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Performance: Aren’t DBs Fast Enough?

You decide:

* Quick check of latest TPC-H results

e Spend $0.75 million to store 300GB (17TB of 36GB disks)

o Q21 still takes 18 minutes to answer in throughput test

e Got 10TB?

 You can spend $6.7 million to wait almost four hours for Q18

My Conclusion:

e Current AP solutions are not there
 Result: difficult to treat the DBMS as a sandbox @




How To Address This Problem?
Not easy:

o AP studied intensively for 15 years

* \We’ve only managed two serious solutions
1. Pre-computed cubes - “OLAP” - often too restrictive

2. “Glue-on” solution; add bitmaps to your DBMS

* And one interesting “new” Idea
- “Column-oriented” DBs
- Though this really just fixes the problems with 2. above

e |s there another way to go?




Use Randomization!

Three key observations:

1. AP almost always statistical
2. Not always clear that $1.3745m differs from $1.3757m
3. Most exploratory queries are “wrong”

So, Imagine the following DBMS:

* You ask any AP-style query, it gives you an immediate guess

o Guess bracketed by error guarantees

 Confidence region shrinks throughout computation

o Zero-width at query completion

 Total execution time same as classic RDBMS @




Hasn’t This Been Done?

UC Berkeley Control project:

* Developed online aggregation, ripple joins
» Got second two bullets to work (shrinking conf. region)
« But not scaleability, generality

Aside: are synopsis structures relevant?

» Wavelets, histograms, sketches

 Great to study, but can they replace existing DBMS tech.?
- Probably not; generally don’t handle arbitrary queries
- Bigger issue is that they are fixed precision @




Our Goal

» Re-design database from ground up based on randomization

* Try to meet each of the five goals given previously:

1. Any AP-style query — I1mmediate guess
2. Guess bracketed by error guarantees

3. Shrinking confidence region

4. Zero-width at completion

5. Fast as classic RDBMS

 Resulting system is called DB-Online, or DBO for short

©




Seems Pretty Hard To Do...

Given an arbitrary plan like this one, how
are you ever going to guess the answer
from start to finish?
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Given an arbitrary plan like this one, how
are you ever going to guess the answer
from start to finish?

Our first (Imperfect) idea was to tackle a
2-table join, like this

Uses ripple join as basic building block...

@




The Ripple Join

e Scan randomly-permuted input relations in
parallel

%><%x(0)220

SELECT SUM SALES.Db
FROM EMP, SALES

WHERE EMP.a = SALES.a




The Ripple Join

e Scan randomly-permuted input relations in
parallel

gxgx(3) = 27

SELECT SUM SALES.Db
FROM EMP, SALES

WHERE EMP.a = SALES.a @




The Ripple Join

e Scan randomly-permuted input relations in
parallel

gxgx(3+12) = 33.75

SELECT SUM SALES.Db
FROM EMP, SALES

WHERE EMP.a = SALES.a




The Ripple Join

e Scan randomly-permuted input relations in
parallel

gxgx(3+12+10) = 36

SELECT SUM SALES.Db
FROM EMP, SALES

WHERE EMP.a = SALES.a @




The Ripple Join

e Scan randomly-permuted input relations in
parallel

Final answer

\

g><g><(34-12-F10) :<::>

SELECT SUM SALES.Db
FROM EMP, SALES

WHERE EMP.a = SALES.a @




The Ripple Join

e |ssue: only hashed RJ Is practical

e But requires e € EMP’, s € SALES' In
memory

What do you do when you run out of mem-

ory?




Sort-Merge-Shrink Join
e 3-stage join algorithm

records from EMP
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Sort-Merge-Shrink Join
e Sort phase: starts just like a ripple join

records from EMP
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Sort-Merge-Shrink Join

* When memory fills, records from first RJ
sorted and written back to disk

sorted according to
to e.key

214161314/ 9] 1[111610[3]8]7[5 1512
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Sort-Merge-Shrink Join
* Process Is then repeated

each run,
sorted according to e.k

21416 13 1] 9[11141610[3[8]7[5 1512

each run _
sorted according

to s.k /
/
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Sort-Merge-Shrink Join
* Process Is then repeated

each run,
sorted according to e.k

21416 13 1] 9[1114160[3]8| 7[5 1512

each run _
sorted according

to s.k

gives us Nj
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Sort-Merge-Shrink Join

 Until sort phase completes and all database
records have participated in one RJ

all runs sorted according to e.k
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Sort-Phase Statistical Considerations
» During sort phase, let N; be estimate from
Ith ripple join - N; unbiased so N IS

e Know Var(N) =

2 n
> wivar(Ny) + 2. >i;Wiw;CoV(N;, Ny)

e Use this quantity to give bounds via CLT or
other appropriate result




Computing the RJ Variance

2 n
> wivar(N;) + . Z'i”ijwiijov(Ni, N;)

*Var(N;) can be estimated using formulas
from HH99 (large sample w. replacement)

e Or can use the nasty (yet exact) permuta-
tional formula we derived

*\W; computed via a straightforward qua-
dratic optimization problem @




Computing the RJ Variance

2 n
> wivar(N;) + . Z'i”ijwiijov(Ni, N;)

e How about the covariance?

e Can be estimated using the nasty formulas
we derived

 Or can possibly ignore it... usually negative
anyway




How To Finish the Join?

