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Friendship in a karate club

“Zachary’s Karate Club”

W. W. Zachary

An information flow model for conflict and fission in small groups
Journal of Anthropological Research, 1977
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Romantic connections in a high school

Bearman, et al.

The structure of adolescent romantic and sexual networks.

American Journal of Sociology, 2004.
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Sexual and injecting drug partners

Potterat, et al.
Risk network structure in the early epidemic phase of hiv transmission in colorado springs.
Sexually Transmitted Infectections, 2002.
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Social ties derived from a mobile phone network

J. Onnela et al.
Structure and tie strengths in mobile communication networks,
Proceedings of the National Academy of Sciences, 2007

Saturday, February 20, 2010



Global instant messaging network

180 million nodes
1.3 billion edges

Leskovec, et al.
Planetary-scale views on a large instant-messaging network.
Conference on the World Wide Web, 2008.
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Privacy risk a major obstacle to network analysis

Common outcomes include:

e No availability
e | imited availability:

e Only within institutions who own the data, or among limited
set of researchers who have negotiated access.

e Availability, at a cost:

® Privacy of participants may be violated, bias or inaccuracy in
released data.
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Analysis of private networks

Can we permit analysts to study networks without
revealing sensitive information about participants?

Example analyses based on network topology:

* Properties of the degree distribution
e Motif analysis
e Community structure

® Processes on networks: routing, rumors, infection

¢ Resiliency / robustness
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Outline of the talk

-

1. Existing approaches to protecting network data

\_

2. Background on differential privacy
3. Privately estimating the degree distribution
4. Privately counting motifs

5. Future goals and open gquestions
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Sensitive information

Alice Bob Carol
o—(Q—=O
Dave Ed
)
Fred Greg Harry
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IN networks

Nodes

ID Age | HIV
Alice | 25 Pos
Bob 19 Neg
Carol | 34 Pos
Dave | 45 Pos

Ed 32 Neg
Fred | 28 Neg
Greg | 54 Pos
Harry | 49 Neg

Edges

ID1 ID2
Alice Bob
Bob Carol
Bob Dave
Bob Ed
Dave Ed
Dave Fred
Dave Greg

Ed Greg

Ed Harry
Fred Greg
Greg Harry




Nalve anonymization

DATA OWNER § ANALYST

Naive
Anonymization

Original network 5 Naive anonymization

e Naive anonymization replaces identifiers with random numbers,
releasing an isomorphic copy of the graph.

e Allows very accurate analysis of the topology... but not secure.
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Threat of re-iIdentification

Naively Anonymized Network

Adversary acquires knowledge of network

Re-identification structure and uses it to re-identify individual ,
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Threat of re-iIdentification

Naively Anonymized Network External information

Adversary acquires knowledge of network
structure and uses it to re-identify individual ,

Re-identification
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Threat of re-iIdentification

Naively Anonymized Network External information

Adversary acquires knowledge of network
structure and uses it to re-identify individual ,

Re-identification
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Local structure is highly identifying

Re-identification Risk

Friendster network
~4.5 million nodes

]
Well-protected >21] '
B [11-20] .
5-10]
2'4] 0
H2 H3 H4

Uniquely identified [l [1] HA

Fraction of Population
o o o
~ (@) oo

o
N

Strength of Adversary’s Knowledge

/\
[Hay, VLDB 08] (degre/eb (nbrs degree)
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Other attacks on naive anonymization

Embed small random graph [Backstrom,
prior to anonymization. WWW 07]

G "
“.!A 0
S

»
(
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e

Active attack

VA=

<. SO

N
Rz

Auxiliary network Use unanonymized public network  [Narayanan,
attack with overlapping membership. OAKL 09]
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Other attacks on naive anonymization

Embed small random graph [Backstrom,
prior to anonymization. WWW 07]

.é‘ 4"' ‘ EQ‘»{’X‘?“&'

e
NI Y o\ '%
R e
g
N

Auxiliary network Use unanonymized public network  [Narayanan,
attack with overlapping membership. OAKL 09]

Active attack
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ANALYST

Improved data publishing techniques
DATA OWNER

izati{)>

® [ Anonym

[ J
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Improved data publishing techniques

ANALYST

DATA OWNER

izati{)>

* Create topological similarity [Liu, SIGMOD 08] [Zhou, ICDE 08]

® [ Anonym

[ J

Naive anonymization

[Zou, VLDB 09]
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Improved data publishing techniques

