Incrementally Parallelizing
Database Transactions with
* Thread-Level Speculation

Todd C. Mowry
Carnegie Mellon University

(in collaboration with Chris Colohan,
J. Gregory Steffan, and Anastasia Allamaki)

Twofold Speedup on a Quad-Core
with 1 Month of Programmer Effort:
* A Case Study with BerkeleyDB

Todd C. Mowry
Carnegie Mellon University

(in collaboration with Chris Colohan,
J. Gregory Steffan, and Anastasia Alflamaki)

* What Have | Worked On in the Past?

= Automatically extracting thread-level parallelism

= Smarter caching to better utilize deep memory hierarchies
= SRAM to DRAM; DRAM to disk; local disk to remote web server

= Redesigning core database algorithms & data structures

= to exploit modern processor architectures
<

Sl
...... _ - ‘b 4
CU L2/L3 Main Memor Shimin Chen
Cache i 'f.
MR o 2
e

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan

i What Am | Working on Now?

= Log-Based Architectures Project
Motivation: detect (& fix?) software correctness problems in real time
Approach: logging mechanism allows cores to monitor other cores .

s o im-e

A
Publish Log Subscribe @
to Log -

= Claytronics Project

Sple

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 4

* Today’s Talk

= Chris Colohan’s Ph.D. thesis work

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan

Intel's Core 2 Quad AMD’s Quad-Core Opteron (“Barcelona”)

= Quad-cores are now common
= 8, 16, 32... cores expected in the future
= Great for throughput, but what about latency?

ncrementally Parallelizing Transactions via TLS
dd C. Mowry & Chris Colohan

* Exploiting Multicore

One view:

= Don’t worry: everyone will write parallel
software from now on
= and it will all speed up nicely

Rebuttal:
= Writing parallel software is difficult
= Getting large speedups is also difficult
= What about legacy codes?

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan

* Exploiting Multicore

Another view:

= Don’t worry: the compiler will automatically
parallelize everything
= and it will all speed up nicely

Rebuttal:

= Beyond regular matrix-based codes, compilers
really struggle with this

= Ambiguous dependences are a stumbling block

crementally Parallelizing Transactions via TLS

C. Mowry & Chris Colohan

i The Stampede Project @ CMU

Idea:

= Using novel hardware & compiler support, allow the
compiler to optimistically create parallel threads
= “Thread-Level Speculation” (TLS)

= Rollback and recover if speculation fails
Our early work:
= Automatically parallelize SPEC Integer benchmarks
= Resulted in speedups of roughly 20-35%
This work:
= Focus on large, legacy code that is hard to parallelize
= “semi-automatic” approach: the programmer is involved

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan

i Case Study: BerkeleyDB

= We chose to parallelize /individual transactions in
BerkeleyDB
= The code was not written to support parallelism
= Much the opposite: it takes advantage of the fact that
there is never concurrency within a given transaction
= Rewriting the code to support intra-transaction
parallelism would be extremely painful
= Problems throughout the 200K lines of code
= Would probably need to start over again from scratch

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan

10

* Transactions on Multi-Core

Users Database Server

Cores can run concurrent transactions
and improve throughput

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan

11

i Multi-Core Enhances Throughput

Users Database Server

Can multiple cores improve
transaction latency?

E

ally Parallelizing Transactions via TLS
wry & Chris Colohan 12

H
g

Parallelizing transactions

DBMS

SELECT cust_info FROM CUSTOMEN ; muy
UPDATE district WITH order_id; O
INSERT order_id INTO new_order;
foreach(item) {
GET quantity FROM stock;
quantity--;
UPDATE stock WITH quantity;
INSERT item INTO order_line;

4

= Intra-query parallelism
= Used for long-running queries (decision support)
= Does not work for short queries

= Short queries dominate in commercial workloads

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 13

Parallelizing transactions

DBMS
SELECT cust_info FROM customer;
UPDATE district WITH order_id; O
INSERT order_id INTO new_order; ’
foreach(item) { 'O

GET quantity FROM stock;
quantity--; "O
UPDATE stock WITH quantity; N :

INSERT item INTO order_line;

4

= Intra-transaction parallelism
= Each thread spans multiple queries
= Hard to add to existing systems!