EMP sorted into runs
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Sort-Merge-Shrink Join

* The merge/shrinking phases begin...

region contains no record pairs where
pred(e, s) evaluates to true

Merge Phase 23R4 6113 91114/ 8110116]5(7 1215

< EMP — EMP) 1 SALES

(EMP—EMP)< N\ Shrinking Phase
(SALES - SALES)

(estimated via
ripple joins)
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Sort-Merge-Shrink Join
e Merged portion of data space increases

records from EMP
1[213/4]5]6]7]81139/11141016[1215

(EMP — EMP) <
SALES

records from SALES
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Sort-Merge-Shrink Join
e Until 1t dominates the data space

records from EMP
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Sort-Merge-Shrink Join
* Then the join completes

records from EMP
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Merge/Shrink Statistics

e SO We can get an estimate and confidence
bounds here, but how about here?

records from EMP records from EI\/IP\
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Merge/Shrink Statistics

* N + N > i is unbiased for query result
-Var(N + N(k > k)) IS Var(N(k S k))

records from EMP
1/21314]5/6]7[813/9/11141016[1215

(EMP — EMP) <
SALES

records from SALES
(SALES — SALES

Nk > 8)

EMP <




Merge/Shrink Statistics

e Getting N is easy

records from EMP
1[213]4]5/6]7[8139/11141016[1215

(EMP — EMP) <
SALES

records from SALES




Merge/Shrink Statistics
e But N(k > K): Var(N(k S k)) IS harder. Why7

e Each RJ has been written to

disk, so no way to compute
rqcords from EMP

N > k) W/0 re-reading data 112131456 7|83 9[LTL4L0L61215

(EMP — EMP) <
SALES

(SALES - SALES)

records from SALES
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Merge/Shrink Statistics
» Solution: precompute and store N > ) and
Var(Ny > i)) for “enough” k values

e Qutput new estimate every time you merge
past one of those values

* Done via reverse ripple join during sort
phase, before each run written back to disk

e Small storage: ~ 3600 x 100 x 12 bytes

®




What Do We Find When We Run This?
e Example, joining two, 20GB tables:

 Memory gone ~20 seconds, w. one disk at 50MB/sec
e Confidence bounds halve after 100 secs

» Confidence bounds halve again 1000 secs
 1/8 to 1/10 as wide after 3000 seconds




SMS Join Is Nice, Won’t Work in DBO

In retrospect, a neat algorithm of questionable utility... say you

have:
b= Can SMS join R and S, but
\ rather useless for guessing

/ \ / \ the final query answer...

 Output tuples not produced randomly, so no subsequent use

e Can do 3+ tables in one SMS join, but only If can use the
same sort order for each @




Basic Query Processing in DBO

Imagine a complex query plan:




Basic Query Processing in DBO
To process the plan:

> First, all bottom-level
| joins are processed con-

> - .
currently, kind of like

one huge SMS sort
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Basic Query Processing in DBO

To process the plan:

The first levelwise step
I (at all times) checks for
e “lucky” answer tuples in
P > order to maintain an
online guess at the query
result




Basic Query Processing in DBO

To process the plan:

) Eventually the first lev-
elwise step completes all

N of the “lowest” joins
M/ \N ,

and N4 Is frozen

AB CD EF GH

N1




Basic Query Processing in DBO

To process the plan:

Then levelwise step two
begins... N, will soon be

far more accurate than
N4; they are combined to

give the user an estimate




Basic Query Processing in DBO

To process the plan:

) Eventually levelwise
step two finishes and N,

|
- IS frozen as well.
ABCD  EFGH




Basic Query Processing in DBO

To process the plan:

> Then levelwise step

— three begins... as It pro-
ceeds, the variance of N
ABC{ EGH goes to zero




Basic Query Processing in DBO

To process the plan:

> When levelwise step
three finishes, the query

|
ABCDEFGH has completed execu-

tion.




Detalls, Detalils, Detalls...

