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Thank you! 
•  Jennifer 

•  Marianne 
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Our goal: 

Open source system for mining huge graphs: 

PEGASUS project (PEta GrAph mining 
System)  

•  www.cs.cmu.edu/~pegasus 
•  code and papers 

Stanford'11 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 
•  Problem#3: Scalability 
•  Conclusions 

Stanford'11 
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Graphs - why should we care? 

Internet Map 
[lumeta.com] 

Food Web 
[Martinez ’91] 

Friendship Network 
[Moody ’01] 

Stanford'11 

•  Social networks 
•  (facebook, orkut, …) 

•  twitter 
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Graphs - why should we care? 
•  IR: bi-partite graphs (doc-terms) 

•  web: hyper-text graph 

•  ... and more: 

D1 

DN 

T1 

TM 

... ... 

Stanford'11 
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Graphs - why should we care? 
•  ‘viral’ marketing 
•  web-log (‘blog’) news propagation 
•  computer network security: email/IP traffic 

and anomaly detection 
•  .... 

Stanford'11 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs 
– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
•  Problem#3: Scalability 
•  Conclusions 

Stanford'11 
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Problem #1 - network and graph 
mining 

•  What does the Internet look like? 
•  What does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

Stanford'11 
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Problem #1 - network and graph 
mining 

•  What does the Internet look like? 
•  What does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

–  To spot anomalies (rarities), we have to 
discover patterns 
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Problem #1 - network and graph 
mining 

•  What does the Internet look like? 
•  What does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

–  To spot anomalies (rarities), we have to 
discover patterns 

–  Large datasets reveal patterns/anomalies 
that may be invisible otherwise… 

Stanford'11 
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Graph mining 
•  Are real graphs random? 

Stanford'11 
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Laws and patterns 
•  Are real graphs random? 
•  A: NO!! 

– Diameter 
–  in- and out- degree distributions 
–  other (surprising) patterns 

•  So, let’s look at the data 

Stanford'11 
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Solution# S.1 
•  Power law in the degree distribution 

[SIGCOMM99] 

log(rank) 

log(degree) 

internet domains 

att.com 

ibm.com 

Stanford'11 
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Solution# S.1 
•  Power law in the degree distribution 

[SIGCOMM99] 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

Stanford'11 



CMU SCS 

C. Faloutsos (CMU) 16 

Solution# S.2: Eigen Exponent E 

•  A2: power law in the eigenvalues of the adjacency 
matrix 

E = -0.48 

Exponent = slope 

Eigenvalue 

Rank of decreasing eigenvalue 

May 2001 

Stanford'11 
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Solution# S.2: Eigen Exponent E 

•  [Mihail, Papadimitriou ’02]: slope is ½ of rank 
exponent 

E = -0.48 

Exponent = slope 

Eigenvalue 

Rank of decreasing eigenvalue 

May 2001 

Stanford'11 
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But: 
How about graphs from other domains? 

Stanford'11 
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More power laws: 
•  web hit counts [w/ A. Montgomery] 

Web Site Traffic 

in-degree (log scale) 

Count 
(log scale) 

Zipf 

users 
sites 

``ebay’’ 

Stanford'11 
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epinions.com 
•  who-trusts-whom 

[Richardson + 
Domingos, KDD 
2001] 

(out) degree 

count 

trusts-2000-people user 

Stanford'11 
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And numerous more 
•  # of sexual contacts 
•  Income [Pareto] –’80-20 distribution’ 
•  Duration of downloads [Bestavros+] 
•  Duration of UNIX jobs (‘mice and 

elephants’) 
•  Size of files of a user 
•  … 
•  ‘Black swans’ 
Stanford'11 C. Faloutsos (CMU) 21 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
•  degree, diameter, eigen,  
•  triangles 
•  cliques 

– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
Stanford'11 
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles  

Stanford'11 
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles 
–  Friends of friends are friends  

•  Any patterns? 