DATA OWNER i ANALYST

Anonymization

Original network 5 Randomized Edges

* Create topological similarity [Liu, SIGMOD 08] [Zhou, ICDE 08]
[Zou, VLDB 09]

¢ Randomize edges [Ying, SDM 2008]
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Improved data publishing techniques

DATA OWNER i ANALYST

Anonymization

Original network 5 Node clustering
* Create topological similarity [Liu, SIGMOD 08] [Zhou, ICDE 08]

[Zou, VLDB 09]
¢ Randomize edges [Ying, SDM 2008]

¢ Clustering/summarization [Campan, PinKDD 08] [Hay, VLDB 08]
[Cormode, VLDB 08] [Cormode, VLDB 09]
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Data publishing v. output perturbation

e Data publishing
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e Data publishing
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Data publishing v. output perturbation

Ease of use good
Privacy weak guarantees
Accuracy no formal guarantees

Scalability

sometimes bad
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Data publishing v. output perturbation

e Data publishing

Ease of use good

Privacy weak guarantees

Accuracy no formal guarantees

Scalability sometimes bad

Ease of use bad for practical analyses

Privacy formal guarantees

Accuracy provable bounds

Scalability very good
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Output perturbation

DATA OWNER ANALYST
auery
= Q
—-> Q(G) + random
noisy rgsult noiISse

Original network

e Dwork, McSherry, Nissim, Smith [Dwork, TCC 06] have described an
output perturbation mechanism satisfying differential privacy.

e Comparatively few results for graph data.
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Outline

-

1. Existing approaches to protecting network data

\_

2. Background on differential privacy
3. Privately estimating the degree distribution
4. Privately counting motifs

5. Future goals and open gquestions
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The differential guarantee

Alice Bob Carol

O—(O——=O
GDavyé\a%d A

Fred Greg Harry

—
—> Q(G) + noise
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The differential guarantee

DATA OWNER ANALYST

Alice Bob Carol

O—1—=O
GDa?%\S A

Fred Greg Harry

< | @ Count(nodes with degree 3)

| > Q(G) + noise
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The differential guarantee

DATA OWNER ANALYST

Alice Bob Carol

Fred Greg Harry

(Q Count(nodes with degree 3)

> Q(G) + noise

Alice Bob Carol

G Dcf<>®\ﬁ . > Q(G’) + noise

Fred Greg Harry
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The differential guarantee

DATA OWNER ANALYST

Alice Bob Carol

Fred Greg Harry

(Q Count(nodes with degree 3)

> Q(G) + noise

Alice Bob Carol

G DJ<>O\O . > Q(G’) + noise

Fred Greg Harry

wo graphs are neighbors if they differ by at most one edge
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The differential guarantee

DATA OWNER ANALYST

Alice Bob Carol
(Q Count(nodes with degree 3)

DJ%\Q . > Q(G) + noise

Fred Greg Harry 5 O + ﬂoise = p

Alice Bob Carol

G DJ<>O\O . > Q(G’) + noise

Fred Greg Harry

wo graphs are neighbors if they differ by at most one edge
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The differential guarantee

DATA OWNER ANALYST

Alice Bob Carol
(Q Count(nodes with degree 3)

DJ%\Q . > Q(G) + noise

Fred Greg Harry 5 O + ﬂoise = p

Alice Bob Carol

G DJ<>O\O . > Q(G’) + noise

Fred Greg Harry 2 + ﬂO|Se — q

wo graphs are neighbors if they differ by at most one edge
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The differential guarantee

DATA OWNER ANALYST

Alice Bob Carol

(Q Count(nodes with degree 3)

> Q(G) + noise

Fred Greg Harry 5 O + ﬂoise = p
Alice Bob  Carol Indistinguishable
outputs
G’ Dave /
> Q(G’) + noise
Fred Greg Harry 2 + I’]O|Se — q

wo graphs are neighbors if they differ by at most one edge
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[Dwork, TCC 06]

Differential privacy

A randomized algorithm A provides &-differential privacy if:

for all neighboring graphs G and G’, and
for any set of outputs S:

PrlA(G) e S] < e‘PrlA(G") € 5]
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[Dwork, TCC 06]

Differential privacy

A randomized algorithm A provides &-differential privacy if:

for all neighboring graphs G and G’, and
for any set of outputs S:

PrlA(G) e S| < e/e\Pr[A(G/) c S|

epsilonis a
privacy parameter
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[Dwork, TCC 06]

Differential privacy

A randomized algorithm A provides &-differential privacy if:

for all neighboring graphs G and G’, and
for any set of outputs S:

