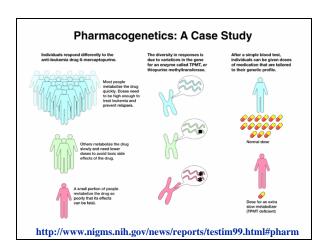
PharmGKB: The Pharmacogenetics Knowledge Base

Daniel L. Rubin, M.D., M.S.

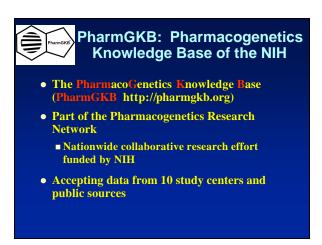
Stanford Medical Informatics Stanford University School of Medicine

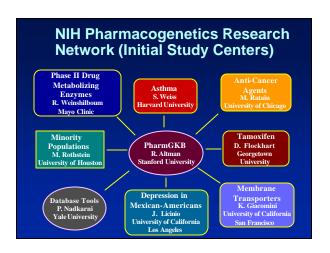
Drug Response and Genotype

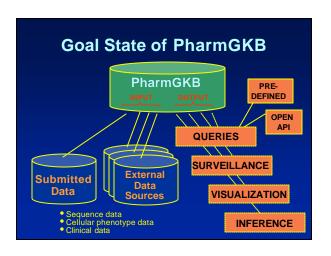

- Patient responses to drugs are variable and sometimes unpredictable
- Adverse drug reactions account for more than 2 million hospitalizations and 100,000 deaths in 1994
- Current approach: historical; risk stratification (clustering; classification)
- Response to some drugs has a genetic basis
- Desired approach: individualized treatment based on genotype

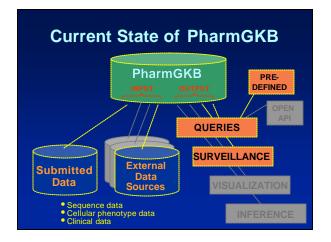
Genotype and Phenotype

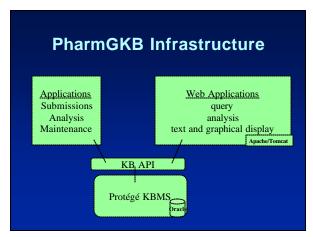
- Genotype
 - Genetic makeup
 - Genetic sequence of DNA in an individual
- Phenotype
 - Visible trait (eye color, disease, etc.)
 - Manifestation of a genotype

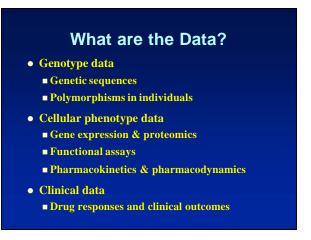

Pharmacogenetics

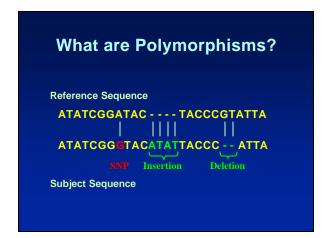

- Discipline to understand how genetic variation contributes to differences in <u>drug responses</u>
- Methods: genotype-phenotype studies
- Goal: drug treatment tailored to individual patients
- Promises: new drug discovery and treatments by mining genome & SNP databases

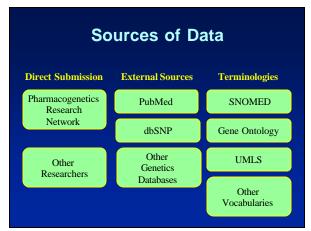

Need Integrated Resource for Pharmacogenetics

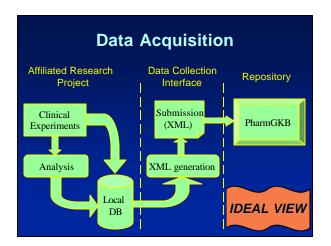

- Proliferation of experimental data
 - **■** Gene sequencing studies
 - Biological and clinical studies of phenotype
- Need to connect genotype ← → phenotype
- Gives insight into gene-drug relationships
- Understand how genetic variation contributes to differences in drug responses

