Clustera: A data-centric approach to
scalable cluster management

David J. DeWitt Jeff Naughton
Eric Robinson Andrew Krioukov
Srinath Shankar Joshua Royalty
Erik Paulson

Computer Sciences Department

University of Wisconsin-Madison

Outline

4 A historical perspective
A taxonomy of current cluster management systems

Clustera - the first DBMS-centric cluster management
system

Examples and experimental results
Wrapup and summary

A Historical Perspective

el

4 Concept of a “cluster” seems to have originated with
Wilke’s idea of “Processor bank” in 1980
% “Remote Unix” (RU) project at Wisconsin in 1984
= Ran on a cluster of 20 VAX 11/750s

= Supported remote execution of jobs
= |/O calls redirected to submitting machine

“RU” became Condor in late 1980s (Livny)
= Job checkpointing
= Support for non-dedicated machines (e.g. workstations)

= Today, deployed on 1500+ clusters and 100K+ machines
worldwide (biggest clusters of 8000-15000 nodes)

@

No, Google did not invent clusters

Cluster of 20 VAX 11/750s circa 1985 (Univ. Wisconsin)
I B

Clusters and Parallel DB Systems

Gamma and RU/Condor projects started at the same
time using same hardware. Different focuses:
+ RU/Condor:
= Computationally intensive jobs, minimal 1/O
= “High throughput” computing
#* Gamma
= Parallel execution of SQL
= Data intensive jobs and complex queries
4 Competing parallel programming efforts (e.g. Fortran D)
were a total failure
= Probably why Map-Reduce is so “hot” today

‘What is a cluster management system?

Provide simplified access for executing jobs on a
collection of machines

Three basic steps:
= Users submit jobs
= System schedules jobs for execution
= Run jobs
Key services provided:
= Job queuing, monitoring
= Job scheduling, prioritization
= Machine management and monitoring

Data
complexity

@® Map/Reduce

CO n d O r @ Parallel SQL

@® Condor

Job
complexity

4 Simple, computationally intensive jobs
= Complex workflows handled outside the system

Files staged in and out as needed

= Partially a historical artifact and desire to handle arbitrary
sized data sets

Scheduler pushes jobs to machines based on a
combination of priorities and fair share scheduling

4 Tons of other features including master-worker, glide-
in, flocking of pools together, ...

Data
complexity

® Map/Reduce

Para”el SQL ® Parallel SQL

® Condor

Job
complexity

4 Tables partitioned across nodes/disks using hash or
range partitioning
= No parallel file system

Optimizer: SQL query ==> query plan (tree of operators)

Job scheduler: parallelizes query plan

Scalability to 1000s of nodes

Failures handled using replication and transactions

All key technical details worked out by late 1980s

Data
complexity
@® Map/Reduce

/ Map/Reduce ® Parallel SQL

Job

Files stored in distributed file system P
= Partitioned by chunk across nodes/disks

Jobs consist of a Map/Reduce pair
Each Map task:

+ Scans its piece of input file, producing output records

+ Output records partitioned into M local files by hashing on output
key

Each Reduce task:
+ Pulls N input files (one from each map node)
+ Groups of records with same key reduced to single output record
Job manager:
= Start and monitor N map tasks on N nodes
= Start and monitor M reduce tasks on M nodes

~Summary

4 All three types of systems have distinct notions of
jobs, files, and scheduler

|t is definitely a myth MR scales better than parallel
SQL

= See upcoming benchmark paper

MR indeed does a better a job of handling failures
during execution of a job

The Big Question

4 Seem to be at least three distinct types of cluster
management systems

|s a unified framework feasible?

b

- If so, what is the best way of architecting it?
What is the performance penalty?

