Scaleable Online Statistical Processing

Chris Jermaine
Computer and Information Sciences and Engineering
Department

University of Florida, Gainesville

Performance: Aren’t DBs Fast Enough?

You decide:

* Quick check of latest TPC-H results

e Spend $0.75 million to store 300GB (17TB of 36GB disks)

o Q21 still takes 18 minutes to answer in throughput test

e Got 10TB?

 You can spend $6.7 million to wait almost four hours for Q18

My Conclusion:

e Current AP solutions are not there
 Result: difficult to treat the DBMS as a sandbox @

How To Address This Problem?
Not easy:

o AP studied intensively for 15 years

* \We’ve only managed two serious solutions
1. Pre-computed cubes - “OLAP” - often too restrictive

2. “Glue-on” solution; add bitmaps to your DBMS

* And one interesting “new” Idea
- “Column-oriented” DBs
- Though this really just fixes the problems with 2. above

e |s there another way to go?

Use Randomization!

Three key observations:

1. AP almost always statistical
2. Not always clear that $1.3745m differs from $1.3757m
3. Most exploratory queries are “wrong”

So, Imagine the following DBMS:

* You ask any AP-style query, it gives you an immediate guess

o Guess bracketed by error guarantees

 Confidence region shrinks throughout computation

o Zero-width at query completion

 Total execution time same as classic RDBMS @

Hasn’t This Been Done?

UC Berkeley Control project:

* Developed online aggregation, ripple joins
» Got second two bullets to work (shrinking conf. region)
« But not scaleability, generality

Aside: are synopsis structures relevant?

» Wavelets, histograms, sketches

 Great to study, but can they replace existing DBMS tech.?
- Probably not; generally don’t handle arbitrary queries
- Bigger issue is that they are fixed precision @

Our Goal

» Re-design database from ground up based on randomization

* Try to meet each of the five goals given previously:

1. Any AP-style query — I1mmediate guess
2. Guess bracketed by error guarantees

3. Shrinking confidence region

4. Zero-width at completion

5. Fast as classic RDBMS

 Resulting system is called DB-Online, or DBO for short

©

Seems Pretty Hard To Do...

Given an arbitrary plan like this one, how
are you ever going to guess the answer
from start to finish?

2

VN
R

/\
/\

/
R

Seems Pretty Hard To Do...

)
\

o
/

\

U

Given an arbitrary plan like this one, how
are you ever going to guess the answer
from start to finish?

Our first (Imperfect) idea was to tackle a
2-table join, like this

Uses ripple join as basic building block...

@

The Ripple Join

e Scan randomly-permuted input relations in
parallel

%><%x(0)220

SELECT SUM SALES.Db
FROM EMP, SALES

WHERE EMP.a = SALES.a

The Ripple Join

e Scan randomly-permuted input relations in
parallel

gxgx(3) = 27

SELECT SUM SALES.Db
FROM EMP, SALES

WHERE EMP.a = SALES.a @

The Ripple Join

e Scan randomly-permuted input relations in
parallel

gxgx(3+12) = 33.75

SELECT SUM SALES.Db
FROM EMP, SALES

WHERE EMP.a = SALES.a

The Ripple Join

e Scan randomly-permuted input relations in
parallel

gxgx(3+12+10) = 36

SELECT SUM SALES.Db
FROM EMP, SALES

WHERE EMP.a = SALES.a @

The Ripple Join

e Scan randomly-permuted input relations in
parallel

Final answer

\

g><g><(34-12-F10) :<::>

SELECT SUM SALES.Db
FROM EMP, SALES

WHERE EMP.a = SALES.a @

The Ripple Join

e |ssue: only hashed RJ Is practical

e But requires e € EMP’, s € SALES' In
memory

What do you do when you run out of mem-

ory?

