
1

Incrementally Parallelizing
Database Transactions withDatabase Transactions with
Thread-Level Speculation

Todd C. Mowry
Carnegie Mellon Universityg y

(in collaboration with Chris Colohan,
J. Gregory Steffan, and Anastasia Ailamaki)

Twofold Speedup on a Quad-Core
with 1 Month of Programmer Effort:with 1 Month of Programmer Effort:
A Case Study with BerkeleyDB

Todd C. Mowry
Carnegie Mellon Universityg y

(in collaboration with Chris Colohan,
J. Gregory Steffan, and Anastasia Ailamaki)

What Have I Worked On in the Past?

 Automatically extracting thread-level parallelism

 Smarter caching to better utilize deep memory hierarchies
 SRAM to DRAM; DRAM to disk; local disk to remote web server

 Redesigning core database algorithms & data structures
 to exploit modern processor architectures

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 3

Shimin Chen

Disk

Main MemoryCPU L2/L3
CacheL1

Cache

What Am I Working on Now?

 Log-Based Architectures Project
 Motivation: detect (& fix?) software correctness problems in real time
 Approach: logging mechanism allows cores to monitor other cores Approach: logging mechanism allows cores to monitor other cores

 Claytronics Project

P P

Log

Publish Log Subscribe
to Log

y j

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 4

2

Today’s Talk

 Chris Colohan’s Ph.D. thesis work

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 5

Multicore is Here

6

 Quad-cores are now common
 8, 16, 32… cores expected in the future

 Great for throughput, but what about latency?
Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan

AMD’s Quad-Core Opteron (“Barcelona”)Intel’s Core 2 Quad

Exploiting Multicore

One view:
 Don’t worry: everyone will write parallel Don t worry: everyone will write parallel

software from now on
 and it will all speed up nicely

Rebuttal:
 Writing parallel software is difficult
 Getting large speedups is also difficult
 What about legacy codes?

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 7

Exploiting Multicore

Another view:
 Don’t worry: the compiler will automatically Don t worry: the compiler will automatically

parallelize everything
 and it will all speed up nicely

Rebuttal:
 Beyond regular matrix-based codes, compilers

really struggle with this
 Ambiguous dependences are a stumbling block

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 8

3

The Stampede Project @ CMU

Idea:
 Using novel hardware & compiler support, allow the

compiler to optimistically create parallel threads
 “Thread-Level Speculation” (TLS)

 Rollback and recover if speculation fails

Our early work:
 Automatically parallelize SPEC Integer benchmarks

R lt d i d f hl 20 35% Resulted in speedups of roughly 20-35%

This work:
 Focus on large, legacy code that is hard to parallelize
 “semi-automatic” approach: the programmer is involved

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 9

Case Study: BerkeleyDB

 We chose to parallelize individual transactions in
BerkeleyDB

 The code was not written to support parallelism
 Much the opposite: it takes advantage of the fact that

there is never concurrency within a given transaction

 Rewriting the code to support intra-transaction
parallelism would be extremely painful
 Problems throughout the 200K lines of code
 Would probably need to start over again from scratch

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 10

Transactions on Multi-Core
Database ServerUsers

Transactions DBMS Database

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 11

Cores can run concurrent transactions
and improve throughput

Multi-Core Enhances Throughput
Database ServerUsers

Transactions DBMS Database

Can multiple cores improve
transaction latency?

Can multiple cores improve
transaction latency?

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 12

4

Parallelizing transactions

SELECT cust_info FROM customer;
UPDATE district WITH order_id;
INSERT order_id INTO new_order;
foreach(item) {

DBMS

foreach(item) {
GET quantity FROM stock;
quantity--;
UPDATE stock WITH quantity;
INSERT item INTO order_line;

}

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 13

 Intra-query parallelism
 Used for long-running queries (decision support)
 Does not work for short queries

 Short queries dominate in commercial workloads

Parallelizing transactions

SELECT cust_info FROM customer;
UPDATE district WITH order_id;
INSERT order_id INTO new_order;
foreach(item) {

DBMS

foreach(item) {
GET quantity FROM stock;
quantity--;
UPDATE stock WITH quantity;
INSERT item INTO order_line;