Stanford'11 
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Triangle Law: #S.3  
[Tsourakakis ICDM 2008] 

ASN HEP-TH 

Epinions X-axis: # of  participating 
triangles 
Y: count (~ pdf) 

Stanford'11 
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Triangle Law: #S.3  
[Tsourakakis ICDM 2008] 

ASN HEP-TH 

Epinions 

Stanford'11 

X-axis: # of  participating 
triangles 
Y: count (~ pdf) 
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Triangle Law: #S.4  
[Tsourakakis ICDM 2008] 

SN Reuters 

Epinions X-axis: degree 
Y-axis: mean # triangles 
n friends -> ~n1.6 triangles 

Stanford'11 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

But: triangles are expensive to compute 
 (3-way join; several approx. algos) 

Q: Can we do that quickly? 

details 

Stanford'11 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

But: triangles are expensive to compute 
 (3-way join; several approx. algos) 

Q: Can we do that quickly? 
A: Yes! 

 #triangles = 1/6 Sum ( λi
3 ) 

      (and, because of skewness (S2) ,  
 we only need the top few eigenvalues! 

details 

Stanford'11 



CMU SCS 

C. Faloutsos (CMU) 30 

Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

1000x+ speed-up, >90% accuracy 

details 

Stanford'11 
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EigenSpokes 
B. Aditya Prakash, Mukund Seshadri, Ashwin 

Sridharan, Sridhar Machiraju and Christos 
Faloutsos: EigenSpokes: Surprising 
Patterns and Scalable Community Chipping 
in Large Graphs, PAKDD 2010, 
Hyderabad, India, 21-24 June 2010. 

C. Faloutsos (CMU) 31 Stanford'11 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 

32 C. Faloutsos (CMU) Stanford'11 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 

33 C. Faloutsos (CMU) Stanford'11 

N 

N 

details 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 

34 C. Faloutsos (CMU) Stanford'11 

N 

N 

details 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 

35 C. Faloutsos (CMU) Stanford'11 

N 

N 

details 
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EigenSpokes 
•  EE plot: 
•  Scatter plot of 

scores of u1 vs u2 
•  One would expect 

– Many points @ 
origin 

– A few scattered 
~randomly 

C. Faloutsos (CMU) 36 

u1 

u2 

Stanford'11 

1st Principal  
component 

2nd Principal  
component 
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EigenSpokes 
•  EE plot: 
•  Scatter plot of 

scores of u1 vs u2 
•  One would expect 

– Many points @ 
origin 

– A few scattered 
~randomly 

C. Faloutsos (CMU) 37 

u1 

u2 
90o 

Stanford'11 
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EigenSpokes - pervasiveness 
• Present in mobile social graph 

 across time and space 

• Patent citation graph 

38 C. Faloutsos (CMU) Stanford'11 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 

39 C. Faloutsos (CMU) Stanford'11 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 

41 C. Faloutsos (CMU) Stanford'11 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 

So what? 
 Extract nodes with high 

scores  
  high connectivity 
 Good “communities” 

spy plot of top 20 nodes 

42 C. Faloutsos (CMU) Stanford'11 
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Bipartite Communities! 

magnified bipartite community 

patents from 
same inventor(s) 

`cut-and-paste’ 
bibliography! 

43 C. Faloutsos (CMU) Stanford'11 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
•  degree, diameter, eigen,  
•  triangles 
•  cliques 

– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
Stanford'11 
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Observations on  weighted 
graphs? 

•  A: yes - even more ‘laws’! 

M. McGlohon, L. Akoglu, and C. Faloutsos  
Weighted Graphs and Disconnected 
Components: Patterns and a Generator.  
SIG-KDD 2008  

Stanford'11 
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Observation W.1: Fortification 
Q: How do the weights  
of nodes relate to degree? 

Stanford'11 



CMU SCS 

C. Faloutsos (CMU) 47 

Observation W.1: Fortification 

More donors,  
more $ ? 

$10 

$5 

Stanford'11 

‘Reagan’ 

‘Clinton’ 
$7 
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Edges (# donors) 

In-weights 
($) 

C. Faloutsos (CMU) 48 

Observation W.1: fortification: 
Snapshot Power Law 

•  Weight: super-linear on in-degree  
•  exponent ‘iw’: 1.01 < iw < 1.26 

Orgs-Candidates 

e.g. John Kerry,  
$10M received, 
from 1K donors 

More donors,  
even more $ 

$10 

$5 

Stanford'11 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
•  … 

Stanford'11 
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Problem: Time evolution 
•  with Jure Leskovec (CMU -> 

Stanford) 

•   and Jon Kleinberg (Cornell – 
sabb. @ CMU) 

Stanford'11 
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T.1 Evolution of the Diameter 
•  Prior work on Power Law graphs hints 

at   slowly growing diameter: 
–  diameter ~ O(log N) 
–  diameter ~ O(log log N) 

•  What is happening in real data? 

