

Privacy for Spatial Queries and Data

Christian S. Jensen

www.cs.aau.dk/~csj

Center for Data-intensive Systems

joint work with Man Lung Yiu, Hua Lu, Jesper Møller, Gabriel Ghinita, and Panos Kalnis

Motivation

- Outsourcing and cloud computing are on the rise.
- Big and growing mobile Internet
 - 2.7 B mobile phone users (cf. 850 MM PCs)
 - 1.1 B Internet users, 750 MM access the Internet from phones
 - This year, 1.2 B mobile phones will be sold, 200 MM high-end (cf. 200 MM PCs); 13 MM new users in China and India monthly
 - Africa has surpassed North America in numbers of users
- The mobile Internet will be location aware.
 - GPS, Wi-Fi-based, cell-id-based, Bluetooth-based, other
 - A very important signal in a mobile setting!
- Privacy is an enabling technology.

Outline

- Query Location Privacy
 - Motivation and related work
 - Solution: SpaceTwist
 - Granular search in SpaceTwist
 - Empirical study
 - Summary
- Spatial Data Privacy
- Closing remarks

Query Location Privacy

- A mobile user wants nearby points of interest.
- A service provider offers this functionality.
 - Requires an account and login
- The user does not trust the service provider.
 - The user wants location privacy.

Spatial Cloaking

- *k*NN query (*k*=1)
- Kanonymity
- Range kNN query
- Candidate set is
 {p₁, ..., p₆}
- Result is p₁

- Identity vs. location privacy
- p-2-p or only client
- Cloaking wo. K anonymity
- Q' may be other shapes, dummies.

Transformation-Based Privacy

Definitions of Privacy

- *K*-anonymity: The user cannot be distinguished from *K-1* other users.
- The area of the region within which the user's position can be.
- The average distance between the true position and all possible positions.

Solution Requirements

- The solution must enable the user to retrieve the nearest points of interest while affording the user location privacy.
 - Should offer flexibility in the degree of privacy guaranteed, so that the user can decide
 - Settings should be meaningful to the user
 - Like browser security settings or a slider
 - Should work with a standard client-server architecture
 - The user trusts only the mobile client
 - Should assume a typical setting where the user must log in to use the service
 - Should provide privacy at low performance overhead
 - Server-side costs workload and complexity
 - Communication costs bits transferred
 - Client-side costs workload, complexity, power
 - Should enable better performance by reducing the result accuracy

SpaceTwist Concepts

- Anchor location q' (fake client location)
 - Defines an ordering on the data points
- Client fetches points from server incrementally
- Supply space
 - The part to space explored by the client so far

supply space

© Christian S. Jensen. All rights reserved.

- Known by both server and client
- Grows as more data points are retrieved
- Demand space demand space
 - Guaranteed to cover the actual result
 - Known only by the client
 - Shrinks when a "better" result is found

Stanford InfoSeminar, March 6, 2009.

 Termination when the supply space contains the demand space

the beginning

the end

SpaceTwist Example

SpaceTwist Properties

- Retrieves data points from the server incrementally until the client can produce the exact result
- Fundamentally different from previous approaches
 - No cloaking region
 - Queries are evaluated in the original space.
- Offers privacy guarantees
- Relatively easy to support in existing systems
 - Simple client-server architecture (no trusted components, peers)
 - Simple server-side query processing: incremental NN search
- Granular search (improved server-side performance)
 - Reduced communication cost for results with guaranteed accuracy

Privacy Analysis

- What does the server know?
 - The anchor location q'
 - The reported points (in reporting order): $p_1, p_2, ..., p_{m\beta}$
 - Termination condition: dist(q,q') + dist(q,NN) ≤ dist($q', p_{m\beta}$)
- Possible query location q_c
 - The client did not stop at point $p_{(m-1)\beta}$
 - u dist(q_c, q') + min{ dist(q_c, p_i) : $i \in [1, (m-1)\beta]$ } > dist($q', p_{(m-1)\beta}$)
 - Client stoped at point $p_{m\beta}$
 - u dist (q_c, q') + min{ dist (q_c, p_i) : $i \in [1, m\beta]$ } \leq dist $(q', p_{m\beta})$
- Inferred privacy region Ψ : the set of all possible q_c
- Quantification of privacy
 - Privacy value: $\Gamma(q, \Psi)$ = the average dist. of location in Ψ from q

Visualization of Ψ

- Visualization with different types of points
- Characteristics of Ψ (i.e., possible locations q_c)
 - Roughly an irregular ring shape centered at q'
 - Radius approx. dist(q,q')

Privacy Analysis

- By carefully selecting the distance between q and q', it is possible to guarantee a privacy setting specified by the user.
- SpaceTwist extension: Instead of terminating when possible, request additional query points.
 - This makes the problem harder for the adversary.
 - It makes it easier (and more practical) to guarantee a privacy setting.