PrlA(G) e S| < e/e\Pr[A(G/) c S|
epsilonis a
[priva?:y parameter]

Epsilon is usually small: e.g. if € = 0.1 then e ~ 1.10

{ epsilon = 4} stronger privacy
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[Dwork, TCC 06]

Calibrating noise

* The following algorithm for answering Q is e-differentially private:

4 N\ )
true sample from scaled

answer | | c\j}stribution y
A |

- Q(G) + Laplace( b )
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[Dwork, TCC 06]

Calibrating noise

* The following algorithm for answering Q is e-differentially private:

4 N\ )
true sample from scaled

answer | | c\j}stribution y
A |

- Q(G) + Laplace( b )

0.5
Laplace(1)

0.25
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Calibrating noise
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4 N\ )
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A |
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Calibrating noise

[Dwork, TCC 06]

* The following algorithm for answering Q is e-differentially private:

Saturday, February 20, 2010

A

-

true

~

answer

e

10

-

~
sample from scaled
distribution

\

- Q(G) + Laplace( b )

0.5
Laplace(1)
0.25
0 i i
-i10 -8 6 4 -2 0 2 4 ©6 8

0.5

Laplace(2)

0.25 : :‘
0 i :&
-i10 -8 6 4 -2 0 2 4 o6 8 10



[Dwork, TCC 06]

Calibrating noise

* The following algorithm for answering Q is e-differentially private:

A

-~ Q(G) + Laplace( )
0.5 0.5
Laplace(1) Laplace(2)
0.25 0.25 : :
O—10 -8 6 -4 -2 (I) 2I 4 6 8 10 0—10 -8 -6 -4 -2 (I) 2I 4 6 8 10
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[Dwork, TCC 06]

Calibrating noise

* The following algorithm for answering Q is e-differentially private:

4 ) 4 )

_ rivacy
sensitivity of Q P
_parameter

n \
- Q(G) + Laplace(AQ / €)

0.5 0.5
Laplace(1) Laplace(2)

0.25 0.25 : ,

0 f f 0 f :&
-i10 -8 6 4 -2 0 2 4 ©6 8 -i10 -8 6 4 -2 0 2 4 o6 8 10

10
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—xamples of query sensitivity

The sensitivity of a query Q is
AQ = max | Q(G) - Q(G)) |

where G, G’ are any two neighboring graphs

query sensitivity noisy answer
Camn ) (onsty) () (ool amower )

€=0.5
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—xamples of query sensitivity

The sensitivity of a query Q is
AQ = max | Q(G) - Q(G)) |

where G, G’ are any two neighboring graphs

C query )
Vv

Csens{t/ivity)

C noisy answer )

Q

AQ

Q(G)

Q(G) + Lap(AQ / €)
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—xamples of query sensitivity

The sensitivity of a query Q is
AQ = max | Q(G) - Q(G)) |

where G, G’ are any two neighboring graphs

C query )
Vv

Csens{t/ivity)

C noisy answer )

Q

AQ

Q(G)

Q(G) + Lap(AQ / €)

dega (degree of node A)

1

deg pave(Q)

4

4+ ap(2)
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—xamples of query sensitivity

The sensitivity of a query Q is
AQ = max | Q(G) - Q(G)) |

where G, G’ are any two neighboring graphs

Csens{t/ivity)

C query )
Vv

C noisy answer )

Q AQ Q(G) Q(G) + Lap(AQ / €)
dega (degree of node A) 1 |degpave(G) = 4 4+Lap(2)
cnti (# nodes with degree i) 2 |lents(G) =4 4+Lap(4)
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Multiple queries

The sensitivity of a query Q is
AQ = max | Q(G) - Q(G) | <[

where G, G’ are any two neighboring graphs

query sensitivity C noisy answer )
Cavers ) (sonsiviy) () -

L1 dist for
vectors

€=0.5
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Multiple queries

vectors

The sensitivity of a query Q is
AQ = max | Q(G) - Q(G) | <[

where G, G’ are any two neighboring graphs

query sensitivity noisy answer
Cates ) Gorsity) () ooty e )

Q AQ| Q(G) Q(G) + Lap(AQ / €)

L, dist forj

€=0.5

Saturday, February 20, 2010



Multiple queries

The sensitivity of a query Q is <[ L. dist forj

AQ = max | Q(G) - Q(G) |

vectors

where G, G’ are any two neighboring graphs

( query )Csensmwty) ’

C noisy answer )

AQ

Q(G)