Outline

4 A historical perspective
A taxonomy of current cluster management systems

Clustera — a DBMS-centric cluster management
system

Examples and experimental results
Wrapup and summary

Clustera Project Goals

Leverage modern, commodity software including
relational DB systems and application servers such
as Apache Jboss

4 Architecturally extensible framework

= Make it possible to instantiate a wide range of different types
of cluster management systems (Condor, MR, parallel SQL)

Scalability to thousands of nodes

Tolerant to hardware and software failures

Why cluster management is a DB problem

Persistent data

= The job queue must survive a crash

= Accounting information must survive a crash

= Information about nodes, files, and users must survive a crash
Transactions

= Submitted jobs must not be lost

= Completed jobs must not reappear

= Machine usage must be accounted for
Query processing

= Users need to monitor their jobs

= Administrators need to monitor system health

14

Push vs. Pull

@ Push
= Jobs pushed to idle nodes by job ;ﬂ Node
scheduler Job
= Standard approach: Condor, Scheduler
LSF, MR, parallel DB systems
< Pull
= |dle nodes pull jobs from job
scheduler
= Trivial difference but truly simpler Scheduler
as job scheduler becomes purely
= Allows Clustera to leverage
application server technology
15
i 5
Clustera Architecture E
0.4 PAN e s e o Application %
4 RDBMS used to hold all system state Server g
. 3 ode
All cluster logic runs in the Clust L/ :
A ustera
application server (e.g. JBoss) Server [Node
= Job mgmt. and scheduling \
= Node management Node

= File management

Nodes are simply web-service clients
of the app. server RDBMS

= Used to run jobs

= Require a single hole in the firewall

Database

16

Why??

Use of RDBMS should be obvious
Why an Application Server?
= Proven scalability to 10s of 1000s of web clients
= Multithreaded, scalable, and fault tolerant

[" Object Cache]

AppServer || AppServer || AppServer

1 |

= Pooling of connections to DBMS
= Portability (Jboss, Websphere, WebLogic, ...)
+ Also hides DBMS specific features

Basis of Clustera Extensibility

Four key mechanisms

Concrete Jobs

Concrete Files

Logical files and relational tables
Abstract jobs and abstract job scheduler

Concrete Jobs

@ Pipeline of executables with zero or more input and
output files
_0-@--0
IF, OF,

4 Unit of scheduling

= Scheduler typically limits the length of the pipeline to the number of
cores on the node to which the pipeline is assigned for execution

4 |Input and output files are termed concrete files

Concrete Files

= > >
. 1 2
4 Used to hold input,
N~
output, and executable App Server -
files S N RDBMS [
M’Me_ Y M~
. . . Nod: Nod [FileA]
4 Single OS file, replicated o
. e C.exe
k times (default k=3) _ —
— —
i ID | N
Locations and . Users | [1g] pame
checksums stored in DB 15 | Sue
Name | Owner | Replicas
Files A.exe [10 2,4
B 10 1,2,3
C.exe | 15 1,4
JoblID | UserID | Executable | Input
Jobs 1 10 C.exe A
2 15 C.exe B

Goals include:

= Avoid starvation
= Job priorities

Concrete Job Scheduling

= “Placement aware” scheduling

« When idle, node pings server for a job

Matching is a type of “join” between a set of idle
machines and a set of concrete jobs

|deal match for a node is one for which both the
executable and input files are already present

Scheduler responds with:
<jobld, {executable files}, {input files}, {output files}>

Scheduling Example

<http: get, A>

<Need Work>

App Server

Nods |

<JoblD=1, C.exe, A>

RDBMS

Users

[1D [Name |

Files

Name | Owner | Replicas
Aexe | 1 2.4

B

1 1,23

C.exe

1 1.4

JoblD | UserlD [Executable [Tnput |
[i_[10 [Cexe [A |
[15 [Cexe [B |

-

Clustera node code is
implemened as JVM
Includes an http server
JNI used to fork Unix
binaries

Periodically node
sends a list of files it
has to AppServer

Logical Files and Relational Tables

4 |ogical File
= Set of one or more concrete files
+ Each concrete file is analogous to a partition of a GFS file

= Application server automatically distributes the concrete
files (and their replicas) on different nodes

= DB used to keep track of everything

+ File owner, location of replicas, version information,
concrete file checksums

Relational Table
= Logical File + Schema + Partitioning Scheme
= Concrete files are treated as separate partitions

~Basis of Clustera Extensibility

Four key mechanisms
= Concrete Jobs
= Concrete Files
= Logical files and relational tables
= Abstract jobs and abstract job scheduler

Abstract
Job

4 Sort of a “job compiler”

Abstract Job Scheduler

Abstract Job
Scheduler

Concrete) (Concrete\ . . , (Concrete
{ }

Concrete jobs are the unit of scheduling and execution
% Currently 3 types of abstract job schedulers
= Workflow scheduler

= Map/Reduce scheduler
= SQL scheduler

Abstract Job

LF3

)

Workfl
@ @ | Workdiow
©

-

Workflow Scheduler Example

3 Concrete Jobs

LF1 —(J42)—|LF5

First two concrete jobs can be
submitted immediately to the
concrete job scheduler. Third
must wait until first two have
completed.

