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* What Have | Worked On in the Past?

= Automatically extracting thread-level parallelism

= Smarter caching to better utilize deep memory hierarchies
= SRAM to DRAM; DRAM to disk; local disk to remote web server

= Redesigning core database algorithms & data structures

= to exploit modern processor architectures
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i What Am | Working on Now?

= Log-Based Architectures Project
Motivation: detect (& fix?) software correctness problems in real time
Approach: logging mechanism allows cores to monitor other cores .
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= Claytronics Project
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* Today’s Talk

= Chris Colohan’s Ph.D. thesis work

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan

Intel's Core 2 Quad AMD’s Quad-Core Opteron (“Barcelona”)

= Quad-cores are now common
= 8, 16, 32... cores expected in the future
= Great for throughput, but what about latency?
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* Exploiting Multicore

One view:

= Don’t worry: everyone will write parallel
software from now on
= and it will all speed up nicely

Rebuttal:
= Writing parallel software is difficult
= Getting large speedups is also difficult
= What about legacy codes?
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* Exploiting Multicore

Another view:

= Don’t worry: the compiler will automatically
parallelize everything
= and it will all speed up nicely

Rebuttal:

= Beyond regular matrix-based codes, compilers
really struggle with this

= Ambiguous dependences are a stumbling block
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i The Stampede Project @ CMU

Idea:

= Using novel hardware & compiler support, allow the
compiler to optimistically create parallel threads
= “Thread-Level Speculation” (TLS)

= Rollback and recover if speculation fails
Our early work:
= Automatically parallelize SPEC Integer benchmarks
= Resulted in speedups of roughly 20-35%
This work:
= Focus on large, legacy code that is hard to parallelize
= “semi-automatic” approach: the programmer is involved
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i Case Study: BerkeleyDB

= We chose to parallelize /individual transactions in
BerkeleyDB
= The code was not written to support parallelism
= Much the opposite: it takes advantage of the fact that
there is never concurrency within a given transaction
= Rewriting the code to support intra-transaction
parallelism would be extremely painful
= Problems throughout the 200K lines of code
= Would probably need to start over again from scratch
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* Transactions on Multi-Core

Users Database Server

Cores can run concurrent transactions
and improve throughput
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i Multi-Core Enhances Throughput

Users Database Server

Can multiple cores improve
transaction latency?
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Parallelizing transactions

DBMS

SELECT cust_info FROM CUSTOMEN ; muy
UPDATE district WITH order_id; O
INSERT order_id INTO new_order;
foreach(item) {
GET quantity FROM stock;
quantity--;
UPDATE stock WITH quantity;
INSERT item INTO order_line;

4

= Intra-query parallelism
= Used for long-running queries (decision support)
= Does not work for short queries

= Short queries dominate in commercial workloads
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Parallelizing transactions

DBMS
SELECT cust_info FROM customer;
UPDATE district WITH order_id; O
INSERT order_id INTO new_order; ’
foreach(item) { 'O

GET quantity FROM stock;
quantity--; "O
UPDATE stock WITH quantity; N :

INSERT item INTO order_line;

4

= Intra-transaction parallelism
= Each thread spans multiple queries
= Hard to add to existing systems!

= Need to change interface, add latches and locks, worry
about correctness of parallel execution...
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Parallelizing transactions

DBMS

SELECT cust_info FROM customer;
UPDATE district WITH order_id;
INSERT order_id INTO new_order;
foreach(item) {
GET quantity FROM stock;
quantity--;
UPDATE stock WITH quantity;
INSERT item INTO order_line;

4

géde

Thread Level Speculation (TLS)
makes parallelization easier.
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i Thread Level Speculation (TLS)

Epoch 1 Epoch 2
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Thread Level Speculation (TLS)

Time

\gp

Sequential

Epoch 1

Epoch 2

Parallel

= Use epochs

Detect violations
Restart to recover
Buffer state

= Worst case:
= Sequential
Best case:

= Fully parallel

Data dependences limit performance.
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i TLS in Database Systems

Large epochs:
* More dependences

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan

* Must tolerate
= I I I * More state
I = I I  Bigger buffers
O
e u' o
= 0 g o
|==I
L
mgln
0 0 I Amm I l m
Non-Database ||TLS in Database
TLS Systems Concurr_ent
transactions