Sort-Merge-Shrink Join
e 3-stage join algorithm

records from EMP
214/9/1111600(3(8|7

5

10
n 16
w13
< 12
v |8
e 1
= 11
o 14
2 6]
S 19
L 2
13
4
15
7

Sort-Merge-Shrink Join
e Sort phase: starts just like a ripple join

records from EMP
214/9]11116010[3[8]7

5
10
L, 16
3
Qg
< g
oL
S 1
E 14
o 6]
5 9
3 2
= 13
4
15
7

Sort-Merge-Shrink Join

* When memory fills, records from first RJ
sorted and written back to disk

sorted according to
to e.key

214161314/ 9] 1[111610[3]8]7[5 1512

{3 _» gives us Nq
9 S

sorted accordin
to s.ke

10
16
12
8
1
11

14 largest ripple join
computable in core
memory

Sort-Merge-Shrink Join
* Process Is then repeated

each run,
sorted according to e.k

21416 13 1] 9[11141610[3[8]7[5 1512

each run _
sorted according

to s.k /
/

gives us N,

_ n
N_— > WiNi
with
>iw =1
IS unbiased

9))
L
-
<C
w
&
o
—
Y—
)
®)
—
o
(@)
(¢D)
—

Sort-Merge-Shrink Join
* Process Is then repeated

each run,
sorted according to e.k

21416 13 1] 9[1114160[3]8| 7[5 1512

each run _
sorted according

to s.k

gives us Nj

g

9))
L
-
<C
w
&
o
—
Y—
)
®)
—
o
(@)
(¢D)
—

Sort-Merge-Shrink Join

 Until sort phase completes and all database
records have participated in one RJ

all runs sorted according to e.k

)
L
-
<C
7))
&
o
—
Y—
(%)
®)
—
@]
O
(<D)
—

21416 13

1

9

11

14

3

8

10

16

5

712

15

Now we have N;
through Ny

gives us Ny

/

Sort-Phase Statistical Considerations
» During sort phase, let N; be estimate from
Ith ripple join - N; unbiased so N IS

e Know Var(N) =

2 n
> wivar(Ny) + 2. >i;Wiw;CoV(N;, Ny)

e Use this quantity to give bounds via CLT or
other appropriate result

Computing the RJ Variance

2 n
> wivar(N;) + . Z'i”ijwiijov(Ni, N;)

*Var(N;) can be estimated using formulas
from HH99 (large sample w. replacement)

e Or can use the nasty (yet exact) permuta-
tional formula we derived

*\W; computed via a straightforward qua-
dratic optimization problem @

Computing the RJ Variance

2 n
> wivar(N;) + . Z'i”ijwiijov(Ni, N;)

e How about the covariance?

e Can be estimated using the nasty formulas
we derived

 Or can possibly ignore it... usually negative
anyway

How To Finish the Join?

EMP sorted into runs
21416 13/1]9[1114 381016/ 5

(79
-
>
S
o
+J
=
=]
(¢D)
s
@)
(7p]
)
LUl
-
<C
w

Sort-Merge-Shrink Join

* The merge/shrinking phases begin...

region contains no record pairs where
pred(e, s) evaluates to true

Merge Phase 23R4 6113 91114/ 8110116]5(7 1215

< EMP — EMP) 1 SALES

(EMP—EMP)< N\ Shrinking Phase
(SALES - SALES)

(estimated via
ripple joins)

it SN NES NS,

®

Sort-Merge-Shrink Join
e Merged portion of data space increases

records from EMP
1[213/4]5]6]7]81139/11141016[1215

(EMP — EMP) <
SALES

records from SALES

N E NS EE RSN

EMP <
(SALES — SALES)

Sort-Merge-Shrink Join
e Until 1t dominates the data space

records from EMP
11213]4]5]6]7]8]9101112131416[15

1
2
3
4
5
6
/
8
9

S3IVS
> (dWN3 = dW3)

0))
L
-
<C
w
=
(@)
—
Y
(92)
©
—
o
(@)
(¢D)
—

ig (SALES — SALES)

Sort-Merge-Shrink Join
* Then the join completes

records from EMP

0))
L
-
<C
w
=
(@)
—
Y
(92)
©
—
o
(@)
(¢D)
—

Merge/Shrink Statistics

e SO We can get an estimate and confidence
bounds here, but how about here?

records from EMP records from EI\/IP\
2416 13 1]9]1114 3] 8[1016/5|7 1215 13[911141016/1215

(EMP — EMP) <
SALES

(SALES — SALES)

records from SALES

EMP <

3

5
mlO
D 16
zl:|1
0 L8
E11
S 12
= |2
L 6
1
= 2

7

13

15

Merge/Shrink Statistics

* N + N > i is unbiased for query result
-Var(N + N(k > k)) IS Var(N(k S k))

records from EMP
1/21314]5/6]7[813/9/11141016[1215

(EMP — EMP) <
SALES

records from SALES
(SALES — SALES

Nk > 8)