= Need to change interface, add latches and locks, worry
about correctness of parallel execution...

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 14

Parallelizing transactions

DBMS

SELECT cust_info FROM customer;
UPDATE district WITH order_id;
INSERT order_id INTO new_order;
foreach(item) {
GET quantity FROM stock;
quantity--;
UPDATE stock WITH quantity;
INSERT item INTO order_line;

4

géde

Thread Level Speculation (TLS)
makes parallelization easier.

Incrementally Parallelizing Transactions via TLS y
Todd C. Mowry & Chris Colohan 15

i Thread Level Speculation (TLS)

Epoch 1 Epoch 2

:*p
*p= *p=

:*q
*qz *q
:*p :*p
:*q :*q

Sequential Parallel

Time

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 16

Thread Level Speculation (TLS)

Time

\gp

Sequential

Epoch 1

Epoch 2

Parallel

= Use epochs

Detect violations
Restart to recover
Buffer state

= Worst case:
= Sequential
Best case:

= Fully parallel

Data dependences limit performance.

Todd C. Mowry & Chris Colohan

FY]

i TLS in Database Systems

Large epochs:
* More dependences

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan

* Must tolerate
= I I I * More state
I = I I Bigger buffers
O
e u' o
= 0 g o
|==I
L
mgln
0 0 I Amm I l m
Non-Database ||TLS in Database
TLS Systems Concurr_ent
transactions

18

i Violations as a Feedback Signal

Time

@T...Make }
...Iiasfer 06

Sequential

Violation! I =*p
*p=

*qz

Incrementally Parallelizing Transactions via
Todd C. Mowry & Chris Colohan

s

i Violations as a Feedback Signal

Time

*p=
*q=
:*p
:*q

Sequential

Violation! Iz*p
—
p
:*p
*q:
:*q
Parallel

%

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan

20

i Eliminating Violations

Violation! |f =P
e
p
-

Violation! | =9
All-or-nothing execution makes
optimization harder
="q
Optimization may I

make slower?
Parallel | |

cmrmrae *P Dep.

Incrementally Parallelizing Transactions via
Todd C. Mowry & Chris Colohan

21

i Sub-threads

= Periodic checkpoints of a
speculative thread
= Makes TLS work well with:

= Large speculative threads

= Unpredictable frequent
dependences

Speed up database transaction
response time by a factor of
1.9to0 2.9.

i Tolerating Violations: Sub-threads

Violation! B =>9| | {4~ vio/ationrm—=>9

*q
. i.:*q

*q

Time

:*q

Eliminate *p Dep. Sub-threads

ncrementally Parallelizing Transactions via
Todd C. Mowry & Chris Colohan

22

i A Coordinated Effort

TPC-C
Transactions =

[Trec |
G

BerkeleyDB

Hardware
\‘

mentally Parallelizing Transactions via TLS
Mowry & Chris Colohan

| Simulated machine ‘

24

i A Coordinated Effort

Transaction
Programmer

Choose epoch
boundaries
ﬁ

DBMS Programmer‘“

Remove performance
bottlenecks

o~

Hardware Developer

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan

y

Add TLS support to

architecture

25

i What's New

= Intra-transaction parallelism
= Without changing the transactions
= With minor changes to the DBMS
= Without having to worry about locking
= Without introducing concurrency bugs
= With good performance

= Halve transaction latency on four cores

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 26

i Outline

= Modifying the DBMS to exploit TLS
= Dividing transactions into epochs
= Removing bottlenecks in the DBMS

= Results
= Conclusions

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan

Transaction
Programmer

DBMS Programmer

Architect

27

i Case Study: New Order (TPC-C)