Map Reduce Jobs in Clustera

% Abstract Map Reduce job consists of:
= Name of logical file to be used as input
= Map, Split, and Reduce executables
= Desired number of reduce tasks
= Name of output logical file

INPUT OUTPUT
LOGICAL |— — LOGICAL
FILE FILE

Map Reduce Abstract Scheduler

BT INPUT OUTPUT
Complles: LOGICAL R : LOGICAL
FILE FILE

Into:

One for each .
concrete file of H . T
input logical @ @ 12 N2

file
Ton

And:

One for each
reduce task = 7 - , @

Clustera SQL

An abstract SQL specification consists of
= A set of input tables
= A SQL query
= An optional join order
The Clustera SQL compiler is not as sophisticated as
a general query optimizer
= But could be!
4 Limitations
= No support for indices
= Only equi-joins
= Select/Project/Join/Aggregate/GroupBy queries only

®

-SQL Example
¥ Tables Files corresponding
R(a b,c), S(ab,d), T(be,f) (hasl to red edges are te)
Query: materialized

Select R.c, T.ffromR,S, T where R.a=5.a andS.b=1.b and I.t = X
Concrete job schedule generated (for 2 concrete files per table):

MapReduce-like

fault tolerance
(Sl Select

@ Join
Split

Combine

~Some Results

% System Configuration

= 100 node cluster with 2.4Ghz Core 2 Duo CPU, 4GB
memory, two 320GB 7200 RPM drives, dual gigabit Ethernet

= Two Cisco C3560G-48TS switches
+ Connected only by a single gigabit link

s JBoss 4.2.1 running on 2.4Ghz Core 2 Duo, 2GB memory,
Centos 2.6.9

= DB2 V8.1 running on Quad Xeon with two 3Ghz CPUs and
4GB of memory

= Hadoop MapReduce Version 0.16.0 (latest version)

Server Throughput

90 Node Cluster with 360 Concurrently Executing Jobs

-
N
o

“#|deal —+Observed

Job Length
(seconds)

100 -

80

60

40

20

Actual Jobs Cycled per Second

o

T T T 1

0 20 40 60 80 100 120
Target Jobs Cycled per Second

Server Throughput

-4
100 Node Cluster with 200 Concurrently Executing Jobs
=100%
9 90% —-User —®*System —*ldle —
.‘g 80% \\
E 70% ~_
o 60%
a \\
O 50%)‘
S 40%
5 30% _—
7]
% 20% //
< 10%
0% = —n = — "
0 20 40 60 80 100 120
Observed Jobs Cycled per Second
Map-Reduce Scaleup Experiment
A

4 Map Input/Node: 6M row TPC-H Lineltem table (795MB)
Query: Count(*) group by orderKey

Map Output/Node: 6M rows, 850MB

4 Reduce Output/Node: 1.5M rows, 19MB

=-Hadoop =¥-Clustera MR -&-SQL-Paritioned
. 400 T

3 350 /A
c
g 300

»
[
»
L

25 50 Nodes 75 100

Clustera MR Details

i N S ——
=*-Map -*-Shuffle *Reduce
250 +
mn
2
s 200 /
3]
)
KA
o 150
E
-
g’ 100 /
c
S
(14 50 /Af 4 2 g
0 .
25 50 75 100
Nodes

Why?