EMP <

Merge/Shrink Statistics

e Getting N is easy

records from EMP
1[213]4]5/6]7[8139/11141016[1215

(EMP — EMP) <
SALES

records from SALES

Merge/Shrink Statistics
e But N(k > K): Var(N(k S k)) IS harder. Why7

e Each RJ has been written to

disk, so no way to compute
rqcords from EMP

N > k) W/0 re-reading data 112131456 7|83 9[LTL4L0L61215

(EMP — EMP) <
SALES

(SALES - SALES)

records from SALES

Mool = K Ele) ool ~o| o1 & v rofi=

EMP <

Merge/Shrink Statistics
» Solution: precompute and store N >) and
Var(Ny > i)) for “enough” k values

e Qutput new estimate every time you merge
past one of those values

* Done via reverse ripple join during sort
phase, before each run written back to disk

e Small storage: ~ 3600 x 100 x 12 bytes

®

What Do We Find When We Run This?
e Example, joining two, 20GB tables:

 Memory gone ~20 seconds, w. one disk at 50MB/sec
e Confidence bounds halve after 100 secs

» Confidence bounds halve again 1000 secs
 1/8 to 1/10 as wide after 3000 seconds

SMS Join Is Nice, Won’t Work in DBO

In retrospect, a neat algorithm of questionable utility... say you

have:
b= Can SMS join R and S, but
\ rather useless for guessing

/ \ / \ the final query answer...

 Output tuples not produced randomly, so no subsequent use

e Can do 3+ tables in one SMS join, but only If can use the
same sort order for each @

Basic Query Processing in DBO

Imagine a complex query plan:

Basic Query Processing in DBO
To process the plan:

> First, all bottom-level
| joins are processed con-

> - .
currently, kind of like

one huge SMS sort
><]

= ><] <] hase; this is called
K \B é Bé \Fé ﬁ II[)ev(fislsvisel2tlespca o

)

Basic Query Processing in DBO

To process the plan:

The first levelwise step
I (at all times) checks for
e “lucky” answer tuples in
P > order to maintain an
online guess at the query
result

Basic Query Processing in DBO

To process the plan:

) Eventually the first lev-
elwise step completes all

N of the “lowest” joins
M/ \N ,

and N4 Is frozen

AB CD EF GH

N1

Basic Query Processing in DBO

To process the plan:

Then levelwise step two
begins... N, will soon be

far more accurate than
N4; they are combined to

give the user an estimate

Basic Query Processing in DBO

To process the plan:

) Eventually levelwise
step two finishes and N,

|
- IS frozen as well.
ABCD EFGH

Basic Query Processing in DBO

To process the plan:

> Then levelwise step

— three begins... as It pro-
ceeds, the variance of N
ABC{ EGH goes to zero

Basic Query Processing in DBO

To process the plan:

> When levelwise step
three finishes, the query

|
ABCDEFGH has completed execu-

tion.

Detalls, Detalils, Detalls...

Each levelwise step has two phases: the scan
phase and the merge phase

The scan phase Is analogous to the sort phase of a SMJ, except:

1. There is one scan phase for all joins at a levelwise step
2. Any “answer tuples” discovered are used to update N;

3. Round-robin processing of runs
4. Makes use of a randomized sort order (provided by H)

Scan Phase In Detall

To concurrent join (R, and R»), (R and Ry)

ERER;.B=R,.C
DR2-E:R3-F
DR;.G=R,.H

A
[N

Py
N

B ©ON| TN O |0 >
00/ AU~ O~ T
Sl N= N

= 00N~ Wwo1—=| O

00 W|~IN©O | AUl M

W Ao oouNd~ T

A wooouinkF @ M
00 W~ RN Oj©

N A w OO~ T
NN NS
O WV~ Ul

— |I|00|O|O|00| -~ O~

H1(B)

H1(C)' HaG)' Hy(H)

Scan Phase In Detall

To concurrent join (R, and R»), (R and Ry)