18

i Violations as a Feedback Signal
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i Violations as a Feedback Signal

Time
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i Eliminating Violations

Violation! |f =P
e
p
-

Violation! | =9
All-or-nothing execution makes
optimization harder
="q
Optimization may I

make slower?
Parallel | |

cmrmrae *P Dep.
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i Sub-threads

= Periodic checkpoints of a
speculative thread
= Makes TLS work well with:

= Large speculative threads

= Unpredictable frequent
dependences

Speed up database transaction
response time by a factor of
1.9to0 2.9.

i Tolerating Violations: Sub-threads

Violation! B =>9| | {4~  vio/ationrm—=>9
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i A Coordinated Effort

TPC-C
Transactions =

[Trec |
G

BerkeleyDB

Hardware
\‘
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| Simulated machine ‘
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i A Coordinated Effort

Transaction
Programmer

Choose epoch
boundaries
ﬁ

DBMS Programmer‘“

Remove performance
bottlenecks

o~

Hardware Developer
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y

Add TLS support to

architecture
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i What's New

= Intra-transaction parallelism
= Without changing the transactions
= With minor changes to the DBMS
= Without having to worry about locking
= Without introducing concurrency bugs
= With good performance

= Halve transaction latency on four cores
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i Outline

= Modifying the DBMS to exploit TLS
= Dividing transactions into epochs
= Removing bottlenecks in the DBMS

= Results
= Conclusions
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Transaction
Programmer

DBMS Programmer

Architect
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i Case Study: New Order (TPC-C)

GET cust_info FROM customer;
UPDATE district WITH order_id;
INSERT order_id ENTO new_order:
Foreach(item) {
GET quantity FROM stock
WHERE i_id=item;
UPDATE stock WITH quantity-1
WHERE i_id=item;
ENSERT item INTO order_Hine;

78% of transaction
execution time

= Only dependence is the quantity field
= Very unlikely to occur (1/100,000)
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i Case Study: New Order (TPC-C)

GET cust_info FROM customer;
UPDATE district WITH order_id;
INSERT order_id INTO new_order;
foreach(item) {
GET quantity FROM stock
WHERE i_id=item;
UPDATE stock WITH quantity-1
WHERE i_id=item: _
INSERT item INTO GET custTlnf? FROM customerz
3 UPDATE district WITH order_id;
INSERT order_id INTO new_order;
TLS_foreach(item) {
GET quantity FROM stock
WHERE i_id=item;
UPDATE stock WITH quantity-1
WHERE i_id=item;
INSERT item INTO order_line;
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i Outline

= Modifying the DBMS to exploit TLS
» Dividing transactions into epochs —
= Removing bottlenecks in the DBMS |_~regrammer

= Results DBMS Programmer
= Conclusions Architect
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i Dependences in DBMS

Time

i Dependences in DBMS

Dependences serialize execution!
E Performance tuning:
| = Profile execution

Time

= Remove bottleneck dependence
= Repeat




* Buffer Pool Management

get_page(5)
put_page(5)

Buffer Pool

ref: @
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* Buffer Pool Management

get_page(5)

put_page(5) get_page(5)

put_page(5)

get_page(5)

put_page(5)

Time

get_page(5)

Buffer Pool put_page(5)

TLS ensures first
epoch gets page first.
Who cares?
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i Buffer Pool Management

e Escape speculation
e Invoke operation
e Store wndo function
e Resume speculation

get_page(5)

Buffer Pool put_page(5)

ref: 0 .
[ = Escape Speculation

get_page(5)
put_page(5)

get_page(5),

put_page(5)
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* get_page() wrapper

page_t *get_page_wrapper(pageid_t id) {
static tls_mutex mut;
page_t *ret;

tls_escape_speculation();
check_get_arguments(id);
tls_acquire_mutex(&mut);

-> Wraps
get_page()

ret = get_page(id);

tls_release_mutex(&mut);
tls_on_violation(put, ret);
tls_resume_speculation()

return ret;

¥
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get_page() wrapper

page_t *get_page_wrapper(pageid_t id) {
static tls_mutex mut;
page_t *ret;

- No violations
while calling
get_page()

tls_escape_speculation();
check_get_arguments(id);
tls_acquire_mutex(&mut);

ret = get_page(id);
tls_release_mutex(&mut);

tls_on_violation(put, ret);
tls_resume_speculation()

return ret;

