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“Zachary’s Karate Club”  
W. W. Zachary
An information flow model for conflict and fission in small groups 
Journal of Anthropological Research, 1977
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Romantic connections in a high school

Bearman, et al.
The structure of adolescent romantic and sexual networks. 
American Journal of Sociology, 2004. (Image drawn by Newman)
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(86%) during this special study interval, using an interview

period that was at least twice as long (180 days). Both compo-

nent distribution and non-cyclic linear structure were similar

during this interval to that of the four year period. The only

notable difference was a substantial shift in the dyad to triad

ratio, from 1.8:1 overall to 0.46:1 in the 1996–97 study

interval. Thus enhanced partner interviewing procedures

tended to increase observed connectivity in the smallest
components. Low overall network connectivity and the virtual

absence of cyclic microstructures in large connected compo-

nents support the view that chlamydia infection in Colorado

Springs was probably in a maintenance phase or possibly in a

decline phase during the four year study period. We conclude

that the fragmented, non-cyclic network structure observed

probably reflects low endemic rather than epidemic spread.

Comparison with epidemic network structure
A historical contact tracing dataset recording rapid epidemic

spread of bacterial STD in Colorado Springs was available for

reanalysis. As previously reported,
2 3

a group composed of 578

persons, mostly adolescents associated with crack cocaine

street gangs, was involved in an STD outbreak during 1990

and 1991. Of 578 individuals identified, 410 (71%) formed a

single connected component consisting of 218 men and 192

women. In this component, 300 (73%) were examined; 248

were infected with one or more bacterial STD (261 gonococcal,

127 chlamydial, and two early syphilis infections). These data

suggest a hyperendemic STD period prevalence of 130 000

cases per 100 000 population. The dense interconnections in

this group reveal a predominantly cyclic pattern with some

linear connections at individual nodes (fig 4A). Pruning the
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Figure 4 (A) Graph of the largest
component in gang associated STD
outbreak, Colorado Springs,
1989–91 (n = 410). (B) Core of the
largest component in gang
associated STD outbreak, Colorado
Springs, 1989–91 (n = 107).
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Potterat, et al.
Risk network structure in the early epidemic phase of hiv transmission in colorado springs. 
Sexually Transmitted Infectections, 2002.
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J. Onnela et al.  
Structure and tie strengths in mobile communication networks,
Proceedings of the National Academy of Sciences, 2007

Social ties derived from a mobile phone network
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180 million nodes
1.3 billion edges

Leskovec, et al.
Planetary-scale views on a large instant-messaging network. 
Conference on the World Wide Web, 2008.

Global instant messaging network 
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Privacy risk a major obstacle to network analysis

• No availability 

• Limited availability:

• Only within institutions who own the data, or among limited 
set of researchers who have negotiated access.

• Availability, at a cost: 

• Privacy of participants may be violated, bias or inaccuracy in 
released data.

Common outcomes include:

Saturday, February 20, 2010



Analysis of private networks

Example analyses based on network topology:

• Properties of the degree distribution

• Motif analysis

• Community structure

• Processes on networks: routing, rumors, infection

• Resiliency / robustness

Can we permit analysts to study networks without 
revealing sensitive information about participants?
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Outline of the talk

1. Existing approaches to protecting network data

2. Background on differential privacy

3. Privately estimating the degree distribution

4. Privately counting motifs

5. Future goals and open questions
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Sensitive information in networks

ID Age HIV
Alice 25 Pos
Bob 19 Neg

Carol 34 Pos
Dave 45 Pos
Ed 32 Neg

Fred 28 Neg
Greg 54 Pos
Harry 49 Neg

Alice Bob Carol

Dave Ed

Fred Greg Harry

ID1 ID2
Alice Bob
Bob Carol
Bob Dave
Bob Ed
Dave Ed
Dave Fred
Dave Greg
Ed Greg
Ed Harry

Fred Greg
Greg Harry

Nodes Edges
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Naive anonymization

Original network
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releasing an isomorphic copy of the graph.