Stanford'11 
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T.1 Evolution of the Diameter 
•  Prior work on Power Law graphs hints 

at   slowly growing diameter: 
–  diameter ~ O(log N) 
–  diameter ~ O(log log N) 

•  What is happening in real data? 
•  Diameter shrinks over time 

Stanford'11 
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T.1 Diameter – “Patents” 

•  Patent citation 
network 

•  25 years of data 
•  @1999 

–  2.9 M nodes 
–  16.5 M edges 

time [years] 

diameter 

Stanford'11 
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T.2 Temporal Evolution of the 
Graphs 

•  N(t) … nodes at time t 
•  E(t) … edges at time t 
•  Suppose that 

  N(t+1) = 2 * N(t) 
•  Q: what is your guess for  

  E(t+1) =? 2 * E(t) 

Stanford'11 
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T.2 Temporal Evolution of the 
Graphs 

•  N(t) … nodes at time t 
•  E(t) … edges at time t 
•  Suppose that 

  N(t+1) = 2 * N(t) 
•  Q: what is your guess for  

  E(t+1) =? 2 * E(t) 
•  A: over-doubled! 

– But obeying the ``Densification Power Law’’ 
Stanford'11 
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T.2 Densification – Patent 
Citations 

•  Citations among 
patents granted 

•  @1999 
–  2.9 M nodes 
–  16.5 M edges 

•  Each year is a 
datapoint 

N(t) 

E(t) 

1.66 

Stanford'11 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
•  … 

Stanford'11 
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More on Time-evolving graphs 

M. McGlohon, L. Akoglu, and C. Faloutsos  
Weighted Graphs and Disconnected 
Components: Patterns and a Generator.  
SIG-KDD 2008  

Stanford'11 
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Observation T.3: NLCC behavior 
Q: How do NLCC’s emerge and join with 

the GCC? 

(``NLCC’’ = non-largest conn. components) 
– Do they continue to grow in size? 
–  or do they shrink? 
–  or stabilize? 

Stanford'11 
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Observation T.3: NLCC behavior 
Q: How do NLCC’s emerge and join with 

the GCC? 

(``NLCC’’ = non-largest conn. components) 
– Do they continue to grow in size? 
–  or do they shrink? 
–  or stabilize? 

Stanford'11 



CMU SCS 

C. Faloutsos (CMU) 61 

Observation T.3: NLCC behavior 
Q: How do NLCC’s emerge and join with 

the GCC? 

(``NLCC’’ = non-largest conn. components) 
– Do they continue to grow in size? 
–  or do they shrink? 
–  or stabilize? 

Stanford'11 
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Observation T.3: NLCC behavior 
•  After the gelling point, the GCC takes off, but 

NLCC’s remain ~constant (actually, oscillate). 

IMDB 

CC size 

Time-stamp 
Stanford'11 
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Timing for Blogs 

•  with Mary McGlohon (CMU->google) 
•  Jure Leskovec (CMU->Stanford) 
•  Natalie Glance (now at Google) 
•  Mat Hurst (now at MSR) 
[SDM’07] 

Stanford'11 
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T.4 : popularity over time 

Post popularity drops-off – exponentially? 

lag: days after post 

# in links 

1 2 3 

@t 

@t + lag 

Stanford'11 
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T.4 : popularity over time 

Post popularity drops-off – exponentially? 
POWER LAW! 
Exponent? 

# in links 
(log) 

days after post 
(log) 

Stanford'11 
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T.4 : popularity over time 

Post popularity drops-off – exponentially? 
POWER LAW! 
Exponent? -1.6  
•  close to -1.5: Barabasi’s stack model 
•  and like the zero-crossings of a random walk 

# in links 
(log) -1.6 

days after post 
(log) 

Stanford'11 
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-1.5 slope 
J. G. Oliveira & A.-L. Barabási Human Dynamics: The 

Correspondence Patterns of Darwin and Einstein. 
Nature 437, 1251 (2005) . [PDF]  
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T.5: duration of phonecalls 
Surprising Patterns for the Call 

Duration Distribution of Mobile 
Phone Users 

Pedro O. S. Vaz de Melo, Leman 
Akoglu, Christos Faloutsos, Antonio 
A. F. Loureiro 

PKDD 2010 
Stanford'11 C. Faloutsos (CMU) 68 
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Probably, power law (?) 