}
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get_page() wrapper

page_t *get_page_wrapper(pageid_t id) {
static tls_mutex mut;
page_t *ret;

tls_escape_speculation();
check_get_arguments(id);
tls_acquire_mutex(&mut);

- May get bad
input data from
speculative
thread!

ret = get_page(id);

tls_release_mutex(&mut);
tls_on_violation(put, ret);
tls_resume_speculation()

return ret;

}
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i get_page() wrapper

page_t *get_page_wrapper(pageid_t id) {
static tls_mutex mut; -> Only one
page_t “ret; epoch per

tls_escape_speculation(); transaction at a
check_get_arguments(id); time
tls_acquire_mutex(&mut);

ret = get_page(id);
tls_release_mutex(&mut);

tls_on_violation(put, ret);
tls_resume_speculation()

return ret;

}
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get_page() wrapper

page_t *get_page_wrapper(pageid_t id) {
static tls_mutex mut;
page_t *ret;

tls_escape_speculation();
check_get_arguments(id);
tls_acquire_mutex(&mut);

ret = get_page(id);

tls_release_mutex(&mut);
tls_on_violation(put, ret); - How to undo

tls_resume_speculation() get page ()

return ret;

¥
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* get_page() wrapper

page_t *get_page_wrappel g |solated
static tls_mutex mut

page_t *ret; = Undoing this operation
does not cause cascading
tls_escape_speculati aborts

check_get_arguments(
tis_acquire_mutex(ar® Undoable

] = Easy way to return system
ret = get_page(id); to initial state

tls_release_mutex(&r
tls_on_violation(put
tls_resume_speculati® Can also be used for:

= Cursor management
return ret;
} = mallocQ)
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i Buffer Pool Management

get_page(5) et_page(5 et_page(5
put_page(5) get_page() gut_gageES;

put_page(5)

Time

get_page(5)

Buffer Pool put_page(5)

/4

Not undoable!

[ = Escape Speculation
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* Buffer Pool Management

get_page(5)
put_page(5) get_page(5) get_page(5)

Time

put_page(5)
Buffer Pool put_page(S)

ref: 0 .
[ = Escape Speculation
4

= Delay put_page until end of
epoch
= Avoid dependence
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* Removing Bottleneck Dependences

We introduce three techniques:
= Delay operations until non-speculative
= Mutex and lock acquire and release
= Buffer pool, memory, and cursor release
= Log sequence number assignment
= Escape speculation
= Buffer pool, memory, and cursor allocation
= Traditional parallelization

= Memory allocation, cursor pool, error checks,
false sharing
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i Outline

= Modifying the DBMS to exploit TLS
= Dividing transactions into epochs

= Removing bottlenecks in the DBMS
= Results
= Conclusions
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Experimental Setup

= Detailed simulation

= Superscalar, out-of-order,

128 entry reorder buffer

= Memory hierarchy
modeled in detail

= TPC-C transactions on

BerkeleyDB

= In-core database

= Single user

= Single warehouse

= Measure interval of 100
transactions

= Measuring /atency not
throughput
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|CPU| |CPU| |CPU| |CPU|
32KB 32KB 32KB 32KB

4-way 4-way 4-way 4-way
L1$ L1$ L1$ L1$

2MB 4-way L2 $

Rest of memory system

i Optimizing the DBMS: New Order
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i Optimizing the DBMS: New Order

1.25
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This process took Chris 30 days
and <1200 lines of code.
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Other TPC-C Transactions

—

i

3/5 Transactions
speed up by 46-66%
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i Conclusions

= A new form of parallelism for databases
= Tool for attacking transaction latency

= Intra-transaction parallelism
= Without major changes to DBMS

= TLS can be applied to more than
transactions

= Halve transaction latency by using 4 CPUs
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i Final Thoughts

= We achieved respectable speedups:

= On a large piece of software that was written without
parallelism in mind

= With roughly a month of (non-expert) programmer
effort

= To do this, we need TLS support plus:

= Feedback on which instruction pairs cause dependence
violations

= Sub-thread support to minimize cost of failed
speculation

= There is hope for large dusty-deck codes!!!

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 51

13