• Allows very accurate analysis of the topology... but not secure.
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(86%) during this special study interval, using an interview

period that was at least twice as long (180 days). Both compo-

nent distribution and non-cyclic linear structure were similar

during this interval to that of the four year period. The only

notable difference was a substantial shift in the dyad to triad

ratio, from 1.8:1 overall to 0.46:1 in the 1996–97 study

interval. Thus enhanced partner interviewing procedures

tended to increase observed connectivity in the smallest
components. Low overall network connectivity and the virtual

absence of cyclic microstructures in large connected compo-

nents support the view that chlamydia infection in Colorado

Springs was probably in a maintenance phase or possibly in a

decline phase during the four year study period. We conclude

that the fragmented, non-cyclic network structure observed

probably reflects low endemic rather than epidemic spread.

Comparison with epidemic network structure
A historical contact tracing dataset recording rapid epidemic

spread of bacterial STD in Colorado Springs was available for

reanalysis. As previously reported,
2 3

a group composed of 578

persons, mostly adolescents associated with crack cocaine

street gangs, was involved in an STD outbreak during 1990

and 1991. Of 578 individuals identified, 410 (71%) formed a

single connected component consisting of 218 men and 192

women. In this component, 300 (73%) were examined; 248

were infected with one or more bacterial STD (261 gonococcal,

127 chlamydial, and two early syphilis infections). These data

suggest a hyperendemic STD period prevalence of 130 000

cases per 100 000 population. The dense interconnections in

this group reveal a predominantly cyclic pattern with some

linear connections at individual nodes (fig 4A). Pruning the
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Figure 4 (A) Graph of the largest
component in gang associated STD
outbreak, Colorado Springs,
1989–91 (n = 410). (B) Core of the
largest component in gang
associated STD outbreak, Colorado
Springs, 1989–91 (n = 107).
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(86%) during this special study interval, using an interview

period that was at least twice as long (180 days). Both compo-

nent distribution and non-cyclic linear structure were similar

during this interval to that of the four year period. The only

notable difference was a substantial shift in the dyad to triad

ratio, from 1.8:1 overall to 0.46:1 in the 1996–97 study

interval. Thus enhanced partner interviewing procedures

tended to increase observed connectivity in the smallest
components. Low overall network connectivity and the virtual

absence of cyclic microstructures in large connected compo-

nents support the view that chlamydia infection in Colorado

Springs was probably in a maintenance phase or possibly in a

decline phase during the four year study period. We conclude

that the fragmented, non-cyclic network structure observed

probably reflects low endemic rather than epidemic spread.

Comparison with epidemic network structure
A historical contact tracing dataset recording rapid epidemic

spread of bacterial STD in Colorado Springs was available for

reanalysis. As previously reported,
2 3

a group composed of 578

persons, mostly adolescents associated with crack cocaine

street gangs, was involved in an STD outbreak during 1990

and 1991. Of 578 individuals identified, 410 (71%) formed a

single connected component consisting of 218 men and 192

women. In this component, 300 (73%) were examined; 248

were infected with one or more bacterial STD (261 gonococcal,

127 chlamydial, and two early syphilis infections). These data

suggest a hyperendemic STD period prevalence of 130 000

cases per 100 000 population. The dense interconnections in

this group reveal a predominantly cyclic pattern with some

linear connections at individual nodes (fig 4A). Pruning the
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outbreak, Colorado Springs,
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largest component in gang
associated STD outbreak, Colorado
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(86%) during this special study interval, using an interview

period that was at least twice as long (180 days). Both compo-

nent distribution and non-cyclic linear structure were similar

during this interval to that of the four year period. The only

notable difference was a substantial shift in the dyad to triad

ratio, from 1.8:1 overall to 0.46:1 in the 1996–97 study

interval. Thus enhanced partner interviewing procedures

tended to increase observed connectivity in the smallest
components. Low overall network connectivity and the virtual

absence of cyclic microstructures in large connected compo-

nents support the view that chlamydia infection in Colorado

Springs was probably in a maintenance phase or possibly in a

decline phase during the four year study period. We conclude

that the fragmented, non-cyclic network structure observed

probably reflects low endemic rather than epidemic spread.