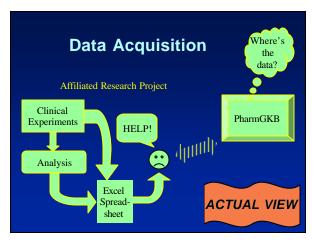



Goals of PharmGKB • National data resource linking genetic, laboratory data, and clinical data • Contain high quality publicly-accessible data • Link with complementary databases (Medline, dbSNP, Genbank, etc.) • Assist researchers discover genetic basis for variation in drug response • Receive genotype/phenotype data from participating study centers • Analytical functionality to link genotype and phenotype







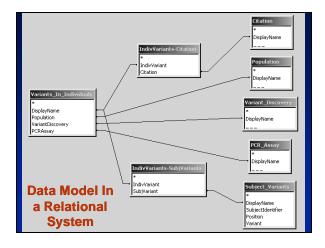


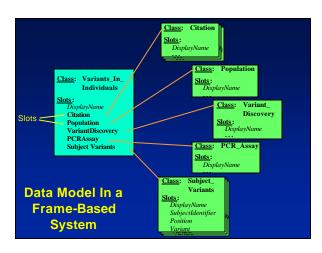
Challenges for PharmGKB

- DB vs. KB (relational model vs. ontology)
- Data integration
 - Data from study centers
 - **Data from external databases**
- Ontology evolution
 - Maintain mapping from external data input/output formats to internal representation
 - Change management between development & production versions (schema update problem in databases)
- Data validation, data editing/audit trail

Biomedical Databases

- Paper
- Electronic versions of paper (pdf, img files)
- Spreadsheets
- Text files or other formats
- RDBMS
- OODBMS
- KBMS (e.g., frame systems)


Definitions


- Data: simple description of an observation; lowest level of known facts
- Information: data that has been sorted, analyzed, and interpreted so known facts have substance and purpose
- Knowledge: information that has been placed in the context of other information
- KB: a computational repository of knowledge, and the information and data that the knowledge is built upon

Gully A. P. C. Burns http://www-hbp.usc.edu/_Documentation/presentation/neuroscholar_cns98/

KB vs. DB: The Difference is the Data Model

- In many ways, KB & DB are interchangeable
 - Data model can be implemented in RDBMS or KBMS
 - "KB" can be implemented in RDBMS
- Difference in data model
 - DB: relations, relational schema
 - KB: frames, ontology (locality of information)
- Data model for DB in form to facilitate retrieval
- Data model for KB in form to facilitate reasoning

Data Model for PharmGKB

Ontology is preferred for PharmGKB

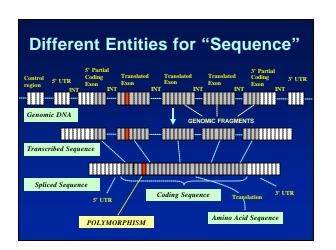
- **■Domain complexity**
 - ♦ Many entities and relationships (is-a, hierarchical)
 - ♦ Multi-valued attributes (simple & object types)
- Rapid evolution of data model → changing database schema
- ■Storage schema can closely parallel "common data model"
- Support applications relying on inheritance & other relationships in ontology
- Reasoning over information in KB

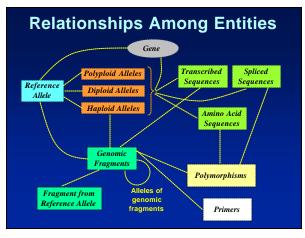
Data Models in Genetic Databases

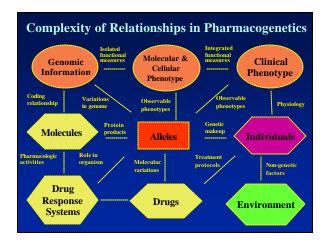
• Data can be described in "flat" tabular representations (entry + attributes)