Due to the increase in amount of data transferred
between the map and reduce tasks

of Nodes Total Data Transferred

25 21.4GB
50 42.8 GB
75 64.1 GB

100 85.5 GB

~SQL Scaleup Test
: + SQL Query:

SELECT l.okey, o.date, o.shipprio, SUM(l.eprice)
FROM lineitem |, orders o, customer ¢

WHERE c.mkstsegment = ‘AUTOMOBILE’ and o.date < ‘1995-02-03’
and l.sdate > ‘1995-02-03’ and o.ckey = c.ckey and |.okey = 0.okey

GROUP BY l.okey, o.date, o.shipprio
Table sizes

= Customer: 25 MB/node

= Orders: 169 MB/node

= Lineltem: 758 MB/Node

Clustera SQL Abstract Scheduler
Hadoop + Datajoin contrib package

_Partitioning Details

T Query GroupBYy [(Select (Customer)) Join (Select (Orders)) Join Lineltem]

Hash Partitioned Test:
Customers & Orders hash partitioned on ckey
Lineltem hash partitioned on okey

Round-Robin Partitioned Test:

Tables loaded using round-robin partitioning
Workflow requires 4 repartitions

Of Nodes Total Data Shuffled (MB)
Hash Round-Robin
Partitioned Tables Partitioned Tables
25 77 2122
50 154 4326
75 239 6537
100 316 8757

|
At 100 nodes, 1000s of
jobs and 10s of 1000s

SQL Scaleup Results of files

=-Hadoop
-&@-Clustera SQL - Round Robin Partitior
=#Clustera SQL - Hash Partitioned

Clustera SQL has about
same performance DB2

w
o
o

/
.—__‘/o’

N
o
o

Running Time (Seconds)

25 50 Nodes 75 100

&

£ 4

*

Application Server Evaluation

= Scalability
= Fault Tolerance

Clustera design predicated

on the use of clustered app ‘/{E

servers for -
1 N Node |

When clustered, must select | application | | Application || Application
a Caching policy Server Server Server
With no caching, processing is \ 1 [
exactly the same as non-
clustered case —
With caching, app servers must ADBMS

also coordinate cache
coherence at xact commit

Experimental Setup

90 nodes running 4 single-job pipelines concurrently

= 3060 concurrently running jobs cluster-wide

i

Load Balancer (Apache mod_jk)
s 2.4 GHz Intel Core2 Duo, 2GB RAM
Application Servers (JBoss 4.2.1, TreeCache 1.4.1)
= 1 to 10 identical 2.4 GHz Intel Core2 Duo, 4GB RAM, no cache limit
DBMS (IBM DB2 v8.1)
= 3.0 GHz Xeon (x2) with HT, 4GB RAM, 1GB buffer pool

4 Job queue preloaded with fixed-length “sleep” jobs
= Enables targeting specific throughput rates

4

Evaluation of Alternative Caching Policies

Caching alternatives:
no caching, asynchronous invalidation, synchronous replication

90 Nodes, 4 concurrent jobs/node

==NO_CACHE -®INVALIDATION_ASYNC =*REPL_SYNC

© 16%
72

2 14% —

512% /
S 10% -

REIZ
X R X R

Average App Serv

0% T ; T . -
Jobs/Sec: 20 40 60 80 100
App Servers: 2 4 6 8 10

Application Server Fault Tolerance

Approach: maintain a target throughput rate of 40 jobs/sec; start with 4 servers
and kill one off every 5 minutes; monitor job completion, error rates

Key insight: Clustera displays consistent performance with rapid failover — of
47,535 jobs that successfully completed, only 21 had to be restarted due to error

=-Server 1 -BServer 2 =#Server3 -®Server4

30%

25% M
20% /
15%

Rl g {\

” N,

0% : ; . —0 ch'—I—I—IL—I—H

0 2 4 6 8 10 12 14 16 18 20
Elapsed Time (Minutes)

App Server Cycle Use

Application Server Summary

Clustera can make efficient use of additional
application server capacity

The Clustera mid-tier “scales-out” effectively

= About same as “scale-up” — not shown

System exhibits consistent performance and rapid
failover in the face of application server failure

Still two single points of failure. Would the behavior
change if we:

= Used redundancy or round-robin DNS to set up a highly
available load balancer?

= Used replication to set up a highly available DBMS?

Summary & Future Work

Cluster management is truly a data management task
The combination of a RDMS and AppServer seems to
work very well
Looks feasible to build a cluster management system to
handle a variety of different workload types
Unsolved challenges:
= Scalability of really short jobs (1 second) with the PULL model
= Make it possible for mortals to write abstract schedulers
Bizarre feeling to walk away from a project in the middle
of it