Comparison with epidemic network structure
A historical contact tracing dataset recording rapid epidemic

spread of bacterial STD in Colorado Springs was available for

reanalysis. As previously reported,
2 3

a group composed of 578

persons, mostly adolescents associated with crack cocaine

street gangs, was involved in an STD outbreak during 1990

and 1991. Of 578 individuals identified, 410 (71%) formed a

single connected component consisting of 218 men and 192

women. In this component, 300 (73%) were examined; 248

were infected with one or more bacterial STD (261 gonococcal,

127 chlamydial, and two early syphilis infections). These data

suggest a hyperendemic STD period prevalence of 130 000

cases per 100 000 population. The dense interconnections in

this group reveal a predominantly cyclic pattern with some

linear connections at individual nodes (fig 4A). Pruning the
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(86%) during this special study interval, using an interview

period that was at least twice as long (180 days). Both compo-

nent distribution and non-cyclic linear structure were similar

during this interval to that of the four year period. The only

notable difference was a substantial shift in the dyad to triad

ratio, from 1.8:1 overall to 0.46:1 in the 1996–97 study

interval. Thus enhanced partner interviewing procedures

tended to increase observed connectivity in the smallest
components. Low overall network connectivity and the virtual

absence of cyclic microstructures in large connected compo-

nents support the view that chlamydia infection in Colorado

Springs was probably in a maintenance phase or possibly in a

decline phase during the four year study period. We conclude

that the fragmented, non-cyclic network structure observed

probably reflects low endemic rather than epidemic spread.

Comparison with epidemic network structure
A historical contact tracing dataset recording rapid epidemic

spread of bacterial STD in Colorado Springs was available for

reanalysis. As previously reported,
2 3

a group composed of 578

persons, mostly adolescents associated with crack cocaine

street gangs, was involved in an STD outbreak during 1990

and 1991. Of 578 individuals identified, 410 (71%) formed a

single connected component consisting of 218 men and 192

women. In this component, 300 (73%) were examined; 248

were infected with one or more bacterial STD (261 gonococcal,

127 chlamydial, and two early syphilis infections). These data

suggest a hyperendemic STD period prevalence of 130 000

cases per 100 000 population. The dense interconnections in

this group reveal a predominantly cyclic pattern with some

linear connections at individual nodes (fig 4A). Pruning the
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(86%) during this special study interval, using an interview

period that was at least twice as long (180 days). Both compo-

nent distribution and non-cyclic linear structure were similar

during this interval to that of the four year period. The only

notable difference was a substantial shift in the dyad to triad

ratio, from 1.8:1 overall to 0.46:1 in the 1996–97 study

interval. Thus enhanced partner interviewing procedures

tended to increase observed connectivity in the smallest
components. Low overall network connectivity and the virtual

absence of cyclic microstructures in large connected compo-

nents support the view that chlamydia infection in Colorado

Springs was probably in a maintenance phase or possibly in a

decline phase during the four year study period. We conclude

that the fragmented, non-cyclic network structure observed

probably reflects low endemic rather than epidemic spread.

Comparison with epidemic network structure
A historical contact tracing dataset recording rapid epidemic

spread of bacterial STD in Colorado Springs was available for

reanalysis. As previously reported,
2 3

a group composed of 578

persons, mostly adolescents associated with crack cocaine

street gangs, was involved in an STD outbreak during 1990

and 1991. Of 578 individuals identified, 410 (71%) formed a

single connected component consisting of 218 men and 192

women. In this component, 300 (73%) were examined; 248

were infected with one or more bacterial STD (261 gonococcal,

127 chlamydial, and two early syphilis infections). These data

suggest a hyperendemic STD period prevalence of 130 000

cases per 100 000 population. The dense interconnections in

this group reveal a predominantly cyclic pattern with some

linear connections at individual nodes (fig 4A). Pruning the
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(86%) during this special study interval, using an interview

period that was at least twice as long (180 days). Both compo-

nent distribution and non-cyclic linear structure were similar

during this interval to that of the four year period. The only

notable difference was a substantial shift in the dyad to triad

ratio, from 1.8:1 overall to 0.46:1 in the 1996–97 study

interval. Thus enhanced partner interviewing procedures

tended to increase observed connectivity in the smallest
components. Low overall network connectivity and the virtual

absence of cyclic microstructures in large connected compo-

nents support the view that chlamydia infection in Colorado

Springs was probably in a maintenance phase or possibly in a

decline phase during the four year study period. We conclude

that the fragmented, non-cyclic network structure observed

probably reflects low endemic rather than epidemic spread.