Each levelwise step has two phases: the scan
phase and the merge phase

The scan phase Is analogous to the sort phase of a SMJ, except:

1. There is one scan phase for all joins at a levelwise step
2. Any “answer tuples” discovered are used to update N;

3. Round-robin processing of runs
4. Makes use of a randomized sort order (provided by H)




Scan Phase In Detall

To concurrent join (R, and R»), (R and Ry)
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Scan Phase In Detall

To concurrent join (R, and R»), (R and Ry)

Read one run
from each rela-
tion In the level-
wise step into
memory
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Scan Phase In Detall

To concurrent join (R, and R»), (R and Ry)

Result tuple discovered
Any output tuples on-the-fly

are immediately K

AJ
N

discovered; used
to produce N;

(unbiased!)
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Scan Phase In Detall

To concurrent join (R, and R»), (R and Ry)

_ Sorted on H4(B), written out to disk
Sort run from first 1(B)

relation on Hy(B);
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Scan Phase In Detall

To concurrent join (R, and R»), (R and Ry)

_oad second run
from first relation
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Scan Phase In Detall

To concurrent join (R, and R»), (R and Ry)

Use any discov-
ered result tuples
to update estimate
(still unbiased!)
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Scan Phase In Detall

To concurrent join (R, and R»), (R and Ry)

Sort run on H4(C)

and write it back
to disk

Y
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Scan Phase In Detall

To concurrent join (R, and R»), (R and Ry)

_oad next run
from second rela-
tion Into memory

Y
[N

Py
N

B ©ON TN 0|00 >
00O A U O~ T

© Ul o~No N O

R ON~N U1 AW O
00| ~IN) A UT1O | [T

w B oco|uN | T

A wwvoouinkF @ M
00 W NN O/

N AW OO oo T
NN NS
Ol wF|N© AUt

— |=00|O 00Ul N~

H1(B)

H1(C)' Hy(G)' Hy(H)' @




Scan Phase In Detall

To concurrent join (R, and R»), (R and Ry)

No output tuples
discovered, so
update estimate
and write next run

back to disk
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Scan Phase In Detall

To concurrent join (R, and R»), (R and Ry)

LLoad next run
Into memory
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Scan Phase In Detall

To concurrent join (R, and R»), (R and Ry)

Immediately dis-
cover any output
tuples and update
the estimate
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Scan Phase In Detall

To concurrent join (R, and R»), (R and Ry)

Sort and write
back to disk
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Scan Phase In Detall

To concurrent join (R, and R»), (R and Ry)

Do the same for
the fourth relation
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Scan Phase In Detall

To concurrent join (R, and R»), (R and Ry)

All tuples have
been read, so
write back all In-
memory tuples,

and we’re done! Runl
Run 2
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Key Points

* (In this example) Five different updates to N;

* One update every time a run Is processed
 N; IS unbiased assuming random input order

« Can characterize variance (very challenging!)
« Ready for merge phase...




Merge Phase

o Separate merge for each join in ith levelwise step
« Each merge a lot like merge phase of SMJ
 Recall that we use a random sort order

e So result tuples come out in (semi-) random order

 Output tuples pipelined directly into scan phase of next level-
wise step

 Since tuples produced randomly, (i + 1)th levelwise step valid




Output so far:
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Merge Phase In Detall

Head of each run of each relation is read into memory...

Output so far:
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Merge Phase In Detall

Search for output tuples In first join...

Output so far:

~ A\

pipelined directly into

next levelwise step
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Merge Phase In Detall

Exhausted runs are replenished, new output tuples discov-
ered...
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Merge Phase In Detall

Again replace processed tuples in memory (perhaps skip-
ping some steps!)...
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A Few More Detalls...

Handling “inconvenient” queries

SELECT SUM (R.A) ]

FROM R, S, T, U // \\U
WHERE R.A = S.A AND <]
/N
1T
/N
R S

Issue: which relations are in the first levelwise step?

(@




A Few More Detalls...

Handling “inconvenient” queries

SELECT SUM (R.A)
FROM R, S, T, U
WHERE R.A = S.A AND
T.B AND
U

R.B B
R.C .C

Solution: introduce a “scan and reorder” operator




A Few More Detalls...

Computing the current estimate

* Use N = S w;N;; since independent, getting w; IS an easy
optimization problem

Computing accuracy guarantees

e Not easy!
1. Two kinds of randomization
2. “Chunks” of tuples from merge phase
3. LOTS of algebra, recursive variance formulas
4. Covariance among estimates making up each N; @




How Well Does This Work?
Ex: TPC-H query: DBO 26m42s

Postgres 43m4/s
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Are We Done Yet?
Of Course Not!

 Subtraction and related operators are a big problem
* Indexing (how to provide randomness?)

o Query optimization: what is the goal?

 Many more...




Thank You!

« Special thanks to my UF colleague Alin Dobra, and my stu-
dents Abhijit Pol, Subramanian Arumugam, Shantanu Joshi

e Some papers on this stuff:

1.

2.

“A Disk-Based Join with Probabilistic Guarantees,” Jer-
maine, Dobra, Arumugam, Joshi, Pol, SIGMOD 2005
“The Sort-Merge-Shrink Join,” Jermaine, Dobra, Aru-
mugam, Joshi, Pol, TODS 31(4), December 2006



