmine Novak, Engineer, Yahoo!

"PIG seems to give the necessary parallel programming construct (FOREACH,
FLATTEN, COGROUP .. etc) and also give sufficient control back to the
programmer (which purely declarative approach like [SQL on top of Map-

Reduce] doesn’t).”

-- Ricky Ho, Adobe Software

Conceptually:
A Graph of Data Transformations

Find users who tend to visit “good” pages.

Load Load
Visits(user, url, time) Pages(url, pagerank)
Transform

to (user, Canonicalize(url), time)

| Join
url = url

Group
by user

Transform
to (user, Average(pagerank) as avgPR)

avgPR > 0.5

lllustrated!

—

oad
Visits(user, url, time)

Load
Pages(url, pagerank)

(Amy, cnn.com, 8am)

71 (Amy, http://www.snails.com, 9am)
(Fred, www.snails.com/index.html, 11am)

Transform
to (user, Canonicalize(url), time)

_| (www.cnn.com, 0.9)
(www.snails.com, 0.4)

(Amy, www.cnn.com, 8am)
(Amy, www.snails.com, 9am)
(Fred, www.snails.com, 11am)

.| Join P
: url = url
(Amy, www.cnn.com, 8am, 0.9)
= === | (Amy, www.snails.com, 9am, 0.4)
(Fred, www.snails.com, 11am, 0.4)
\ 4
Group
by user

(Amy, { (Amy, www.cnn.com, 8am, 0.9),
(Amy, www.snails.com, 9am, 0.4) })
(Fred, { (Fred, www.snails.com, 11am, 0.4) })

Transform
to (user, Average(pagerank) as avgPR)

“ILLUSTRATE lets me check the output of my lengthy batch jobs and their
custom functions without having to do a lengthy run of a long pipeline. [This
feature] enables me to be productive.”

-- Russell Jurney, LinkedIn

(Naive Algorithm)

Load
Visits(user, url, time)

(Amy, cnn.com, 8am)
71 (Amy, http://www.snails.com, 9am)
(Fred, www.snails.com/index.html, 11am)

Transform

to (user, Canonicalize(url), time)

Join P

Load
Pages(url, pagerank)

_| (www.youtube.com, 0.9)
(www.frogs.com, 0.4)

1
| url = url

\ 4

(Amy, www.cnn.com, 8am)
(Amy, www.snails.com, 9am)
(Fred, www.snails.com, 11am) -—=-

Group
by user

Transform
to (user, Average(pagerank) as avgPR)

Filter
avgPR > 0.5

[----

Pig Project Status

Productized at Yahoo (~12-person team)

— 1000s of jobs/day
— 70% of Hadoop jobs

Open-source (the Apache Pig Project)
Offered on Amazon Elastic Map-Reduce
Used by Linkedln, Twitter, Yahoo, ...

Next: NOVA

storage &

workflow manager -
processing e.g. Nova ‘

dataflow programming

framework
e.qg. Pig

distributed

sorting & hashing
e.g. Map-Reduce

scalable file system
e.qg. GFS

Debugging aides:
* Before: example data generator 4
* During: instrumentation framework
e After: provenance metadata manager

Why a Workflow Manager?

Modularity: a workflow connects N dataflow modules
— Written independently, and re-used in other workflows
— Scheduled independently

Optimization: optimize across modules
— Share read costs among side-by-side modules
— Pipeline data between end-to-end modules

Continuous processing: push new data through
— Selective re-running
— Incremental algorithms (“view maintenance”)

Manageability: help humans keep tabs on execution
— Alerts
— Metadata (e.g. data provenance)

RSS feed

Example
Workflow g

template
templates tagging
%NEW
NEW
shingling
NEW
NEW
shingle de-
hashes duping
seen

unigue
articles

Data Passes Through Many Sub-Systems

datum X

low -latency

ingestion serving

Processor

datumyY
Map-Reduce arum

~\\\\
- -~y - ::9‘
metadata
queries

--..

Ibis Project

metadata
metadata _
| _—
B integrated answers
metadata

data processing sub-systems metadata manager

users

e Benefits:
— Provide uniform view to users
— Factor out metadata management code
— Decouple metadata lifetime from data/subsystem lifetime

* Challenges:

— Overhead of shipping metadata
— Disparate data/processing granularities

What’s Hard About
Multi-Granularity Provenance?

* Inference: Given relationships expressed at
one granularity, answer queries about other
granularities (the semantics are tricky here!)

* Efficiency: Implement inference without
resorting to materializing everything in terms

of finest granularity (e.g. cells)

Next: INSPECTOR GADGET

storage & workflow manager v
processing e.g. Nova

dataflow programming

framework
e.qg. Pig

distributed

sorting & hashing
e.g. Map-Reduce

scalable file system
e.qg. GFS

Debugging aides:
* Before: example data generator 4

* During: instrumentation framework _
e After: provenance metadata manager ¢/

Motivated by
User Interviews

* Interviewed 10 Yahoo dataflow programmers
(mostly Pig users; some users of other
dataflow environments)

e Asked them how they (wish they could) debug

Summary of User Interviews
#ofrequests |feature

7

= = R N N N N W W wWw P P u

crash culprit determination
row-level integrity alerts
table-level integrity alerts
data samples

data summaries

memory use monitoring
backward tracing (provenance)
forward tracing

golden data/logic testing
step-through debugging
latency alerts

latency profiling

overhead profiling

trial runs

Our Approach

* Goal: a programming framework for adding
these behaviors, and others, to Pig

* Precept: avoid modifying Pig or tampering
with data flowing through Pig

* Approach: perform Pig script rewriting —
insert special UDFs that look like no-ops to Pig

!

