
Clustera: A data-centric approach to

scalable cluster management

David J. DeWitt Jeff Naughton

Eric Robinson Andrew Krioukov
Srinath Shankar Joshua Royalty

Erik Paulson

Computer Sciences Department

University of Wisconsin-Madison

Outline

A historical perspective

A taxonomy of current cluster management systems

Clustera - the first DBMS-centric cluster management

system

Examples and experimental results

Wrapup and summary

A Historical Perspective

Concept of a “cluster” seems to have originated with
Wilke’s idea of “Processor bank” in 1980

“Remote Unix” (RU) project at Wisconsin in 1984

� Ran on a cluster of 20 VAX 11/750s

� Supported remote execution of jobs

� I/O calls redirected to submitting machine

“RU” became Condor in late 1980s (Livny)

� Job checkpointing

� Support for non-dedicated machines (e.g. workstations)

� Today, deployed on 1500+ clusters and 100K+ machines

worldwide (biggest clusters of 8000-15000 nodes)

Cluster of 20 VAX 11/750s circa 1985 (Univ. Wisconsin)

No, Google did not invent clusters

4

Clusters and Parallel DB Systems

Gamma and RU/Condor projects started at the same
time using same hardware. Different focuses:

RU/Condor:
� Computationally intensive jobs, minimal I/O

� “High throughput” computing

Gamma
� Parallel execution of SQL

� Data intensive jobs and complex queries

Competing parallel programming efforts (e.g. Fortran D)
were a total failure
� Probably why Map-Reduce is so “hot” today

6

What is a cluster management system?

Provide simplified access for executing jobs on a
collection of machines

Three basic steps:

� Users submit jobs

� System schedules jobs for execution

� Run jobs

Key services provided:

� Job queuing, monitoring

� Job scheduling, prioritization

� Machine management and monitoring

Condor

Simple, computationally intensive jobs

� Complex workflows handled outside the system

Files staged in and out as needed

� Partially a historical artifact and desire to handle arbitrary

sized data sets

Scheduler pushes jobs to machines based on a

combination of priorities and fair share scheduling

Tons of other features including master-worker, glide-
in, flocking of pools together, …

Data
complexity

Job
complexity

Condor

Parallel SQL

Map/Reduce

Parallel SQL

Tables partitioned across nodes/disks using hash or

range partitioning

� No parallel file system

Optimizer: SQL query ==> query plan (tree of operators)

Job scheduler: parallelizes query plan

Scalability to 1000s of nodes

Failures handled using replication and transactions

All key technical details worked out by late 1980s

Data
complexity

Job
complexity

Condor

Parallel SQL

Map/Reduce

Map/Reduce

Files stored in distributed file system
� Partitioned by chunk across nodes/disks

Jobs consist of a Map/Reduce pair
Each Map task:

� Scans its piece of input file, producing output records

� Output records partitioned into M local files by hashing on output
key

Each Reduce task:

� Pulls N input files (one from each map node)

� Groups of records with same key reduced to single output record

Job manager:
� Start and monitor N map tasks on N nodes

� Start and monitor M reduce tasks on M nodes

Data
complexity

Job
complexity

Condor

Parallel SQL

Map/Reduce

Summary

All three types of systems have distinct notions of

jobs, files, and scheduler

It is definitely a myth MR scales better than parallel

SQL

� See upcoming benchmark paper

MR indeed does a better a job of handling failures

during execution of a job

The Big Question

Seem to be at least three distinct types of cluster

management systems

Is a unified framework feasible?

If so, what is the best way of architecting it?

What is the performance penalty?