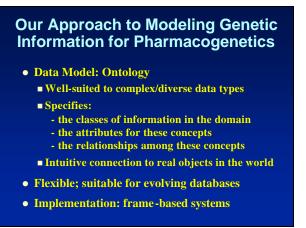
I	Genbank Accession		Definition	Version	Segment	 Sequence
١	U44106	HSHNMT01	Human histamine N- methyltransferase (HNMT) gene, exon 1	U44106.1 GI:1236884	1 of 6	 aagggcagagtca

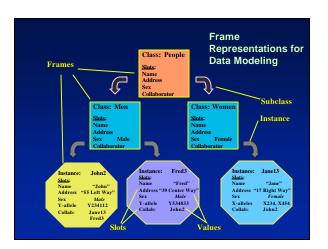
- Relational schema appropriate
- Fine for pre-defined functionality (BLAST, etc.)
- Goal: storage/retrieval; less so for analysis


Domain Complexity in Pharmacogenetics


- Different distinctions in the same data e.g., for sequences:
 - String of letters making up the sequence
 - **■** Genomic structure of the sequence
 - Polymorphisms in the sequence
 - Haplotypes of the sequence
- Many relationships
 - Genes have sequences; sequences have genomic structure; individuals have polymorphsims in sequences...


More than Letters in a Genetic Sequence

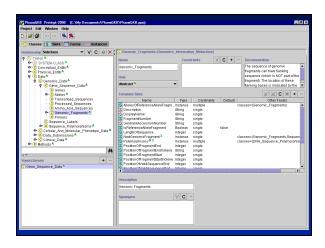

- Coding regions
- Flanking sequence
- Exons/introns
- Primer regions

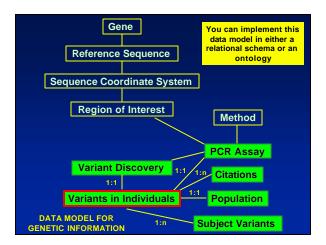

1825+								
		ctgccatttc	caagtctccc	agttaaagat	tgttaatgaa	taaaacctat	attttgaaat	U04310
						tttcatgttg		Exon3
	121	cattcattgt	atttttagtc	tgttctcttc	aactagacta	gataatcaga	tttcacaaaq	
	181	cacctaaca						
			ctttaacca	ttatgctgtg	tgatgacaat	a	INTRON 3 .	
2166+								
		catctttgat	ttgatgaaat	atagtgatag	atgttaaaga	tcatgtaaac	gaatggatgg	U25508
		cactcacage	cctccttgag	tcacattact	atgcctactt	agaacctagc	tgccctgcat	Exon4
						taggctttcc		
						ctgtggtatg		
						gactaaacat		
						tccattcccc		
	601	aatgattacc	ttttggatgt	ttatgcttaa	gtacagattc		INTRON 4 .	

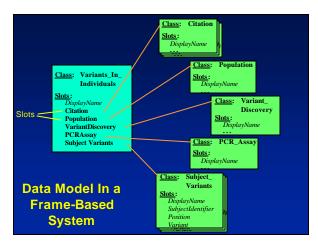
Database Schema Should Match Common Data Model

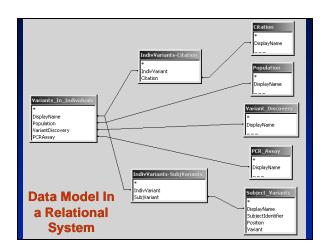
- Queries are not predefined—users must interact directly with schema
 - **Open API for queries**
 - Need to understand database schema
- Data integration from external databases having differing schemas
- Analysis is as important as storage/retrieval
 - Analytical functions not predefined—users must be able to write applications

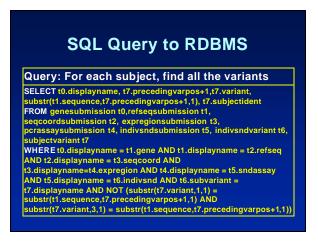

Pre-defined Queries vs. Open API to DB

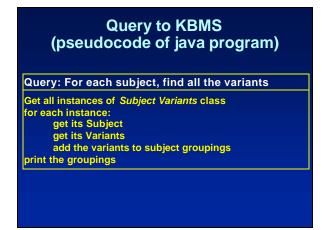

- Predefined queries & functionality
 - e.g., free-text/keyword search; BLAST
 - User does not directly see DB schema (if at all)
 - DB schema understood only by administrator
 - **◆**Can be optimized for performance
 - ♦Hard to understand by external user
- Open API for queries
 - Users can formulate customized queries
 - User must understand the data schema