Read one run
from each rela-
tion In the level-
wise step into
memory

A

AJ
N

DN OIN O |00 >
00O~ U1jo|~o|~l| o

o100~ o|~ O
(oo WO~ O
00| W ~IN[O || o] M
00|~ |~lw|o| o1&

WA o ooluro| | T

B wolouiNF @ M
(oo |[SV BN MENEN| S |[e)

N A w oo~ oo T
NN N
|00/ WM N U

— =00/ OO0~ Ul

H1(B)

H1(C) Hyo(G)' Hy(H)'

Scan Phase In Detall

To concurrent join (R, and R»), (R and Ry)

Result tuple discovered
Any output tuples on-the-fly

are immediately K

AJ
N

discovered; used
to produce N;

(unbiased!)

B[O|N|U1|N| O || 00| >

o0 MUl ~NoON| T, P4,
— || 00| O|o|oo| | Ul

©|U1o|R|o A o~ O

= oo PO O

00| L ~J|N|O| = A |U| T

00|\ N|Ww| O Ul

W&o oo|Un|Po ~Jl=| T

B wolouiNF @ M

@ [ISIENTE = e le!

N A w|O|O|=|~oo T

NN G INE S

O|00| WM U

Hi(B)' Hy(C)' Hy(G)' Hz(Hﬂ‘

Scan Phase In Detall

To concurrent join (R, and R»), (R and Ry)

_ Sorted on H4(B), written out to disk
Sort run from first 1(B)

relation on Hy(B);

A
N

R4

write back to disk <

H1(B)

B ON|UTIN|—[©O 00| >

0~~~ U
(oo [e[{e)le)[4, N NFN

O U100~ OO~ O

= 0o N~ B |Ww|oi— O

00 W~ N[O || T

W Ao oo|o1N| || T

NN = =GN R

00 W~ N O|w

N B W O|O|=(~|oo| T

U110 NN O A O|O| ==

O 00| W N[O O

H1(C)' Hy(G)' Hy(H)'

Scan Phase In Detall

To concurrent join (R, and R»), (R and Ry)

_oad second run
from first relation

Py,
| —
A
N

B ONOTN (O >
00/ | A U1V O~~~ T
ool o ho/~IO
=00 N | B~|wo—=| O
00| | ~I|N[|| o M
00| O ~NW|O|u1 S
NEN S SR

A wooouink @ P
00| W~ N ojw

N B W OOl |~l|oo| T
Ul ~NuB] o/ = U
O/ 00| W N U

— | |00| OO 00| U1 A~

H1(B)

Hi(C)' HaG)' Hy(H)'

Scan Phase In Detall

To concurrent join (R, and R»), (R and Ry)

Use any discov-
ered result tuples
to update estimate
(still unbiased!)

Py
| —
Py,
N

BON|OTN| =[O0 >
00)[¢=]iN(3; o= ENIENIvs
Ce)[§;]fe][BNe) IN[aEN{ @)
=ooN N wol— O
00| W~ O[Ol M
00| ||| w|o|u1

w| Ao oo|U1 N || T1

A wwoouinkF @ M
0 [ISIENIENSN] i) [To)

N A w|oO|o||~|oo| T
U1 ~IN U] O/ = U
O 00| W[N[O U

— = 00|OO|00 U1~

H1(B)

H1(C)' Hy(G)' Hy(H)'

Scan Phase In Detall

To concurrent join (R, and R»), (R and Ry)

Sort run on H4(C)

and write it back
to disk

Y
[N

Py
N

B ©ON TN 0|00 >
00O A U O~ T
©uico RO~ O

R ON~N U1 AW O
00|/ W ~IN)| A UTO | [T

w B oco|uN | T

A wwvoouinkF @ M
00 W NN O/

N AW OO oo T
NN NS
Ol wF|N© AUt

— |=00|O 00Ul N~

H1(B)

H1(C)' Hy(G)' Hy(H)' @

Scan Phase In Detall

To concurrent join (R, and R»), (R and Ry)

_oad next run
from second rela-
tion Into memory

Y
[N

Py
N

B ©ON TN 0|00 >
00O A U O~ T

© Ul o~No N O

R ON~N U1 AW O
00| ~IN) A UT1O | [T

w B oco|uN | T

A wwvoouinkF @ M
00 W NN O/

N AW OO oo T
NN NS
Ol wF|N© AUt

— |=00|O 00Ul N~

H1(B)