Outline

A historical perspective

A taxonomy of current cluster management systems

Clustera – a DBMS-centric cluster management

system

Examples and experimental results

Wrapup and summary

Clustera Project Goals

Leverage modern, commodity software including
relational DB systems and application servers such

as Apache Jboss

Architecturally extensible framework

� Make it possible to instantiate a wide range of different types

of cluster management systems (Condor, MR, parallel SQL)

Scalability to thousands of nodes

Tolerant to hardware and software failures

14

Why cluster management is a DB problem

Persistent data

� The job queue must survive a crash

� Accounting information must survive a crash

� Information about nodes, files, and users must survive a crash

Transactions

� Submitted jobs must not be lost

� Completed jobs must not reappear

� Machine usage must be accounted for

Query processing

� Users need to monitor their jobs

� Administrators need to monitor system health

15

Push vs. Pull

Job

Scheduler

Node

Node

Node

Push

� Jobs pushed to idle nodes by job
scheduler

� Standard approach: Condor,
LSF, MR, parallel DB systems

Pull

� Idle nodes pull jobs from job
scheduler

� Trivial difference but truly simpler
as job scheduler becomes purely
a server

� Allows Clustera to leverage
application server technology

Job

Scheduler

Node

Node

Node

16

Clustera Architecture

RDBMS used to hold all system state

All cluster logic runs in the

application server (e.g. JBoss)

� Job mgmt. and scheduling

� Node management

� File management

Nodes are simply web-service clients

of the app. server

� Used to run jobs

� Require a single hole in the firewall

JDBC

S
O

A
P

/H
T

T
P

Node

Node

Node

Clustera

Server

Database

Application

Server

RDBMS

Why??

Use of RDBMS should be obvious

Why an Application Server?

� Proven scalability to 10s of 1000s of web clients

� Multithreaded, scalable, and fault tolerant

� Pooling of connections to DBMS

� Portability (Jboss, Websphere, WebLogic, …)

� Also hides DBMS specific features

DBRDBMS

AppServer AppServer AppServer

Object Cache

Basis of Clustera Extensibility

Four key mechanisms

� Concrete Jobs

� Concrete Files

� Logical files and relational tables

� Abstract jobs and abstract job scheduler

Concrete Jobs

Pipeline of executables with zero or more input and

output files

Unit of scheduling
� Scheduler typically limits the length of the pipeline to the number of

cores on the node to which the pipeline is assigned for execution

Input and output files are termed concrete files

OF1

OFn

…Jn

IF1

IFn

… J1 J2
…

Concrete Files

Used to hold input,

output, and executable

files

Single OS file, replicated

k times (default k=3)

Locations and

checksums stored in DB

App Server

RDBMS

Node

3

Node

4
File A

File C.exe

File B

Node

1

Node

2
File A

File B

File C.exe

File B

ID Name

10 Bob

15 Sue

Name Owner Replicas

A.exe 10 2, 4

B 10 1, 2, 3

C.exe 15 1, 4

JobID UserID Executable Input

1 10 C.exe A

2 15 C.exe B

Users

Files

Jobs

Concrete Job Scheduling

When idle, node pings server for a job

Matching is a type of “join” between a set of idle
machines and a set of concrete jobs

Goals include:

� “Placement aware” scheduling

� Avoid starvation

� Job priorities

Ideal match for a node is one for which both the

executable and input files are already present

Scheduler responds with:

<jobId, {executable files}, {input files}, {output files}>

Scheduling Example

<Need Work>
Node

1
File C.exe

File B

Node

2
File A

File B

ID Name
10 Bob

15 Sue

Name Owner Replicas

A.exe 10 2, 4

B 10 1, 2, 3

C.exe 15 1, 4

JobID UserID Executable Input

1 10 C.exe A

2 15 C.exe B

Users

Files

Jobs

App Server

RDBMS
<JobID=1, C.exe, A>

<http: get, A>

File A

File C.exe

File B

File A

C.exe

Fork Clustera node code is
implemened as JVM

Includes an http server

JNI used to fork Unix
binaries

Periodically node
sends a list of files it
has to AppServer

Logical Files and Relational Tables

Logical File

� Set of one or more concrete files

� Each concrete file is analogous to a partition of a GFS file

� Application server automatically distributes the concrete

files (and their replicas) on different nodes

� DB used to keep track of everything

� File owner, location of replicas, version information,

concrete file checksums

Relational Table

� Logical File + Schema + Partitioning Scheme

� Concrete files are treated as separate partitions

Basis of Clustera Extensibility

Four key mechanisms

� Concrete Jobs

� Concrete Files

� Logical files and relational tables

� Abstract jobs and abstract job scheduler

Abstract Job Scheduler

Sort of a “job compiler”