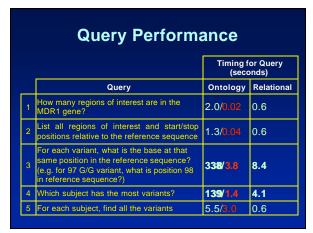

A Comparison Study

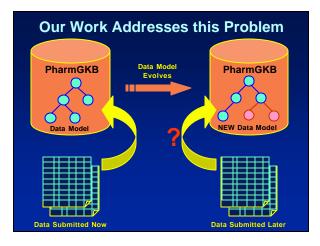

- PharmGKB data model for genetic information implemented in:
 - RDBMS: Oracle 8.1.7
 - KBMS: Protégé-2000
- Sample queries pertinent to pharmacogenetics
- Approximate timings on queries*
- Comparison of database schemas


*Big grain of salt



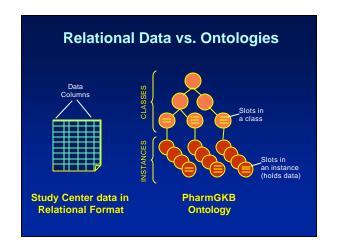




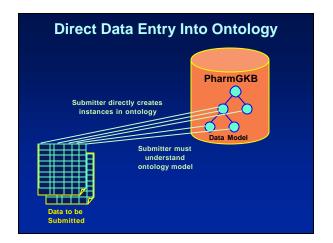


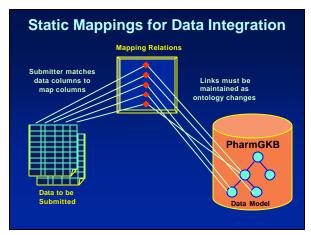
Challenges for PharmGKB

- DB vs. KB (relational model vs. ontology)
- Data integration
 - **Data from study centers**
 - Data from external databases
- Ontology evolution
 - Maintain mapping from external data input/output formats to internal representation
 - Change management between development & production versions (schema update problem in databases)
- Data validation, data editing/audit trail

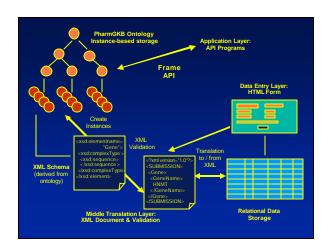

Need to Integrate Different Data Models

- Ontology (PharmGKB data model)
 - Describes pharmacogenetics concepts & relationships among them
 - **■** Flexible and highly expressive
 - Suitable for rapidly evolving knowledge bases
- Relational (incoming study center data)
 - Tabular
 - Predominant in most biology databases
- Data Integration Task:
 - Import study center data into PharmGKB


Goals


- Interface ontology models with external relational data sources
- Import raw sequence data (relational) into ontology of pharmacogenetics
- Automate updating links between ontology and data acquisition when ontology changes

Current Approaches to Integrating Relational Data into Ontologies


- Direct data entry into ontology
 - Requires understanding of ontology structure
 - Usually different from "intuitive" view of data
- Static mappings
 - Map each slot in ontology to column in table
 - Difficult to maintain as ontology changes
- The challenge: maintaining the links as the ontology changes