GET cust_info FROM customer;
UPDATE district WITH order_id;
INSERT order_id ENTO new_order:
Foreach(item) {
GET quantity FROM stock
WHERE i_id=item;
UPDATE stock WITH quantity-1
WHERE i_id=item;
ENSERT item INTO order_Hine;

78% of transaction
execution time

= Only dependence is the quantity field
= Very unlikely to occur (1/100,000)

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 28

i Case Study: New Order (TPC-C)

GET cust_info FROM customer;
UPDATE district WITH order_id;
INSERT order_id INTO new_order;
foreach(item) {
GET quantity FROM stock
WHERE i_id=item;
UPDATE stock WITH quantity-1
WHERE i_id=item: _
INSERT item INTO GET custTlnf? FROM customerz
3 UPDATE district WITH order_id;
INSERT order_id INTO new_order;
TLS_foreach(item) {
GET quantity FROM stock
WHERE i_id=item;
UPDATE stock WITH quantity-1
WHERE i_id=item;
INSERT item INTO order_line;

crementally Parallelizing Transactions via TLS

Inc
Todd C. Mowry & Chris Colohan 29

i Outline

= Modifying the DBMS to exploit TLS
» Dividing transactions into epochs —
= Removing bottlenecks in the DBMS |_~regrammer

= Results DBMS Programmer
= Conclusions Architect

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Ct

30

i Dependences in DBMS

Time

i Dependences in DBMS

Dependences serialize execution!
E Performance tuning:
| = Profile execution

Time

= Remove bottleneck dependence
= Repeat

* Buffer Pool Management

get_page(5)
put_page(5)

Buffer Pool

ref: @

33

* Buffer Pool Management

get_page(5)

put_page(5) get_page(5)

put_page(5)

get_page(5)

put_page(5)

Time

get_page(5)

Buffer Pool put_page(5)

TLS ensures first
epoch gets page first.
Who cares?

34

i Buffer Pool Management

e Escape speculation
e Invoke operation
e Store wndo function
e Resume speculation

get_page(5)

Buffer Pool put_page(5)

ref: 0 .
[= Escape Speculation

get_page(5)
put_page(5)

get_page(5),

put_page(5)

35

* get_page() wrapper

page_t *get_page_wrapper(pageid_t id) {
static tls_mutex mut;
page_t *ret;

tls_escape_speculation();
check_get_arguments(id);
tls_acquire_mutex(&mut);

-> Wraps
get_page()

ret = get_page(id);

tls_release_mutex(&mut);
tls_on_violation(put, ret);
tls_resume_speculation()

return ret;

¥

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan

36

get_page() wrapper

page_t *get_page_wrapper(pageid_t id) {
static tls_mutex mut;
page_t *ret;

- No violations
while calling
get_page()

tls_escape_speculation();
check_get_arguments(id);
tls_acquire_mutex(&mut);

ret = get_page(id);
tls_release_mutex(&mut);

tls_on_violation(put, ret);
tls_resume_speculation()

return ret;

}

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 37

get_page() wrapper

page_t *get_page_wrapper(pageid_t id) {
static tls_mutex mut;
page_t *ret;

tls_escape_speculation();
check_get_arguments(id);
tls_acquire_mutex(&mut);

- May get bad
input data from
speculative
thread!

ret = get_page(id);

tls_release_mutex(&mut);
tls_on_violation(put, ret);
tls_resume_speculation()

return ret;

}

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan

38

i get_page() wrapper

page_t *get_page_wrapper(pageid_t id) {
static tls_mutex mut; -> Only one
page_t “ret; epoch per

tls_escape_speculation(); transaction at a
check_get_arguments(id); time
tls_acquire_mutex(&mut);

ret = get_page(id);
tls_release_mutex(&mut);

tls_on_violation(put, ret);
tls_resume_speculation()

return ret;