Concrete jobs are the unit of scheduling and execution

Currently 3 types of abstract job schedulers

� Workflow scheduler

� Map/Reduce scheduler

� SQL scheduler

Abstract
Job

Abstract Job
Scheduler { }Concrete

Job 1
Concrete

Job 2
Concrete

Job N
…

Workflow Scheduler Example

J4

J3

LF2

J2

LF1

J1

LF3

Workflow
Scheduler

J2LF1 LF5

J4J3LF2 LF4

LF4

LF5

J1 LF3

Abstract Job
3 Concrete Jobs

First two concrete jobs can be
submitted immediately to the
concrete job scheduler. Third
must wait until first two have

completed.

Map Reduce Jobs in Clustera

Abstract Map Reduce job consists of:
� Name of logical file to be used as input

� Map, Split, and Reduce executables

� Desired number of reduce tasks

� Name of output logical file

MAP
INPUT

LOGICAL
FILE

REDUCESPLIT
OUTPUT
LOGICAL

FILE

Map Reduce Abstract Scheduler

MAP

INPUT

LOGICAL

FILE

REDUCESPLIT

OUTPUT

LOGICAL

FILE
Compiles:

Into:

SplitCF1 Map

T1,1

T1,2

T1,M

…

SplitCFN Map

TN,1

TN,2

TN,M

…

…
One for each
concrete file of

input logical

file

T1,1

T2,1

TN,1

…

OF1ReduceMerge

T1,M

T2,M

TN,M

…

OF1ReduceMerge…One for each

reduce task

And:

Clustera SQL

An abstract SQL specification consists of
� A set of input tables

� A SQL query

� An optional join order

The Clustera SQL compiler is not as sophisticated as
a general query optimizer
� But could be!

Limitations
� No support for indices

� Only equi-joins

� Select/Project/Join/Aggregate/GroupBy queries only

SQL Example

Tables
R (a, b, c), S (a, b, d), T (b, e, f) (hash partitioned on underlined attribute)

Query:

Select R.c, T.f from R, S, T where R.a = S.a and S.b = T.b and T.f = X

R1 P

R2 P

S1 P

S2 P

J

J

T1 Sl

T2 Sl

P

P

P

P

Sp

Sp

C

C J

J O2

O1

R.a,R.c

S.a,S.b

T.b,T.
f

R.c,S.b S.b,R.c

R.c,T.

f
P

P

P

Sl

J

Sp

C

Project

Select

Join

Split

Combine

Files corresponding
to red edges are
materialized

MapReduce-like
fault tolerance

Concrete job schedule generated (for 2 concrete files per table):

Some Results

System Configuration

� 100 node cluster with 2.4Ghz Core 2 Duo CPU, 4GB

memory, two 320GB 7200 RPM drives, dual gigabit Ethernet

� Two Cisco C3560G-48TS switches

� Connected only by a single gigabit link

� JBoss 4.2.1 running on 2.4Ghz Core 2 Duo, 2GB memory,

Centos 2.6.9

� DB2 V8.1 running on Quad Xeon with two 3Ghz CPUs and

4GB of memory

� Hadoop MapReduce Version 0.16.0 (latest version)

Server Throughput

Job Length

(seconds)

Server Throughput

Map-Reduce Scaleup Experiment

Map Input/Node: 6M row TPC-H LineItem table (795MB)

Query: Count(*) group by orderKey

Map Output/Node: 6M rows, 850MB

Reduce Output/Node: 1.5M rows, 19MB

Clustera MR Details

Why?