Q(G) + Lap(AQ / €)

[dega, degs, degc]

2

[1,4,1]

[1+Lap(4), 4+Lap(4), 1+Lap(4)]
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Multiple queries

The sensitivity of a query Q is <[ L. dist forj

AQ = max | Q(G) - Q(G) |

vectors

where G, G’ are any two neighboring graphs

( query )Csensmwty) ’

C noisy answer )

AQ Q(G) Q(G) + Lap(AQ / €)
[dega, degg, degc] 2 | [1,4,1] [|[1+Lap(4), 4+Lap(4), 1+Lap(4)]
[cnto, cnty, cnt?] 4 [0,2,2] |[0+Lap(8), 2+Lap(8), 2+Lap(8)]
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Differential privacy for networks

A participant’s sensitive information is not a single edge.

* edge €-differential privacy: algorithm output
is largely indistinguishable whether or not any Laplace(AQ /¢ )
single edge is present or absent. ‘

* k-edge £-differential privacy: algorithm

output is largely indistinguishable whether or Laplace(AQ k /€ )
not any set of k edges is present or absent.

* node £-differential privacy: algorithm output
Is largely indistinguishable whether or not any
single node (and all its edges) is present or
absent.

Suppose AQ=1. Then Laplace(100) satisfies:
1-edge 0.01-differential privacy
10-edge 0.1-differential privacy
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2. Background on differential privacy
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4. Privately counting motifs

5. Future goals and open gquestions

Saturday, February 20, 2010



Outline

1. Existing approaches to protecting network data

2. Background on differential privacy

-

3. Privately estimating the degree distribution

\_

4. Privately counting motifs

5. Future goals and open gquestions

Saturday, February 20, 2010



The degree sequence of a network

¢ Degree sequence: the list of degrees of each node in a graph.

e A widely studied property of networks.

Alice Bob Carol

o—(——=0
ﬁ\a [1,1,2,2,4,4,4,4

Fred Greg Harry
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The degree sequence of a network

¢ Degree sequence: the list of degrees of each node in a graph.

e A widely studied property of networks.

Alice Bob Carol

o—(——=0
ﬁ\a [1,1,2,2,4,4,4,4

Fred Greg Harry

orkut

c® . Inverse
Orkut =B 3 cummulative
crawl £ ' distribution

Degree

Saturday, February 20, 2010



The degree sequence Is sensitive

¢ \Why not release the true degree sequence of a network?

® [n extreme cases, the degree sequence can determine the
structure of the graph --- no better than naive anonymization.

e Background knowledge could lead to disclosures.

® The degree sequence may not be the only statistic we release --
we must protect against combined disclosures.
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Two basic queries for degrees

Alice Bob Carol
e\

O O

Fred Greg Harry

Alice Bob Carol

O—2——=O
Dam G!

Fred Greg Harry

Degree of each node

Frequency of each degree

dega |degree of node A

cnt;

count of nodes with

D [dega, degs, ... ]

F

[cnto, cnty, ...  cntp]
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Two basic queries for degrees

Alice Bob Carol

O—(—=0

Fred Greg Harry

Alice Bob Carol

O—2——=O
Dam G!

Fred Greg Harry

Degree of each node

Frequency of each degree

dega |degree of node A

cnt;

count of nodes with

D [dega, degs, ... ]

F

[cnto, cnty, ...  cntp]

D(G) =[1,4,1,4,4,2,4,2]

D(G,) — 1 ,411 53531274!2]

AD=2
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Two basic queries for degrees

Alice Bob Carol

O—(—=0

Fred Greg Harry

Alice Bob Carol
Oo—(—=0

)
Dave Ed G

\
Fred Greg Harry

Degree of each node

Frequency of each degree

dega |degree of node A

cnt; [count of nodes with

D [dega, degs, ... ]

F [cnto, cnty, ...  cNntp-1]

D(G) =[1,4,1,4,4,2,4,2]

D(G,) — 1 ,411 53531274!2]

AD=2
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F(G) =[0,2,2,0,4,0,0,0]
F(G’) =[0,2,2,2,2,0,0,0]

AF=4




These queries are both flawed

e D requires independent samples

original

from Laplace(2/¢) in each

1.0

component.

* F requires independent samples § « _
from Laplace(4/¢) in each *§
component. L S -

0.2

e Thus Mean Squared Error is

0.0

O(n/€?)