H1(C)' Hy(G)' Hy(H)' @

Scan Phase In Detall

To concurrent join (R, and R»), (R and Ry)

No output tuples
discovered, so
update estimate
and write next run

back to disk

Y
[N

Py
N

INE NG N NS
000 A uiolo/~|~|
WUl o~ o~ O

= 00N~ U= | O
00/ W ~IN A U1O|i= [T
N e N N s

A w/olokolon ® P
o0/ ~Iwoln— o

N B w ool |~jco T
NN NS
O 00|l |Nojo o

— |=00|O 00Ul N~

H1(B)

H1(C)| Hyo(G)' Hy(H)' @

Scan Phase In Detall

To concurrent join (R, and R»), (R and Ry)

LLoad next run
Into memory

A
[N

A
N

BN UIN - ©o|oo) >
00|~ U1 0| O~ T
©oluico o ~No &~ O
RN~ U AW O
00| ~IN A U O [T
WAoo N oI~ T

B~ woloRuion @ M
o w RN O

NS W OO~ T
NN NS
O|oojw RN AUt

— | [00|O|O|00| U1 N~

H1(B)

H1(C)' Ha(G) Hy(H)’

Scan Phase In Detall

To concurrent join (R, and R»), (R and Ry)

Immediately dis-
cover any output
tuples and update
the estimate

A
[N

A
N

B(OIN|OTIN (|00 >
O0| O~ U1 O\~ 0

©Olulco o N &~ O
NN N,
00| ~IN A UT O T

w A oo N U~ T

B~ w oloRuion ® M
o w RN O

NS W O|O| 00| T
NN INEE RS
O|0o|w [N~ Ut

— |I=[00|O 0|00 | U1 N~

H1(B)

H1(C)' Hy(G)' Hy(H)' @

Scan Phase In Detall

To concurrent join (R, and R»), (R and Ry)

Sort and write
back to disk

A
[N

A
N

P,
.|>

Ao g1N|-|©|oo) >
oINSl PN ENTve
©olulo o~ N O
PN~ W O
00| ~IN A UT O T
WAoo o1~ T
B~ w oloRuion ® M
0w PN O
N B WO o~No L
ullo|~NA oo =
O|oojw||wjul ™

— |I=[00|O 0|00 | U1 N~

H1(B)

Hi(C)' HaG) Hy(H)

Scan Phase In Detall

To concurrent join (R, and R»), (R and Ry)

Do the same for
the fourth relation

A
[N

A
N

NENENE
oo|co| A Utjo|o|~|~| T
Ol o~No ™~ O
e NN NN,
00|wo| N A U1 | [T
N N N
Aw oo @ M
R N =

N| B |w|ol—o~No T
ojo|~No|l b ojojut = U
= R EGNE

— |00 O|O|00| U1 N~

H1(B)

H1(C)' Hy(G)' Hy(H)' @

Scan Phase In Detall

To concurrent join (R, and R»), (R and Ry)

All tuples have
been read, so
write back all In-
memory tuples,

and we’re done! Runl
Run 2

A
[

A
N

»owokuion ® M

O1O|BNINF[WO|00 >
3 [[{e]lee]F N {olaENEN|Nyy)
— OO O™ D
U110 R oo ~NON O
OO NN DWW O
W00 N~ OO [T]
WO K 0o NOT~| T1
O~ WO N O
N WON00~NO I
O~V Ul olojut = U
oW oo™

H,(B)

H1(C)' Hy(G)' Hy(H)'

Key Points

* (In this example) Five different updates to N;

* One update every time a run Is processed
 N; IS unbiased assuming random input order

« Can characterize variance (very challenging!)
« Ready for merge phase...

Merge Phase

o Separate merge for each join in ith levelwise step
« Each merge a lot like merge phase of SMJ
 Recall that we use a random sort order

e So result tuples come out in (semi-) random order

 Output tuples pipelined directly into scan phase of next level-
wise step

 Since tuples produced randomly, (i + 1)th levelwise step valid

Output so far:

'S
)
D
A
=
D
V)
qu’
e
an
D
(@)
| -
=

240 119 149
2 711 180/1 2/5/0

559 [5/83]9 [3/4/8 498

998 9188 (697 373

481 1727 433 [0/2]1

1/0/5) |[7/1]5/4 [2/5/2) 895

974 6493 |50/1 704

8|74 |4/3/110/ 7120/ 051

298
21410

Run 1
Run 2

Merge Phase In Detall

Head of each run of each relation is read into memory...