Due to the increase in amount of data transferred

between the map and reduce tasks

of Nodes Total Data Transferred

25 21.4 GB

50 42.8 GB

75 64.1 GB

100 85.5 GB

SQL Scaleup Test

SQL Query:
SELECT l.okey, o.date, o.shipprio, SUM(l.eprice)

FROM lineitem l, orders o, customer c

WHERE c.mkstsegment = ‘AUTOMOBILE’ and o.date < ‘1995-02-03’
and l.sdate > ‘1995-02-03’ and o.ckey = c.ckey and l.okey = o.okey

GROUP BY l.okey, o.date, o.shipprio

Table sizes

� Customer: 25 MB/node

� Orders: 169 MB/node

� LineItem: 758 MB/Node

Clustera SQL Abstract Scheduler

Hadoop + Datajoin contrib package

Partitioning Details

Query GroupBy [(Select (Customer)) Join (Select (Orders)) Join LineItem]

Hash Partitioned Test:

Customers & Orders hash partitioned on ckey

LineItem hash partitioned on okey

Round-Robin Partitioned Test:

Tables loaded using round-robin partitioning

Workflow requires 4 repartitions

SQL Scaleup Results

At 100 nodes, 1000s of
jobs and 10s of 1000s
of files

Clustera SQL has about

same performance DB2

Application Server Evaluation

Clustera design predicated

on the use of clustered app

servers for

� Scalability

� Fault Tolerance

When clustered, must select

a caching policy

With no caching, processing is

exactly the same as non-

clustered case

With caching, app servers must

also coordinate cache

coherence at xact commit

Load

Balancer

Node

Node

Node

DatabaseRDBMS

Application

Server
Application

Server
Application

Server

Experimental Setup

90 nodes running 4 single-job pipelines concurrently

� 360 concurrently running jobs cluster-wide

Load Balancer (Apache mod_jk)

� 2.4 GHz Intel Core2 Duo, 2GB RAM

Application Servers (JBoss 4.2.1, TreeCache 1.4.1)

� 1 to 10 identical 2.4 GHz Intel Core2 Duo, 4GB RAM, no cache limit

DBMS (IBM DB2 v8.1)

� 3.0 GHz Xeon (x2) with HT, 4GB RAM, 1GB buffer pool

Job queue preloaded with fixed-length “sleep” jobs

� Enables targeting specific throughput rates

Evaluation of Alternative Caching Policies

Caching alternatives:

no caching, asynchronous invalidation, synchronous replication

90 Nodes, 4 concurrent jobs/node

100

10
80

8

60

6

40

4

20

2

Application Server Fault Tolerance

Approach: maintain a target throughput rate of 40 jobs/sec; start with 4 servers

and kill one off every 5 minutes; monitor job completion, error rates

Key insight: Clustera displays consistent performance with rapid failover – of
47,535 jobs that successfully completed, only 21 had to be restarted due to error

4 Servers 3 Servers 2 Servers 1 Server

13 jobs cancelled

and restarted in 4th

minute

0 jobs cancelled and

restarted

8 jobs cancelled and
restarted in 14th

minute

0 jobs cancelled and

restarted

Application Server Summary

Clustera can make efficient use of additional

application server capacity

The Clustera mid-tier “scales-out” effectively

� About same as “scale-up” – not shown

System exhibits consistent performance and rapid

failover in the face of application server failure

Still two single points of failure. Would the behavior

change if we:

� Used redundancy or round-robin DNS to set up a highly

available load balancer?

� Used replication to set up a highly available DBMS?

Summary & Future Work

Cluster management is truly a data management task

The combination of a RDMS and AppServer seems to

work very well

Looks feasible to build a cluster management system to
handle a variety of different workload types

Unsolved challenges:

� Scalability of really short jobs (1 second) with the PULL model

� Make it possible for mortals to write abstract schedulers

Bizarre feeling to walk away from a project in the middle

of it