Comparison with epidemic network structure
A historical contact tracing dataset recording rapid epidemic

spread of bacterial STD in Colorado Springs was available for

reanalysis. As previously reported,
2 3

a group composed of 578

persons, mostly adolescents associated with crack cocaine

street gangs, was involved in an STD outbreak during 1990

and 1991. Of 578 individuals identified, 410 (71%) formed a

single connected component consisting of 218 men and 192

women. In this component, 300 (73%) were examined; 248

were infected with one or more bacterial STD (261 gonococcal,

127 chlamydial, and two early syphilis infections). These data

suggest a hyperendemic STD period prevalence of 130 000

cases per 100 000 population. The dense interconnections in

this group reveal a predominantly cyclic pattern with some

linear connections at individual nodes (fig 4A). Pruning the
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component in gang associated STD
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Active attack Embed small random graph 
prior to anonymization.

[Backstrom, 
 WWW 07]

[Narayanan,
 OAKL 09]
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(86%) during this special study interval, using an interview

period that was at least twice as long (180 days). Both compo-

nent distribution and non-cyclic linear structure were similar

during this interval to that of the four year period. The only

notable difference was a substantial shift in the dyad to triad

ratio, from 1.8:1 overall to 0.46:1 in the 1996–97 study

interval. Thus enhanced partner interviewing procedures

tended to increase observed connectivity in the smallest
components. Low overall network connectivity and the virtual

absence of cyclic microstructures in large connected compo-

nents support the view that chlamydia infection in Colorado

Springs was probably in a maintenance phase or possibly in a

decline phase during the four year study period. We conclude

that the fragmented, non-cyclic network structure observed

probably reflects low endemic rather than epidemic spread.

Comparison with epidemic network structure
A historical contact tracing dataset recording rapid epidemic

spread of bacterial STD in Colorado Springs was available for

reanalysis. As previously reported,
2 3

a group composed of 578

persons, mostly adolescents associated with crack cocaine

street gangs, was involved in an STD outbreak during 1990

and 1991. Of 578 individuals identified, 410 (71%) formed a

single connected component consisting of 218 men and 192

women. In this component, 300 (73%) were examined; 248

were infected with one or more bacterial STD (261 gonococcal,

127 chlamydial, and two early syphilis infections). These data

suggest a hyperendemic STD period prevalence of 130 000

cases per 100 000 population. The dense interconnections in

this group reveal a predominantly cyclic pattern with some

linear connections at individual nodes (fig 4A). Pruning the
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Other attacks on naive anonymization

Active attack Embed small random graph 
prior to anonymization.

[Backstrom, 
 WWW 07]

[Narayanan,
 OAKL 09]

Auxiliary network 
attack

Use unanonymized public network 
with overlapping membership. 
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Improved data publishing techniques
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Naive anonymization

• Create topological similarity [Liu, SIGMOD 08] [Zhou, ICDE 08] 
[Zou, VLDB 09]
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Randomized Edges

• Randomize edges [Ying, SDM 2008]

• Create topological similarity [Liu, SIGMOD 08] [Zhou, ICDE 08] 
[Zou, VLDB 09]
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Node clustering

• Randomize edges [Ying, SDM 2008]

• Clustering/summarization [Campan, PinKDD 08] [Hay, VLDB 08] 
[Cormode, VLDB 08] [Cormode, VLDB 09]  

• Create topological similarity [Liu, SIGMOD 08] [Zhou, ICDE 08] 
[Zou, VLDB 09]
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Data publishing v. output perturbation
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Data publishing v. output perturbation

Ease of use good
Privacy weak guarantees
Accuracy no formal guarantees
Scalability sometimes bad
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Output perturbation

• Dwork, McSherry, Nissim, Smith [Dwork, TCC 06] have described an 
output perturbation mechanism satisfying differential privacy.  

• Comparatively few results for graph data.
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1. Existing approaches to protecting network data

2. Background on differential privacy

3. Privately estimating the degree distribution

4. Privately counting motifs

5. Future goals and open questions
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The differential guarantee
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The differential guarantee

Two graphs are neighbors if they differ by at most one edge
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Differential privacy

A randomized algorithm A provides ε-differential privacy if:
for all neighboring graphs G and G’, and
for any set of outputs S:

[Dwork, TCC 06]
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Differential privacy

A randomized algorithm A provides ε-differential privacy if:
for all neighboring graphs G and G’, and
for any set of outputs S:

epsilon is a 
privacy parameter

� = 0.1 e� ≈ 1.10Epsilon is usually small: e.g. if then 

epsilon  = stronger privacy

[Dwork, TCC 06]
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Calibrating noise