Communication Cost

- The communication cost is the number of (TCP/IP) packets transmitted.
- It is inefficient to use a packet for each point.
- Rather packets are filled before transmission.
 - The packet capacity β is the number of points in a packet.
- Actual value of β?
 - Depends on the Maximum Transmission Unit (MTU)
 - In empirical studies, we use MTU = 576 bytes and β = 67.
- The cost has been characterized analytically.
- Empirical studies have been conducted.

Granular Search

- What if the server considers searching on a small sample of the data points instead of all?
 - Lower communication cost
 - Ψ becomes large at low data density
 - But less accurate results
- Accuracy requirement: the user specifies an error bound ϵ
 - A point p∈P is a relaxed NN of q iff dist(q, p) ≤ ε + min {dist(q, p') : p'∈P}
- A grid with cell length $\lambda = \varepsilon / \sqrt{2}$ is applied.
- As before, the server reports points in ascending distance from q', but it never reports more than one data point p from the same cell.

Granular Search Example

Experimental Study

- Our solution GST (Granular SpaceTwist)
 - Without delayed termination
- Spatial datasets (domain: [0,10,000]²)
 - Two real datasets: SC (172,188 pts), TG (556,696 pts)
 - Synthetic uniform random UI datasets
- Performance metrics (workload size = 100)
 - Communication cost (in number of packets; 1 packet = 67 points)
 - Result error (result NN distance actual NN distance)
 - Privacy value of *inferred* privacy region Ψ
- Default parameter values
 - Anchor distance dist(q,q'): 200
 - Error bound ε: 200
 - Data size N: 500,000

Transformation-Based Privacy Vs. GST

- Hilbert transformation [Khoshgozaran and Shahabi, 2007]
 - SHB: single Hilbert curve
 - DHB: two orthogonal Hilbert curves
- GST computes result with low error
 - Very low error on real (skewed) data
 - Stable error across different data distributions

	Error (meter)								
	UI, N=0.5M		SC			TG			
k	SHB	DHB	GST	SHB	DHB	GST	SHB	DHB	GST
1	7.1	2.2	51.3	1269.3	753.7	2.5	1013.9	405.8	16.1
2	9.3	4.0	49.0	1634.3	736.2	2.6	1154.6	548.7	16.7
4	13.2	6.0	47.6	1878.5	810.9	2.6	1182.3	596.5	17.0
8	19.0	7.3	42.0	2075.6	864.5	2.6	1196.2	599.7	16.3
16	27.0	10.3	36.3	2039.6	985.7	2.6	1199.6	603.2	14.5

Spatial Cloaking Vs. GST

- Our problem setting: no trusted middleware
- Competitor: client-side spatial cloaking (CLK)
 - CLK: enlarge q into a square with side length 2*dist(q,q')
 - Extent comparable to inferred privacy region Ψ of GST
 - GST produces result at low communication cost
 - Low cost even at high privacy
 - Cost independent of N

		SC		TG	
	dist(q, q')	CLK	GST	CLK	GST
varying	50	1.3	1.0	1.9	1.0
dist(q,q')	100	2.0	1.0	4.6	1.0
	200	6.2	1.0	15.0	1.0
	500	33.5	1.1	72.8	1.3
	1000	107.0	1.4	282.0	2.6

	UI		
N(million)	CLK	GST	
0.1	3.0	1.0	
0.2	5.1	1.0	
0.5	12.2	1.0	
1	23.9	1.0	
2	47.5	1.0	

varying data size N

communication cost (# of packets)

Summary

- SpaceTwist is a novel solution for query location privacy of mobile users
 - Granular search at the server
- Advantages
 - Guaranteed, flexible privacy settings
 - Assumes only a simple client-server setting
 - Low processing and communication cost
 - Enables trading of (guaranteed) accuracy for performance
- Extensions
 - Ring-based server-side retrieval order, spatial networks
- Future work
 - Additional query types

Outline

- Query Location Privacy
 - Motivation and related work
 - Solution: SpaceTwist
 - Granular search in SpaceTwist
 - Empirical study
 - Summary
- Spatial Data Privacy
 - Problem setting, solution framework, and objectives
 - Tailored and general attack models
 - Solution overview
 - Summary
- Closing remarks