Stanford'11 C. Faloutsos (CMU) 69 

?? 
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No Power Law! 

Stanford'11 C. Faloutsos (CMU) 70 
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‘TLaC: Lazy Contractor’ 
•  The longer a task (phonecall) has taken, 
•  The even longer it will take 

Stanford'11 C. Faloutsos (CMU) 71 

Odds ratio= 

Casualties(<x): 
Survivors(>=x) 

== power law 
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72 

Data Description 

  Data from a private mobile operator of a large 
city 
  4 months of data 
  3.1 million users 
  more than 1 billion phone records 

  Over 96% of ‘talkative’ users obeyed a TLAC 
distribution (‘talkative’: >30 calls) 

Stanford'11 C. Faloutsos (CMU) 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 

– OddBall (anomaly detection) 
– Belief Propagation 
–  Immunization 

•  Problem#3: Scalability 
•  Conclusions 

Stanford'11 
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OddBall: Spotting Anomalies 
in  Weighted Graphs 

Leman Akoglu, Mary McGlohon, Christos 
Faloutsos 

Carnegie Mellon University  
School of Computer Science 

PAKDD 2010, Hyderabad, India 
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Main idea 
For each node,  
•  extract ‘ego-net’ (=1-step-away neighbors) 
•  Extract features (#edges, total weight, etc 

etc) 
•  Compare with the rest of the population 

C. Faloutsos (CMU) 75 Stanford'11 
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What is an egonet? 

ego 

76 

egonet 

C. Faloutsos (CMU) Stanford'11 
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Selected Features 
  Ni: number of neighbors (degree) of ego i 
  Ei: number of edges in egonet i 
  Wi: total weight of egonet i 
  λw,i: principal eigenvalue of the weighted 

adjacency matrix of egonet I 

77 C. Faloutsos (CMU) Stanford'11 
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Near-Clique/Star 

78 Stanford'11 C. Faloutsos (CMU) 
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Near-Clique/Star 

79 C. Faloutsos (CMU) Stanford'11 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 

– OddBall (anomaly detection) 
– Belief Propagation 
–  Immunization 

•  Problem#3: Scalability 
•  Conclusions 

Stanford'11 
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Fraud detection 
•  Problem: Given network and noisy domain 

knowledge about weakly-suspicious nodes (flags), 
which nodes are most risky? 

Cash	
  
Accounts	
  
Payable	
  

Inventory	
  

Bad	
  Debt	
  

Non-­‐Trade	
  
A/R	
  

Accounts	
  
Receivable	
  

Revenue	
  1	
  

Revenue	
  2	
  

81 

Revenue	
  3	
  

Revenue	
  4	
  

Revenue	
  5	
  Stanford'11 C. Faloutsos (CMU) 
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Fraud detection 
•  Flags: eg, too many round numbers, etc 

Cash	
  
Accounts	
  
Payable	
  

Inventory	
  

Bad	
  Debt	
  

Non-­‐Trade	
  
A/R	
  

Accounts	
  
Receivable	
  

Revenue	
  1	
  

Revenue	
  2	
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Revenue	
  3	
  

Revenue	
  4	
  

Revenue	
  5	
  Stanford'11 C. Faloutsos (CMU) 
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Solution: Belief Propagation 

83 

•  Solution: Social Network Analytic Risk 
Evaluation 
– Assume homophily between nodes (“guilt 

by association”) 
– Use belief propagation (message passing) 
– Upon convergence, determine end risk 

scores. 

[SNARE: McGlohon+, KDD’09] 
Stanford'11 C. Faloutsos (CMU) 
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Fraud detection 
•  Problem: Given network and noisy domain 

knowledge about suspicious nodes (flags), which 
nodes are most risky? 

Cash	
  
Accounts	
  
Payable	
  

Inventory	
  

Bad	
  Debt	
  

Non-­‐Trade	
  
A/R	
  

Accounts	
  
Receivable	
  

Revenue	
  1	
  

Revenue	
  2	
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Fraud detection 
•  Problem: Given network and noisy domain 

knowledge about suspicious nodes (flags), which 
nodes are most risky? 