}

 Intra-transaction parallelism

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 14

 Intra transaction parallelism
 Each thread spans multiple queries

 Hard to add to existing systems!
 Need to change interface, add latches and locks, worry

about correctness of parallel execution…

Parallelizing transactions

SELECT cust_info FROM customer;
UPDATE district WITH order_id;
INSERT order_id INTO new_order;
foreach(item) {

DBMS

foreach(item) {
GET quantity FROM stock;
quantity--;
UPDATE stock WITH quantity;
INSERT item INTO order_line;

}

 Intra-transaction parallelism

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 15

 Intra transaction parallelism
 Breaks transaction into threads

 Hard to add to existing systems!
 Need to change interface, add latches and locks, worry

about correctness of parallel execution…

Thread Level Speculation (TLS)
makes parallelization easier.

Thread Level Speculation (TLS)
makes parallelization easier.

Thread Level Speculation (TLS)

*p= *p=
=*p

Epoch 1 Epoch 2

p=

*q=

=*p

=*q

Ti
m

e

p=

*q=

=*p

=*q

=*q

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 16

= q

Sequential Parallel

= q

5

Thread Level Speculation (TLS)

*p= *p=
=*pViolation!

 Use epochs

 Detect violations

Epoch 1 Epoch 2

p=

*q=

=*p

=*q

Ti
m

e

p=

*q=
R2=*p

=*q

 Restart to recover
 Buffer state

 Worst case:
 Sequential

Best case:

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 17

= q

Sequential Parallel

 Best case:
 Fully parallel

Data dependences limit performance.Data dependences limit performance.

TLS in Database Systems
Large epochs:
• More dependences

• Must tolerate
• More state

• Bigger buffers

Ti
m

e

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 18

Non-Database
TLS

TLS in Database
Systems Concurrent

transactions

Violations as a Feedback Signal

*p= *p=
=*pViolation!

p=

*q=

=*p

=*q

Ti
m

e

p=

*q=
R2=*p

=*q

Must…Make
…Faster

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 19

= q

Sequential Parallel

0x0FD8
0xFD20
0x0FC0
0xFC18

Violations as a Feedback Signal

*p= *p=
=*pViolation!

p=

*q=

=*p

=*q

Ti
m

e

p=

*q=
R2=*p

=*q

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 20

= q

Sequential Parallel

6

Eliminating Violations

*p=
=*pViolation!

0x0FD8
0xFD20
0x0FC0
0xFC18 p=

*q=
R2=*p

=*q

*q=
=*q

=*q

Violation!

Ti
m

e

0xFC18

All-or-nothing execution makes
optimization harder

All-or-nothing execution makes
optimization harder

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 21

Parallel

q

Eliminate *p Dep.

Optimization may
make slower?

Tolerating Violations: Sub-threads

Ti
m

e *q=
Violation! =*q

=*q

*q=
=*q

=*q

Violation!

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 22

Sub-threads

q

Eliminate *p Dep.

Sub-threads

 Periodic checkpoints of a
speculative threadspeculative thread

 Makes TLS work well with:
 Large speculative threads
 Unpredictable frequent

dependences

*q=
Violation! =*q

=*q

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 23

Sub-threads

Speed up database transaction
response time by a factor of

1.9 to 2.9.

Speed up database transaction
response time by a factor of

1.9 to 2.9.

T i

A Coordinated Effort

TPC-C
Transactions

DBMS

H d

BerkeleyDB

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 24

Hardware
Simulated machine

7

Transaction

A Coordinated Effort

Choose epoch
boundaries

Transaction
Programmer

DBMS Programmer

H d D l

Remove performance
bottlenecks

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 25

Hardware Developer
Add TLS support to

architecture

What’s New

 Intra-transaction parallelism
 Without changing the transactions Without changing the transactions
 With minor changes to the DBMS
 Without having to worry about locking
 Without introducing concurrency bugs
 With good performance

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 26

 Halve transaction latency on four cores

Outline

 Modifying the DBMS to exploit TLS
 Dividing transactions into epochs T tid g a sac o s o epoc s
 Removing bottlenecks in the DBMS

 Results
 Conclusions

Transaction
Programmer

DBMS Programmer

Architect

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 27

Case Study: New Order (TPC-C)
GET cust_info FROM customer;
UPDATE district WITH order_id;
INSERT order_id INTO new_order;
foreach(item) {