}

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 39

get_page() wrapper

page_t *get_page_wrapper(pageid_t id) {
static tls_mutex mut;
page_t *ret;

tls_escape_speculation();
check_get_arguments(id);
tls_acquire_mutex(&mut);

ret = get_page(id);

tls_release_mutex(&mut);
tls_on_violation(put, ret); - How to undo

tls_resume_speculation() get page ()

return ret;

¥

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan

40

10

* get_page() wrapper

page_t *get_page_wrappel g |solated
static tls_mutex mut

page_t *ret; = Undoing this operation
does not cause cascading
tls_escape_speculati aborts

check_get_arguments(
tis_acquire_mutex(ar® Undoable

] = Easy way to return system
ret = get_page(id); to initial state

tls_release_mutex(&r
tls_on_violation(put
tls_resume_speculati® Can also be used for:

= Cursor management
return ret;
} = mallocQ)

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 41

i Buffer Pool Management

get_page(5) et_page(5 et_page(5
put_page(5) get_page() gut_gageES;

put_page(5)

Time

get_page(5)

Buffer Pool put_page(5)

/4

Not undoable!

[= Escape Speculation

42

* Buffer Pool Management

get_page(5)
put_page(5) get_page(5) get_page(5)

Time

put_page(5)
Buffer Pool put_page(S)

ref: 0 .
[= Escape Speculation
4

= Delay put_page until end of
epoch
= Avoid dependence

43

* Removing Bottleneck Dependences

We introduce three techniques:
= Delay operations until non-speculative
= Mutex and lock acquire and release
= Buffer pool, memory, and cursor release
= Log sequence number assignment
= Escape speculation
= Buffer pool, memory, and cursor allocation
= Traditional parallelization

= Memory allocation, cursor pool, error checks,
false sharing

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 44

11

i Outline

= Modifying the DBMS to exploit TLS
= Dividing transactions into epochs

= Removing bottlenecks in the DBMS
= Results
= Conclusions

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan

45

Experimental Setup

= Detailed simulation

= Superscalar, out-of-order,

128 entry reorder buffer

= Memory hierarchy
modeled in detail

= TPC-C transactions on

BerkeleyDB

= In-core database

= Single user

= Single warehouse

= Measure interval of 100
transactions

= Measuring /atency not
throughput

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan

|CPU| |CPU| |CPU| |CPU|
32KB 32KB 32KB 32KB

4-way 4-way 4-way 4-way
L1$ L1$ L1$ L1$

2MB 4-way L2 $

Rest of memory system

i Optimizing the DBMS: New Order

125

Cache mlsses . .
increase I I

> > e O 2 .
& '\\00 é\ o(\}~ << S & & © <& QQQ’
& P S @ O AN
& & ¢ @ & & &
R MR
®

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan

S 1A 26%

S improvement B dle CPU
©

g 0751 B Violated

g, Other CPUs HE Cache Miss
2 0.5 7 not helplng B Busy

£

i ——
Can’t optimize

much more

47

i Optimizing the DBMS: New Order

1.25
g !
% M idle CPU
£ 0.75 7 W Violated
e E Cache Miss
@ 051 W Busy
=
'_

0.25 7

0

This process took Chris 30 days
and <1200 lines of code.

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan

48

12

Other TPC-C Transactions

—

i

3/5 Transactions
speed up by 46-66%

I
3
al

MIdle CPU

W Failed

@ Cache Miss
EBusy

o
3

Time (normalized)

M. F
NEERRI

New Order Delivery Stock Level Payment Order Status

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 49

i Conclusions

= A new form of parallelism for databases
= Tool for attacking transaction latency

= Intra-transaction parallelism
= Without major changes to DBMS

= TLS can be applied to more than
transactions

= Halve transaction latency by using 4 CPUs

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 50

i Final Thoughts

= We achieved respectable speedups:

= On a large piece of software that was written without
parallelism in mind

= With roughly a month of (non-expert) programmer
effort

= To do this, we need TLS support plus:

= Feedback on which instruction pairs cause dependence
violations

= Sub-thread support to minimize cost of failed
speculation

= There is hope for large dusty-deck codes!!!

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 51

13