Pig w/ Inspector Gadget

|G agent

coordinator

Example:

Crash Culprit Determination
|G agent

4
Phases 1 to n-1: record counts /

U
4

Phase n: records p;

IG
coordinator

Phases 1 to n-1:
maintain count lower bounds

Phase n:
maintain last-seen records

Example:
Forward Tracing

suononJsul duioedl

report traced
records to user

dataflow program
+ app. parameters

F|OW end >

user < application
result

|G driver library

‘1, launch instrumented
/ | dataflow run(s)

raw result(s)
load

-7 |G agent
--------- » IGagent =

IG
coordinator

N |G agent

/
4
4
U
J
,/
U
;/ ¥
J
4
~
\-
~~.-———"

S |G agent |<

dataflow engine runtime

Agent & Coordinator APIs

Agent Class Agent Messaging

init(args) sendToCoordinator(message)
tags = observeRecord(record, tags) sendToAgent(agentld, message)
receiveMessage(source, message) sendDownstream(message)
finish() sendUpstream(message)

Coordinator Class Coordinator Messaging

init(args) sendToAgent(agentld, message)
receiveMessage(source, message)

output = finish()

Applications Developed Using |G
#of requests | feature | linesof code Java)

7 crash culprit determination 141
5 row-level integrity alerts 89
4 table-level integrity alerts 99
4 data samples 97
3 data summaries 130
3 memory use monitoring N/A
3 backward tracing 237
(provenance)
2 forward tracing 114
2 golden data/logic testing 200
2 step-through debugging N/A
2 latency alerts 168
1 latency profiling 136
1 overhead profiling 124
1 trial runs 93

Rest of talk: IG DETAILS

Semantics under parallel/distributed execution
Messaging & tagging implementation
_imitations

Performance experiments

Related work

(dow *6°3) abpis (9onpau *6:3) abpis

»
]

—
—
—
—

é—;@-,muv_ﬁw.—ﬁq
i el

RO)
3 gef

uonNJIax3 painguisia/|ajjeled

Messaging Details

e Semantics:

Message Request Semantics

sendToCoordinator(message) asynchronous, guaranteed delivery
sendToAgent(agentld, message) asynchronous, best-effort delivery
sendDownstream(message) “follow the arrows,” guaranteed delivery

sendUpstream(message) (same-stage only:) “invert the arrows,” guaranteed

* Implementation:

— Within-process: shared memory

— Cross-process: relay through coordinator (coordinator
buffers message for recipients that haven’t started yet)

Tagging Implementation

* Uses messaging APls

* Within-stage:
— Leverage “iterator model” synchronous pipeline execution

1. sendDownstream(“tag future outputs with T”); release output record
2. sendDownstream(“stop tagging”)

* (Cross-stage:

— Leverage Pig operator semantics (group-by, cogroup, join,
order-by)

— Group/cogroup: use group key
— Join/order-by: use all record fields (back-tags dups!)

!

Limitations of the IG Approach

Assumes query optimization nonexistent/disabled

|G sits on top of Pig, so hard to correlate with lower-level
logs/errors

Crash/re-start results in record being seen by agents
multiple times

— Fortunately, all apps we’ve written can tolerate this,
e.g. data only sent in finish(); rely on idempotence

Tagging implementation not scalable

Tagging implementation relies on Pig details

€9

Performance Experiments

* 15-machine Pig/Hadoop cluster (1G network)

* Four dataflows over a small web crawl sample
(10M URLs):

Dataflow Program Early Early Number of Map-
Projection Aggregation Reduce Jobs
Optimization? | Optimization?

Distinct Inlinks N N
Frequent Anchortext

Y N
Big Site Count Y Y
N Y

N R R R

Linked By Large

Running time (seconds)

400

350

300

250

200

150

100

50

Dataflow Running Times

Regular Pig
No-op

DH

DS

FT

LA

LP

RI

TI

7
Ll s L L

Script

Distinct Inlinks Frequent Anchor Text Big Site Count Linked by Large

Summary

storage &
processing

dataflow programming

framework
e.g. Pig

distributed

sorting & hashing
e.g. Map-Reduce

scalable file system
e.qg. GFS

Debugging aides:

* Before: example data generator

* During: instrumentation framework

» After: provenance metadata manager

workflow manager ' N
- ova
k

- Dataflow Illustrator
- Inspector Gadget

=S

Related Work

Pig: DryadLINQ, Hive, Jaql, Scope, relational query
languages

Nova: BigTable, CBP, Oozie, Percolator, scientific workflow,
incremental view maintenance

Dataflow illustrator: [Mannila/Raiha, PODS’86], reverse
query processing, constraint databases, hardware
verification & model checking

Inspector gadget: XTrace, taint tracking, aspect-oriented
programming

Ibis: Kepler COMAD, ZOOM user views, provenance
management for databases & scientific workflows

€9

Collaborators

.’v\)

~

e Do you Pig!?
Do you Pigl? °\|°° po yo! pigh?
A"

Do you Pigr?

L 17] Plgla
Piqgl? oo
po you ig!? o

Shubham Chopra Olga Natkovich
Anish Das Sarma Benjamin Reed
Alan Gates Santhosh Srinivasan
Pradeep Kamath Utkarsh Srivastava
Ravi Kumar Andrew Tomkins

Shravan Narayanamurthy