Output so far:
Rz R34

A

Y,
N

A
w

S NEN
kool

1o B[N = o) 3>
u1lo|oo| plolo|~|~
S E =N N e)
ool= o= B jw| O
ool oo|No| | u1oli-| M
©|oo|~ju A wlo
w|o]| B|oof— Nolor| | T
NG S = M=)
oo|~|wl=fovjko
INIRI=IIN N ===
o|~Nuwo|ojut = D

— OO0 O
—= 00O

Hi(B) Hi(C) Hy(G)' Hy(H)

Merge Phase In Detall

Search for output tuples In first join...

Output so far:

~ A\

pipelined directly into

next levelwise step

P
N

PV
w

R34

V@

1o B[N = o) 3>
utcojoo pfojo/~~ T | D
o= I NN
ool ooo|~Njo & O
ool= o= B jw| O
ool oo|No| | u1oli-| M
©|oo|~ju A wlo
w|o]| B|oof— Nolor| | T
NG S = M=)
oo|~|wl=fovjko
INIRI=IIN N ===
o|~Nuwo|ojut = D
00| w|=|okolu1| A=

HiB)' Hi(C) HyG) Hy(H)
Joined through key 1

712|2|5
5/0/0]5

Output so far
21414131
48827

4.9
5/0

1
2

9
1

481 1727 [43/3/M0/21

Joined through key 1

'S
)
D
A
=
D
V)
qu’
e
an
D
(@)
| -
=

=
@)
" —
O
-
@)
(&)
D
(Vp)
=
(7p)
2
o
-
o’
)
-
o
)
-
(@)
S
o
Y
i
O
| -
(qe]
D
)

240 L1
217117 1810

Joined through key 1

559 [5/83]9 [3/4/8 498

998 9188 (697 373

1/0/5) [7/1]5/4 [2/5/2M 89 5

974 6493 |50/1¢f7/04

8|74 |4/3/110 [72/0y40/5/1

298
21410

Run 1
Run 2

712|2|5
5/0/0]5

2/4/4/ 3|1
4181827

Output so far:

1] 71014
8195
A
9

9[8\9/1/8/8| 6/9]7

S}

Joined through key 1

'S
)
D
A
=
D
V)
qu’
e
an
D
(@)
| -
=

>
S
@
-
D
&
=
[®)
b
O
O
o
b
S
(B
S
(qv]
)
@)
(qe]
(b
<
-
-
S
[®)
b
e
)
-
(qe
e
X
L]

240
2711

Joined through key 1

8|74 |4/3/10 720/ [0/5/1
974 6493 |5
1/0|5| [7/1]5/4

559/ /5839 [3/4]8

4181 (11727 143]3

298
21410
9

&

Run 1
Run 2

FGHI
2/0/0/5

Output so far
ABCDE
418/812|7

Joined through key 3

'S
)
D
A
=
D
V)
qu’
e
an
D
(@)
| -
=

._|m
-
o
)
-
o
o
'l
(-
(¢B]
=
e
E
(¢
| -
(qv]
w
D
(@R
-
'
.
-
o
)
-
o
(¢
Z

240 119 149
2 /711 1801 2/5/0

481 (11727 43/3410/2]1

Joined through key 3

998 [9/18)8 697\373

559 [5/83]9 [3/14/8 4/9/8

1/0/5) |[7/1]5/4 [2/52 895

974 6493 501 [7/04

8|74 |4/3/10 720/ [0/5/1

298
21410

Run 1
Run 2

Merge Phase In Detall

Exhausted runs are replenished, new output tuples discov-
ered...

Output so far:
Rz

Pu)
H
Py
w
Py
w
&~

0000 U101~ T
wWoO0OoNM
~IN TN U1 U] e

1
[
8
9

HiB)' Hy(C)' Hy(@) Hy(H)'
Joined through key 4 Joined through key 3

1o B[N - o) 3>
10|00 oo/~ o
= SN
w|o B|oof—Nolur| | T
NG S = M=)
oo|~|wli=folnvj- o
INIEI=IN N N =)= =
o|~Nuswo|ojut = D
oo|w /= ofkolut s

Merge Phase In Detall

Again replace processed tuples in memory (perhaps skip-
ping some steps!)...