Cash	
  
Accounts	
  
Payable	
  

Inventory	
  

Bad	
  Debt	
  

Non-­‐Trade	
  
A/R	
  

Accounts	
  
Receivable	
  

Revenue	
  1	
  

Revenue	
  2	
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Revenue	
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BP and ‘SNARE’ 

86 

•  Accurate – significant improvement over base 
•  Flexible - Can be applied to other domains 
•  Scalable - Linear time 
•  Robust - Works on large range of parameters 

False positive rate 

True 
positive 

rate 

Results for accounts data (ROC Curve) 

SNARE 

Baseline  
(flags only) 

Stanford'11 C. Faloutsos (CMU) 
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How to do B.P. on large graphs? 
A: [U Kang, Polo Chau, +, ICDE’11],  
to appear 

Stanford'11 C. Faloutsos (CMU) 87 



CMU SCS 

C. Faloutsos (CMU) 88 

Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 

– OddBall (anomaly detection) 
– Belief propagation 
–  Immunization 

•  Problem#3: Scalability -PEGASUS 
•  Conclusions 

Stanford'11 
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Immunization and epidemic 

thresholds 
•  Q1: which nodes to immunize? 
•  Q2: will a virus vanish, or will it create an 

epidemic? 

Stanford'11 C. Faloutsos (CMU) 89 
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Q1: Immunization: 
• Given  

• a network,  
• k vaccines, and  
• the virus details 

• Which nodes to immunize? 

Stanford'11 90 C. Faloutsos (CMU) 
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Q1: Immunization: 
• Given  

• a network,  
• k vaccines, and  
• the virus details 

• Which nodes to immunize? 

Stanford'11 91 C. Faloutsos (CMU) 
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Q1: Immunization: 
• Given  

• a network,  
• k vaccines, and  
• the virus details 

• Which nodes to immunize? 

Stanford'11 92 C. Faloutsos (CMU) 
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Q1: Immunization: 
• Given  

• a network,  
• k vaccines, and  
• the virus details 

• Which nodes to immunize? 

 A: immunize the ones that 
     maximally raise 
     the `epidemic threshold’ 
     [Tong+, ICDM’10]     

Stanford'11 93 C. Faloutsos (CMU) 
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Q2: will a virus take over? 
•  Flu-like virus (no immunity, ‘SIS’) 
•  Mumps (life-time immunity, ‘SIR’) 
•  Pertussis (finite-length immunity, ‘SIRS’) 

Stanford'11 C. Faloutsos (CMU) 94 

β: attack prob 
δ: heal prob 
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Q2: will a virus take over? 
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β: attack prob 
δ: heal prob 

Α: depends on connectivity 
    (avg degree? Max degree?  
     variance?  Something else? 
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Q2: will a virus take over? 
•  Flu-like virus (no immunity, ‘SIS’) 
•  Mumps (life-time immunity, ‘SIR’) 
•  Pertussis (finite-length immunity, ‘SIRS’) 

Stanford'11 C. Faloutsos (CMU) 96 

β: attack prob 
δ: heal prob 

Α: depends on connectivity: 
    ONLY on first eigenvalue 
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A2: will a virus take over? 
•  For all typical virus propagation models 

(flu, mumps, pertussis, HIV, etc) 
•  The only connectivity easure that matters, is 

      1/λ1  
the first eigenvalue of the 
 adj. matrix 
[Prakash+, arxiv] 
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A2: will a virus take over? 
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Fraction of 
infected 

Time ticks 

Below: exp. extinction 

Above: take-over 

Graph: 
Portland, OR 
31M links 
1.5M nodes 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 

– OddBall (anomaly detection) 
– Belief propagation 
–  Immunization 

•  Problem#3: Scalability -PEGASUS 
•  Conclusions 

Stanford'11 
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Scalability 
•   Google: > 450,000 processors in clusters of ~2000 

processors each [Barroso, Dean, Hölzle, “Web Search for 
a Planet: The Google Cluster Architecture” IEEE Micro 
2003] 

•  Yahoo: 5Pb of data [Fayyad, KDD’07] 
•  Problem: machine failures, on a daily basis 
•  How to parallelize data mining tasks, then? 
•  A: map/reduce – hadoop (open-source clone)  

http://hadoop.apache.org/ 
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Centralized Hadoop/
PEGASUS 

Degree Distr. old old 

Pagerank old old 

Diameter/ANF old HERE 

Conn. Comp old HERE 

Triangles done 
Visualization started 

Outline – Algorithms & results 

Stanford'11 
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HADI for diameter estimation 
•  Radius Plots for Mining Tera-byte Scale 

Graphs U Kang, Charalampos Tsourakakis, 
Ana Paula Appel, Christos Faloutsos, Jure 
Leskovec, SDM’10 

•  Naively: diameter needs O(N**2) space and 
up to O(N**3) time – prohibitive (N~1B) 

•  Our HADI: linear on E (~10B) 
– Near-linear scalability wrt # machines 
– Several optimizations -> 5x faster 
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???? 