( Laplace(b) has variance 2b?)
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An alternative query for degrees

Alice Bob Carol

O—(—=0

Fred Greg Harry

Alice Bob Carol

O

Dave

r——0

5
= (5

\J

Fred Greg Harry

Degree of each node

Degree of each node, ranked

D(G’) =

1,4,1,3,3,2,4,2,

Saturday, February 20, 2010

AD=2

dega |degree of node A rnk; [return the rank it degree
D [dega, degs, ... ] S |[rnky, ko, ...  rnkn]
D(G) =1[1,4,1,4,4,2,4,2]




An alternative query for degrees

Alice Bob Carol

o———0
G AR

Fred Greg Harry

Alice Bob Carol
Oo—(—=0

)
Dave Ed G

\
Fred Greg Harry

Degree of each node

Degree of each node, ranked

dega |degree of node A

rnk; [return the rank it degree
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AD=2

D [dega, degs, ... ] S |[rki, rnko, ... rnkn]
D(G) =[1,4,1,4,4,2,4,2] S(G) =[1,1,2,2,4,4,4,4]
D(G’) =[1,4,1,3,3,2,4,2 S(G') =[1,1,2,2,3,3,4,4

AS=2




Using the sort constraint

S o S(QG) true degree sequence
noisy observations (g = 2) O 00O
0 —e— Inferred degree sequence
v O
3
E)O OO N OONDON NN ONONONONONONDON NN NN NN N
0)1— VU U U U U U U U U U U U VUV U U UV U VUV
a
LO
o —

0 5 10 Rank 15 20 25

S(G) =[10, 10, ....10, 10, 14, 18,18,18,18]
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Using the sort constraint

S o S(QG) true degree sequence
noisy observations (g = 2) O 00O
0 —e— Inferred degree sequence
3
E)o OO N OONDON NN ONONONONONONDON NN NN NN N
0)1— VU U U U U U U U U U U U VUV U U UV U VUV
a
LO
o —
| | | | | |
0 5 10 15 20 25

Rank
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Using the sort constraint

S o S(Q) true degree sequence
noisy observations (g = 2) ® 000
0 —e— Inferred degree sequence
T O
)
o
> 2 0O ROO0eT000008o 600000
a
LO
o —
| | | | | |
0 5 10 15 20 25

Rank
* The output of the sorted degree query is not (in general) sorted.

¢ \We derive a new sequence by computing the closest non-
decreasing sequence: i.e. minimizing L2 distance.
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Using the sort constraint

S o S(QG) true degree sequence
noisy observations (g = 2)
0 —e— Inferred degree sequence
O
o
> 2
O
)
LO
o —
| | | | | |
0 5 10 15 20 25

Rank
* The output of the sorted degree query is not (in general) sorted.

¢ \We derive a new sequence by computing the closest non-
decreasing sequence: i.e. minimizing L2 distance.
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Using the sort constraint

S o S(QG) true degree sequence
noisy observations (g = 2)
0 —e— Inferred degree sequence
O
o
> 2
O
)

LO Gi
= 19th smallest

degree + noise
| | | | | |'

0 5 10 15 20 25

Rank
* The output of the sorted degree query is not (in general) sorted.

¢ \We derive a new sequence by computing the closest non-
decreasing sequence: i.e. minimizing L2 distance.
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Using the sort constraint

S o S(QG) true degree sequence
noisy observations (¢ = 2) f*._.
0 —e— Inferred degree sequence
)
o
5 2 ’M
)
a

LO Gi
= 19th smallest

degree + noise
| | | | | |'

0 5 10 15 20 25

Rank
* The output of the sorted degree query is not (in general) sorted.

¢ \We derive a new sequence by computing the closest non-
decreasing sequence: i.e. minimizing L2 distance.
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original = = = =

3 | noisy
—Xperimental results iNforred
power law, =1.5, n=5M -
S° \
(100-edge, S \
0.1-differential £=.001 3 \
privacy) 3
= \
(10-edge, 5 :
0.1-differential e=.01 S
privacy) C °
0 4 9Degr469e 499
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original = = = =
B | | noisy
=Xperimental results, continued inforred

livejournal orkut powerlaw
n=5.3M n=3.1M o=1.5, n=5M

£=.001 ~ |\~ | —= _——\L
\
| ) _ | \

I I I I
49 499

0
1.0
0

N\

00 02 04 06 038
00 02 04 06 038
00 02 04 06 038

o
N
(]