GET quantity FROM stock

 Only dependence is the quantity field

q y
WHERE i_id=item;

UPDATE stock WITH quantity-1
WHERE i_id=item;

INSERT item INTO order_line;
}

78% of transaction
execution time

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 28

 Only dependence is the quantity field
 Very unlikely to occur (1/100,000)

8

Case Study: New Order (TPC-C)
GET cust_info FROM customer;
UPDATE district WITH order_id;
INSERT order_id INTO new_order;
foreach(item) {

GET quantity FROM stockq y
WHERE i_id=item;

UPDATE stock WITH quantity-1
WHERE i_id=item;

INSERT item INTO order_line;
}

GET cust_info FROM customer;
UPDATE district WITH order_id;
INSERT order_id INTO new_order;

TLS_foreach(item) {
GET quantity FROM stock

WHERE i id it

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 29

WHERE i_id=item;
UPDATE stock WITH quantity-1

WHERE i_id=item;
INSERT item INTO order_line;

}

Outline

 Modifying the DBMS to exploit TLS
 Dividing transactions into epochs T tid g a sac o s o epoc s
 Removing bottlenecks in the DBMS

 Results
 Conclusions

Transaction
Programmer

DBMS Programmer

Architect

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 30

Dependences in DBMS

Ti
m

e

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 31

Dependences in DBMS

Dependences serialize execution!

Ti
m

e

Performance tuning:
 Profile execution
 Remove bottleneck dependence
 Repeat

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 32

 Repeat

9

Buffer Pool Management

CPU
get_page(5)
put_page(5)

Buffer Pool

ref: 1ref: 0

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 33

get_page(5)
put_page(5)

Buffer Pool Management

CPU
get_page(5)
put_page(5)

get_page(5)

Buffer Pool

ref: 0

Ti
m

e put_page(5)

TLS ensures first
epoch gets page first.

Who cares?

get_page(5)
put_page(5)

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 34

Buffer Pool Management

CPU
get_page(5)
put_page(5)

get_page(5)
• Escape speculation
• Invoke operation
• Store undo function

get_page(5)
put_page(5)

Buffer Pool

ref: 0

Ti
m

e put_page(5)

= Escape Speculation

Store undo function
• Resume speculation

put_page(5)
get_page(5)

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 35

get_page() wrapper
page_t *get_page_wrapper(pageid_t id) {

static tls_mutex mut;
page_t *ret;

tls_escape_speculation();
check_get_arguments(id);
tls_acquire_mutex(&mut);

ret = get_page(id);

tls_release_mutex(&mut);

 Wraps
get_page()

36

tls_on_violation(put, ret);
tls_resume_speculation()

return ret;
}

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan

10

get_page() wrapper
page_t *get_page_wrapper(pageid_t id) {

static tls_mutex mut;
page_t *ret;

tls_escape_speculation();
check_get_arguments(id);
tls_acquire_mutex(&mut);

ret = get_page(id);

tls_release_mutex(&mut);

 No violations
while calling
get_page()

37

tls_on_violation(put, ret);
tls_resume_speculation()

return ret;
}

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan

get_page() wrapper
page_t *get_page_wrapper(pageid_t id) {

static tls_mutex mut;
page_t *ret;

 May get bad
input data from
speculative
thread!

tls_escape_speculation();
check_get_arguments(id);
tls_acquire_mutex(&mut);

ret = get_page(id);

tls_release_mutex(&mut);

38

tls_on_violation(put, ret);
tls_resume_speculation()

return ret;
}

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan

get_page() wrapper
page_t *get_page_wrapper(pageid_t id) {

static tls_mutex mut;
page_t *ret;

 Only one
epoch per

tls_escape_speculation();
check_get_arguments(id);
tls_acquire_mutex(&mut);

ret = get_page(id);

tls_release_mutex(&mut);

p p
transaction at a
time

39

tls_on_violation(put, ret);
tls_resume_speculation()

return ret;
}

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan

get_page() wrapper
page_t *get_page_wrapper(pageid_t id) {

static tls_mutex mut;
page_t *ret;

d

tls_escape_speculation();
check_get_arguments(id);
tls_acquire_mutex(&mut);

ret = get_page(id);

tls_release_mutex(&mut);