• The following algorithm for answering Q is ε-differentially private:

Q(G) + Laplace(            )
A

[Dwork, TCC 06]

true 
answer

sample from scaled 
distribution

b
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Calibrating noise

• The following algorithm for answering Q is ε-differentially private:

Q(G) + Laplace(            )
A

[Dwork, TCC 06]
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Examples of query sensitivity

ε=0.5

query sensitivity truth noisy answer

where G, G’ are any two neighboring graphs 

The sensitivity of a query Q is
ΔQ = max | Q(G) - Q(G’) |

G,G’
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Examples of query sensitivity

Q ΔQ Q(G) Q(G) + Lap(ΔQ / ε)

degA (degree of node A) 1 degDave(G) = 4 4+Lap(2)

cnti  (# nodes with degree i) 2 cnt4(G) = 4 4+Lap(4)

ε=0.5

query sensitivity truth noisy answer

where G, G’ are any two neighboring graphs 

The sensitivity of a query Q is
ΔQ = max | Q(G) - Q(G’) |

G,G’
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Multiple queries

ε=0.5

query sensitivity truth noisy answer

where G, G’ are any two neighboring graphs 

The sensitivity of a query Q is
ΔQ = max | Q(G) - Q(G’) |

G,G’

L1 dist for 
vectors

Saturday, February 20, 2010



Multiple queries

Q ΔQ Q(G) Q(G) + Lap(ΔQ / ε)
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query sensitivity truth noisy answer

where G, G’ are any two neighboring graphs 

The sensitivity of a query Q is
ΔQ = max | Q(G) - Q(G’) |

G,G’

L1 dist for 
vectors
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Differential privacy for networks

• edge ε-differential privacy: algorithm output 
is largely indistinguishable whether or not any 
single edge is present or absent.

• k-edge ε-differential privacy: algorithm 
output is largely indistinguishable whether or 
not any set of k edges is present or absent.

• node ε-differential privacy: algorithm output 
is largely indistinguishable whether or not any 
single node (and all its edges) is present or 
absent.

A participant’s sensitive information is not a single edge.

Laplace(ΔQ /ε )

Laplace(ΔQ k /ε )

Suppose ΔQ=1. Then Laplace(100) satisfies:
1-edge 0.01-differential privacy
10-edge 0.1-differential privacy 
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The degree sequence of a network

• Degree sequence: the list of degrees of each node in a graph.

• A widely studied property of networks.

Alice Bob Carol

Dave Ed

Fred Greg Harry

[1,1,2,2,4,4,4,4]
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The degree sequence of a network

• Degree sequence: the list of degrees of each node in a graph.

• A widely studied property of networks.
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The degree sequence is sensitive

• Why not release the true degree sequence of a network?

• In extreme cases, the degree sequence can determine the 
structure of the graph --- no better than naive anonymization.

• Background knowledge could lead to disclosures.

• The degree sequence may not be the only statistic we release -- 
we must protect against combined disclosures.
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Two basic queries for degrees

Frequency of each degreeFrequency of each degree
cnti count of nodes with 

degree iF [cnt0, cnt1, ...     cntn-1]

Alice Bob Carol

Dave Ed

Fred Greg Harry

Alice Bob Carol

Dave Ed

Fred Greg Harry

G G’

Degree of each nodeDegree of each node
degA degree of node A
D [degA, degB, ...       ]
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Two basic queries for degrees

Frequency of each degreeFrequency of each degree
cnti count of nodes with 

degree iF [cnt0, cnt1, ...     cntn-1]
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Degree of each nodeDegree of each node
degA degree of node A
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An alternative query for degrees
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S(G) = [10, 10, ....10, 10, 14, 18,18,18,18]
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• The output of the sorted degree query is not (in general) sorted. 

• We derive a new sequence by computing the closest non-
decreasing sequence: i.e. minimizing L2 distance.
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Experimental results
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Experimental results, continued
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Inference does not weaken privacy
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Inference does not weaken privacy

A

DATA OWNER

1. Formulate S, 
    having constraints ϒS

ϒS

Inference

3. Perform inference

­S

ANALYST

S(G) + 
noise

∼
S

S 2. Submit S
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• Standard Laplace noise is sufficient but not necessary for differential privacy.

• By using inference, effectively apply a different noise distribution -- more noise 
where it is needed, less otherwise.