Problem Setting

- On a trip to Paris, Alice takes photos with her GPS phone camera
 - Private spatial data: each photo tagged with its GPS location (automatically)
 - Example of user-generated content
- Alice wants to outsource spatial search on the above data to a service provider, e.g., *Flickr*, *Facebook, Picasa*
- Trusted query users: Alice's friends
 - Nobody else (including the service provider) can be trusted

Solution Framework

Objectives

- Objectives of the solution
 - Support *efficient* and *accurate* processing of range queries
 - Make it hard to reconstruct the original points in P from the transformed points in P'
- Orthogonal aspects
 - Verifying the correctness of the query results
 - Protecting the identities of the data owner and query users

Attack Models

- What does the attacker know?
 - The set P' of the transformed points
 - Background information: a subset S of points in P and their corresponding points S' in P'
 - But no other points in P
 - Cannot choose an S (S')
- Tailored attack
 - Specific to the *known* transformation method
 - Goal: determine the exact location of each point
 - Formulate a system of equations, solve for the key parameters by using the values in S and S'
- Tailored attacks can be computationally infeasible

Attack models

- General attack
 - Independent of the (unknown) transformation method
 - Goal: estimate a location c, such that the feature vector of c (wrt. S) is the most similar to the feature vector of p' (wrt. S')

\bigcirc	\sim

Method	Tailored attack	General attack	Transferred data cost	Round trips
HSD	2 known points in same partition	High distortion	Low	1
ERB	N/A	Low distortion	High grows with ϵ	1
HSD*	N/A	High distortion	Moderate	1
CRT	N/A	N/A	Moderate	Tree height

• See papers (listed at the end) for details!

Summary

- Contributions
 - A framework that enables service providers to process range queries without knowing actual data
 - Spatial transformations: HSD, ERB, HSD*
 - Cryptographic transformation: CRT
 - Proposals for tailored and general attacks
- Future work
 - Support other spatial queries, e.g., nearest neighbors, spatial joins

Concluding Remarks

- The contributions to spatial query and data privacy presented here are part of a trend.

Data Management infrastructure for cloud computing

- Many other challenges, e.g., relating to
 - Privacy for historical data
 - Trust
 - Authentication (e.g., "does the server produce 'correct' results"?)

References

- M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The New Casper: Query Processing for Location Services without Compromising Privacy. In VLDB, 2006.
- P. Indyk and D.Woodruff. Polylogarithmic Private Approximations and Efficient Matching. In *Theory of Cryptography Conference*, 2006.
- A. Khoshgozaran and C. Shahabi. Blind Evaluation of Nearest Neighbor Queries Using Space Transformation to Preserve Location Privacy. In SSTD, 2007.
- G. R. Hjaltason and H. Samet. Distance Browsing in Spatial Databases. *TODS*, 24(2):265–318, 1999.
- R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, Order-Preserving Encryption for Numeric Data. In SIGMOD, 2004.
- E. Damiani, S. D. C. Vimercati, S. Jajodia, S. Paraboschi, and P. Samarati, Balancing Confidentiality and Efficiency in Untrusted Relational DBMSs. In Proc. of Computer and Communications Security, 2003.
- H. Hacigümüs, B. R. Iyer, C. Li, and S. Mehrotra, Executing SQL over Encrypted Data in the Database-Service-Provider Model. In SIGMOD, 2002.
- R. Agrawal and R. Srikant, Privacy-Preserving Data Mining. In SIGMOD, 2000.

Readings

- C. S. Jensen: When the Internet Hits the Road. Proc. BTW, pp. 2-16, 2007.
- C. S. Jensen, C. R. Vicente, and R. Wind. User-Generated Content – The case for Mobile Services. IEEE Computer, 41(12):116–118, December 2008.
- http://daisy.aau.dk
- http://streamspin.com
- To obtain permission to use these slides and to obtain copies of papers in submission, send e-mail to csj@cs.aau.dk

- M. L. Yiu, C. S. Jensen, H. Lu.
 SpaceTwist: Managing the Trade-Offs Among Location Privacy, Query
 Performance, and Query Accuracy in Mobile Services. Proc. ICDE, April 2008.
- M. L. Yiu, C. S. Jensen, J. Møller, and H. Lu. Design and Analysis of an Incremental Approach to Location Privacy for Location-Based Services. In submission.
- M. L. Yiu, G. Ghinita, C. S. Jensen, and P. Kalnis. Outsourcing Search Services on Private Spatial Data. In Proc. ICDE, 2009, to appear.
- M. L. Yiu, G. Ghinita, C. S. Jensen, and P. Kalnis. Enabling Search Services on Outsourced Private Spatial Data. In submission.