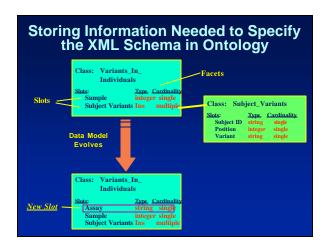
Our Approach

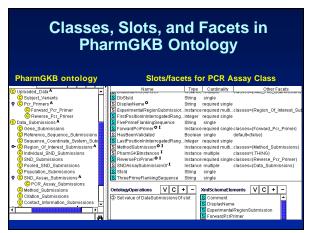
- Declarative interface between relational data acquisition and ontology
 - XML schema
 - ◆Defines mapping & constraints on incoming data
 - Ontology stores information needed to specify XML schema
 - Automated update of XML schema when ontology changes
- Incoming data in XML
 - Existing relational tables mapped to XML schema

XML Schema

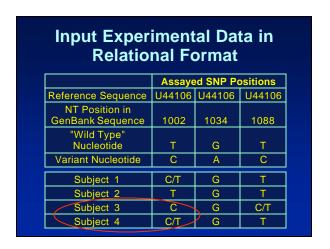
- Self-describing syntax for defining valid XML documents
- Derived from ontology
- Updated as ontology changes

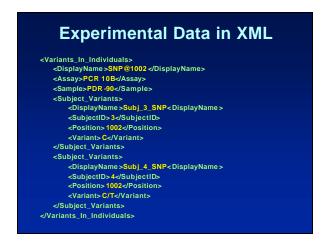
<xsd:element name="PCR_Assay_Submissions">
 <xsd:complexType>

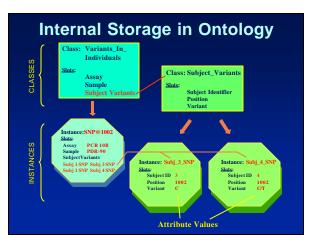

<xsd:element name="Comment" type="xsd:string" minOccurs="0" maxOccurs="1"/>
<xsd:element name="StsId" type="xsd:integer" minOccurs="0" maxOccurs="1"/>
/xsd:sequence>

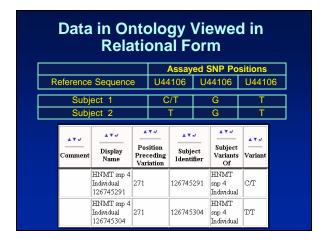

</xsd:complexType:

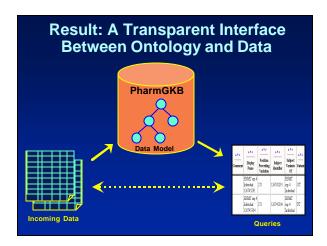
</xsd:elemen


The XML Schema is Defined by the Ontology


- Facets on slots define data constraints
 - Range of legal values
 - Data type (string, number, Instance, or Class)
 - Required or optional
 - Single or multiple cardinality
- When ontology changes, facets change too!
 - Updated XML schema immediately available
- Code handling XML remains unchanged






Evaluation • Study center mapped sequence data to XML schema • Data submitted to PharmGKB in XML ■ PharmGKB internal storage format: ontology ■ Output (query) format: relational, like original data • Ontology changed—XML schema rapidly updated • No change needed in processing code

Conclusions (1)

- An ontology provides a flexible data schema
- Built ontology of pharmacogenetics information
- Model is expandable; permits broad range of queries
- Data model close to the biological model is useful
- Tradeoffs between RDBMS/KBMS
- Practical issues of importing data and data integration overwhelm theoretical issues

Conclusions (2)

- Method for integrating ontology and relational data
- XML schema interface
 - Simplifies mapping to relational data
 - Shields user from ontology structure
- XML for data exchange--keeps the data in clear, human-readable format
- Can rapidly update XML schema interface even after ontology changes

Future Work

- Develop improved database back end for KBMS
- Provide graphical views
- Develop open API for querying KB
- Develop analytic routines

Acknowledgments

- Russ Altman, M.D., Ph.D.
- Teri Klein, Ph.D.
- Micheal Hewett, Ph.D.
- Diane Oliver, M.D., Ph.D.
- Mark Woon
- Steve Lin
- Katrina Easton
- NIH/NIGMS Pharmacogenetics Research Network and Database (U01GM61374)

Thank you.

Contact info: rubin@smi.stanford.edu help@pharmgkb.org http://www.pharmgkb.org/