40

 How to undo
get_page()

tls_on_violation(put, ret);
tls_resume_speculation()

return ret;
}

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan

11

get_page() wrapper
page_t *get_page_wrapper(pageid_t id) {

static tls_mutex mut;
page_t *ret;

 Isolated
 Undoing this operation

does not cause cascading
tls_escape_speculation();
check_get_arguments(id);
tls_acquire_mutex(&mut);

ret = get_page(id);

tls_release_mutex(&mut);

does not cause cascading
aborts

 Undoable
 Easy way to return system

to initial state

41

tls_on_violation(put, ret);
tls_resume_speculation()

return ret;
}

 Can also be used for:
 Cursor management
 malloc()

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan

Buffer Pool Management

CPU
get_page(5)
put_page(5)

get_page(5) get_page(5)
put_page(5)

Buffer Pool

ref: 0

Ti
m

e put_page(5)

get_page(5)
put_page(5)

Not undoable!

= Escape Speculation

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 42

Buffer Pool Management

CPU
get_page(5)
put_page(5)

get_page(5) get_page(5)

Buffer Pool

ref: 0

Ti
m

e

put_page(5)
put_page(5)

= Escape Speculation

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 43

 Delay put_page until end of
epoch
 Avoid dependence

Removing Bottleneck Dependences

We introduce three techniques:
 Delay operations until non-speculative Delay operations until non speculative

 Mutex and lock acquire and release
 Buffer pool, memory, and cursor release
 Log sequence number assignment

 Escape speculation
Buffer pool memory and cursor allocation

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 44

 Buffer pool, memory, and cursor allocation
 Traditional parallelization

 Memory allocation, cursor pool, error checks,
false sharing

12

Outline

 Modifying the DBMS to exploit TLS
 Dividing transactions into epochsd g a sac o s o epoc s
 Removing bottlenecks in the DBMS

 Results
 Conclusions

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 45

Experimental Setup

 Detailed simulation
 Superscalar, out-of-order,

128 entry reorder buffer

CPU

32KB
4-way

CPU

32KB
4-way

CPU

32KB
4-way

CPU

32KB
4-way

 Memory hierarchy
modeled in detail

 TPC-C transactions on
BerkeleyDB
 In-core database
 Single user

Single warehouse

L1 $ L1 $ L1 $ L1 $

2MB 4-way L2 $

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 46

 Single warehouse
 Measure interval of 100

transactions
 Measuring latency not

throughput Rest of memory system

y $

Optimizing the DBMS: New Order

1

1.25

iz
ed

)

Idle CPU

26%
improvement

0

0.25

0.5

0.75

Ti
m

e
(n

or
m

al Idle CPU
Violated
Cache Miss
Busy

Cache misses
increase

Other CPUs
not helping

Can’t optimize
much more

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 47

Optimizing the DBMS: New Order

1

1.25

iz
ed

)

Idle CPU

0

0.25

0.5

0.75

Ti
m

e
(n

or
m

al Idle CPU
Violated
Cache Miss
Busy

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 48

This process took Chris 30 days
and <1200 lines of code.

13

Other TPC-C Transactions

1 3/5 Transactions
speed up by 46-66%

0 25

0.5

0.75

Ti
m

e
(n

or
m

al
iz

ed
)

Idle CPU
Failed
Cache Miss
Busy

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 49

0

0.25

New Order Delivery Stock Level Payment Order Status

Conclusions

 A new form of parallelism for databases
 Tool for attacking transaction latency Tool for attacking transaction latency

 Intra-transaction parallelism
 Without major changes to DBMS

 TLS can be applied to more than
transactions

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 50

 Halve transaction latency by using 4 CPUs

Final Thoughts

 We achieved respectable speedups:
 On a large piece of software that was written without

parallelism in mind
 With roughly a month of (non-expert) programmer

effort

 To do this, we need TLS support plus:
 Feedback on which instruction pairs cause dependence

violations

Incrementally Parallelizing Transactions via TLS
Todd C. Mowry & Chris Colohan 51

violations
 Sub-thread support to minimize cost of failed

speculation

 There is hope for large dusty-deck codes!!!