Output so far:
Rz

Pu)
N
Py
w
X
s~
P
w
~

l
91
ok

0000 U101~ T
wWoO0OoNM
~IN TN U1 U] e

731713
4198

H1(C)' Ha(G)' Hy(H)
Joined through key 4 Joined through key 3

ool= |~ o= A w| O
Y N ™
w|o| | oof= rojur|~ T
INGN= BN =Na)
oo|~|wli=folnvj- o

©|oo~=juwlo

©,

5/0/0/5
5/0/02
8/0/0/5
8002
413137

R34
FGHI

48827
8 7. 7/1|5
917/7/15
110054
29918

Output so far:
NP
ABCDE

895

2|52

Joined through key 3

'S
o
D
A
=
D
)
qu]
e
an
D
(@)
-
=

-
=
o
-
-]
o
@)
'
-
(«b}
)
-’
E
(«b)
| -
(qu]
-
o
=
L
(¢D)
S
-
(98]
S
Y
-
o
| -
(S
w
2L
o
-
-’
.
>
(@R
-
-]
o
(b}
Z

17127 1433 021
8=29/1/8|8] 6|97 [3/73

55 9=5/8/3|9 |3/4/8 4/9/8

H1(B)’

H1(C)) Hy(G) Hy(H)'

71154

974 161493 501 704

8 7.4 4310 720 051

11051
919

111114

FGHI
5/0/0/5
2/0/0|2
8/0/0/5
4337
314149

Output so far:
ABCDE
418827
8/7/7/15
9177115
2/9/9/1/8
919918
55583

'S
)
D
A
=
D
V)
qu’
e
an
D
(@)
| -
=

ln_lb.
-
O
©
(b
—
(qv]
=
©
-
(qv]
n.,
O
=
T
(b
—
©
-
O
(&)
D
Jp)
—
o
Y
D
=
qv)
o))

H1(C)' Ha(G)' Hay(H)'

559 51839 [3/4/8=4/9/8

H,(B)’

9198|9188 (697 373

481 1727 433 [0/2]1

10/5 71154 |2/52 8§95

974 6493 501 704

8|74 |4/3/110/ 7120/ 051

Run 1
Run 2

A Few More Detalls...

Handling “inconvenient” queries

SELECT SUM (R.A)]

FROM R, S, T, U // \\U
WHERE R.A = S.A AND <]
/N
1T
/N
R S

Issue: which relations are in the first levelwise step?

(@

A Few More Detalls...

Handling “inconvenient” queries

SELECT SUM (R.A)
FROM R, S, T, U
WHERE R.A = S.A AND
T.B AND
U

R.B B
R.C .C

Solution: introduce a “scan and reorder” operator

A Few More Detalls...

Computing the current estimate

* Use N = S w;N;; since independent, getting w; IS an easy
optimization problem

Computing accuracy guarantees

e Not easy!
1. Two kinds of randomization
2. “Chunks” of tuples from merge phase
3. LOTS of algebra, recursive variance formulas
4. Covariance among estimates making up each N; @

How Well Does This Work?
Ex: TPC-H query: DBO 26m42s

Postgres 43m4/s

=
=
=
U 0
-
>
o .
m

1 F T T T
0.1 k

\

~ Query Duration

Are We Done Yet?
Of Course Not!

 Subtraction and related operators are a big problem
* Indexing (how to provide randomness?)

o Query optimization: what is the goal?

 Many more...

Thank You!

« Special thanks to my UF colleague Alin Dobra, and my stu-
dents Abhijit Pol, Subramanian Arumugam, Shantanu Joshi

e Some papers on this stuff:

1.

2.

“A Disk-Based Join with Probabilistic Guarantees,” Jer-
maine, Dobra, Arumugam, Joshi, Pol, SIGMOD 2005
“The Sort-Merge-Shrink Join,” Jermaine, Dobra, Aru-
mugam, Joshi, Pol, TODS 31(4), December 2006