19+ [Barabasi+] 

103 C. Faloutsos (CMU) 

Radius 

Count 
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~1999, ~1M nodes 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  Largest publicly available graph ever studied. 

???? 

19+ [Barabasi+] 
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Radius 

Count 

Stanford'11 

?? 

~1999, ~1M nodes 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  Largest publicly available graph ever studied. 

???? 

19+? [Barabasi+] 
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Radius 

Count 

Stanford'11 

14 (dir.) 
~7 (undir.) 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
• 7 degrees of separation (!) 
• Diameter: shrunk 

???? 

19+? [Barabasi+] 
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Radius 

Count 

Stanford'11 

14 (dir.) 
~7 (undir.) 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
Q: Shape? 

???? 
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Radius 

Count 

Stanford'11 

~7 (undir.) 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality (?!) 

Stanford'11 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality: probably mixture of cores . 

Stanford'11 

EN 

~7 

Conjecture: 
DE 

BR 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality: probably mixture of cores . 

Stanford'11 

~7 

Conjecture: 
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Radius Plot of GCC of YahooWeb. 
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Running time -  Kronecker and Erdos-Renyi  
Graphs with billions edges. 

details 
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Centralized Hadoop/
PEGASUS 

Degree Distr. old old 

Pagerank old old 

Diameter/ANF old HERE 

Conn. Comp old HERE 

Triangles done 

Visualization started 

Outline – Algorithms & results 
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Generalized Iterated Matrix 

Vector Multiplication (GIMV) 

C. Faloutsos (CMU) 114 

PEGASUS: A Peta-Scale Graph Mining  
System - Implementation and Observations.  
U Kang, Charalampos E. Tsourakakis,  
and Christos Faloutsos.  
(ICDM) 2009, Miami, Florida, USA.  
Best Application Paper (runner-up).  

Stanford'11 
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Generalized Iterated Matrix 

Vector Multiplication (GIMV) 

C. Faloutsos (CMU) 115 

•  PageRank 
•  proximity (RWR) 
•  Diameter 
•  Connected components 
•  (eigenvectors,  
•   Belief Prop.  
•   … ) 

Matrix – vector 
Multiplication 

(iterated) 

Stanford'11 

details 
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Example: GIM-V At Work 
•  Connected Components – 4 observations: 

Size 

Count 

C. Faloutsos (CMU) Stanford'11 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 
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1) 10K x  
larger 
than next 



CMU SCS 

118 

Example: GIM-V At Work 
•  Connected Components 

Size 

Count 
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2) ~0.7B  
singleton 
 nodes 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

C. Faloutsos (CMU) Stanford'11 

3) SLOPE! 



CMU SCS 

120 

Example: GIM-V At Work 
•  Connected Components 

Size 

Count 
300-size 

cmpt 
X 500. 
Why? 1100-size cmpt 

X 65. 
Why? 

C. Faloutsos (CMU) Stanford'11 

4) Spikes! 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

suspicious 
financial-advice sites 

(not existing now) 

C. Faloutsos (CMU) Stanford'11 
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GIM-V At Work 
•  Connected Components over Time 
•  LinkedIn: 7.5M nodes and 58M edges 

Stable tail slope 
after the gelling point 

C. Faloutsos (CMU) Stanford'11 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 
•  Problem#3: Scalability 
•  Conclusions 

Stanford'11 
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OVERALL CONCLUSIONS – 
low level: 

•  Several new patterns (fortification, 
triangle-laws, conn. components, etc) 

•  New tools: 
–  anomaly detection (OddBall), belief 

propagation, immunization 

•  Scalability: PEGASUS / hadoop 

Stanford'11 
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OVERALL CONCLUSIONS – 
high level 

•  Large datasets reveal patterns/outliers that 
are invisible otherwise 

•  Terrific opportunities 
– Large datasets, easily(*) available PLUS 

–  s/w and h/w developments 

Stanford'11 
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