• Improvement in accuracy will depend on sequence
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Accuracy is improved without sacrificing privacy!

• The accuracy achieved depends on the input sequence.

O(dlog3
n/�

2)

Θ(n/�2)Before inference,
∼
S

After inference, ­S
number of distinct degrees

Mean Squared Error of Degree Sequence

• Performing inference is efficient: the sorted sequence which 
minimizes the L2 distance has an elegant closed form solution:

• shown O(n2) in [Hay, PVLDB 10]

• improved to O(n) in [Hay, ICDM 09]
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Outline

1. Existing approaches to protecting network data

2. Background on differential privacy

3. Privately estimating the degree distribution

4. Privately counting motifs

5. Future goals and open questions
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Accurate motif analysis is hard

• Motif analysis measures the frequency of occurrence of small 
subgraphs in a network.

• Common example: transitivity in the network: 

• when A is friends with B and C, are B and C also friends?

• QTRIANGLE: return the number of triangles in the graph
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• when A is friends with B and C, are B and C also friends?

• QTRIANGLE: return the number of triangles in the graph
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n-2 nodes
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...
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QTRIANGLE (G) = 0 QTRIANGLE (G’) = n-2

Saturday, February 20, 2010



Accurate motif analysis is hard

• Motif analysis measures the frequency of occurrence of small 
subgraphs in a network.

• Common example: transitivity in the network: 

• when A is friends with B and C, are B and C also friends?

• QTRIANGLE: return the number of triangles in the graph

...

n-2 nodes

A B

...

n-2 nodes

A B

G G’

QTRIANGLE (G) = 0 QTRIANGLE (G’) = n-2

High Sensitivity:

ΔQTRIANGLE=O(n)

Saturday, February 20, 2010



Accurate motif analysis is hard

• Motif analysis measures the frequency of occurrence of small 
subgraphs in a network.

• Common example: transitivity in the network: 

• when A is friends with B and C, are B and C also friends?

• QTRIANGLE: return the number of triangles in the graph

...

n-2 nodes

A B

...

n-2 nodes

A B

G G’

QTRIANGLE (G) = 0 QTRIANGLE (G’) = n-2

High Sensitivity:

ΔQTRIANGLE=O(n)

Saturday, February 20, 2010



Accurate motif analysis requires weakening privacy

• There exist output perturbation methods that achieve significantly 
better accuracy--expected error Θ(log2n) instead of Θ(n) :

• [Rastogi, PODS 09]  Limiting assumptions on the prior 
knowledge of the adversary, and satisfying adversarial privacy.

• works for general class of “motif” queries.

• [Nissim, STOC 07] Under certain assumptions about the input 
graphs, and a modest relaxation of differential privacy:

• works only for triangle queries (but could be extended).
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Data publishing v. output perturbation

Ease of use good
Privacy weak guarantees
Accuracy no formal guarantees
Scalability sometimes bad
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Toward differentially-private synthetic data

• To realize the benefits of synthetic data, data owner can release 
noisy parameters of network model.

• Baseline: the degree distribution as network model

• Deriving the power law parameter

• Measuring clustering coefficient
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 drawn from model
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very accurate
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A useful paradigm for improving accuracy

A

DATA OWNER

1. Formulate S, 
    having constraints ϒS

ϒS

Inference

3. Perform inference

­S

ANALYST

S(G) + 
noise

∼
S

S 2. Submit S

See [Hay, PVLDB 10]
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Questions?

• [Hay, PVLDB 10] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of 
differentially-private queries through consistency. To appear, Proceedings of the VLDB 
Endowment (PVLDB), 2010.

• [Hay, ICDM 09] M. Hay, C. Li, G. Miklau, and D. Jensen. Accurate estimation of the degree 
distribution of private networks. In International Conference on Data Mining (ICDM) 2009. 

• [Rastogi, PODS 09] V. Rastogi, M. Hay, G. Miklau, and D. Suciu. Relationship privacy: 
Output perturbation for queries with joins. In Principles of Database Systems (PODS), 2009.

• [Hay, VLDB 08] M. Hay, G. Miklau, D. Jensen, D. Towsley, and P. Weis. Resisting structural 
identification in anonymized social networks. In Proceedings of the VLDB Endowment 
(PVLDB), 2008.

Additional details on our work may be found here:
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