I I I I I I I I I I I I I
0 1 4 9 19 49 o 1 4 9 19 49 99

1.0
1.0
1.0

e=.01 "|~< ‘ 3 \

Fraction

00 02 04 06 038

00 02 04 06 038
00 02 04 06 038

I I I I I I I I I I I I I I I I I I I I
0 1 4 9 19 49 o 1 4 9 19 49 99 0 4 9 49 499
Degree
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Inference does not weaken privacy

DATAOWNER [ ANALST
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Inference does not weaken privacy

DATAOWNER {1 ANAST

1. Formulate S,
having constraints Ys
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Inference does not weaken privacy

DATAOWNER {1 ANAST

1. Formulate S,
having constraints Ys

¢S 2 SubmitS
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Inference does not weaken privacy

DATAOWNER {1 ANAST

1. Formulate S,
having constraints Ys

¢S 2 SubmitS
28 S(G) +

noise

> S
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Inference does not weaken privacy

DATA OWNER

Saturday, February 20, 2010

ANALYST

. O

havir

2. Submit S

ulate S,
g constraints Ys

Inference

\

Perform inference

I



After inference, noise only where needed

S o S(QG) true degree sequence
noisy observations (g = 2) O 00O
0 —e— Inferred degree sequence
© OO0 OO0 O0O0OO0O0O00CO0O00CO0O00C0O000
LO
o —
| | | | | |
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e Standard Laplace noise is sufficient but not necessary for differential privacy.

e By using inference, effectively apply a different noise distribution -- more noise
where it is needed, less otherwise.

e Improvement in accuracy will depend on sequence
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Accuracy Is improved without sacrificing privacy!

® The accuracy achieved depends on the input sequence.

Mean Squared Error of Degree Sequence

Before inference, S O(n/e?)

After inference, S  O(dlogn/e?)

[ number of distinct degrees)

e Performing inference is efficient: the sorted sequence which
minimizes the L2 distance has an elegant closed form solution:

e shown O(n?) in [Hay, PVLDB 10]
e improved to O(n) in [Hay, ICDM 09]
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Accurate motif analysis Is hard

e Motif analysis measures the frequency of occurrence of small
subgraphs in a network.

e Common example: transitivity in the network:
e when A is friends with B and C, are B and C also friends?

* QrrianGLE: return the number of triangles in the graph
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subgraphs in a network.
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e when A is friends with B and C, are B and C also friends?

* QrrianGLE: return the number of triangles in the graph

n-2 nodes n-2 nodes

W e

QrrianGLE (G) = QrrianGLE (G’) = n-2
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Accurate motif analysis requires weakening privacy

® There exist output perturbation methods that achieve significantly
better accuracy--expected error O(log?n) instead of O(n) :

e [Rastogi, PODS 09] Limiting assumptions on the prior
knowledge of the adversary, and satisfying adversarial privacy.

e works for general class of “motif” queries.

¢ [Nissim, STOC 07] Under certain assumptions about the input
graphs, and a modest relaxation of differential privacy:

e works only for triangle queries (but could be extended).
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e Data publishing

Saturday, February 20, 2010

Data publishing v. output perturbation

Ease of use good

Privacy weak guarantees
Accuracy no formal guarantees
Scalability sometimes bad
Ease of use bad for practical
Privacy forrﬁal guarantees
Accuracy provable bounds

Scalability

very good
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Toward differentially-private synthetic data

DATA OWNER 5 ANALYST
| M
~
> m samples
/\ drawn from model
J

noisy model
parameters
¢ To realize the benefits of synthetic data, data owner can release
noisy parameters of network model.

¢ Baseline: the degree distribution as network model

* Deriving the power law parameter { very accurate )

* Measuring clustering coefficient { not constrained by deg. distr. )
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A useful paradigm for improving accuracy
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3. Perform inference
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See [Hay, PVLDB 10]



Questions?

Additional details on our work may be found here:

e [Hay, PVLDB 10] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of
differentially-private queries through consistency. To appear, Proceedings of the VLDB
Endowment (PVLDB), 2010.

e [Hay, ICDM 09] M. Hay, C. Li, G. Miklau, and D. Jensen. Accurate estimation of the degree
distribution of private networks. In International Conference on Data Mining (ICDM) 2009.

e |[Rastogi, PODS 09] V. Rastogi, M. Hay, G. Miklau, and D. Suciu. Relationship privacy:
Output perturbation for queries with joins. In Principles of Database Systems (PODS), 2009.

e [Hay, VLDB 08] M. Hay, G. Miklau, D. Jensen, D. Towsley, and P. Weis. Resisting structural

identification in anonymized social networks. In Proceedings of the VLDB Endowment
(PVLDB), 2008.
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