Enterprise JavaBeans"

e e T e e e e e O L s 2 PR L P B Pl STt L L o ML o e B ST e . S L T e N

Linda DeMichiel

Sun Microsystems, Inc.

JAvA

Agenda

Quick introduction to EJB'

Major new features
Support for web services

Container-managed persistence
Query language
Support for messaging

Status and Roadmap

What is Enterprise JavaBeali3

An architecture for component-based distributed
computing

Part of the Java 2 Platform, Enterprise Edition
(J2EE™)

Components written to EJB spec can be
deployed in any J2EE compatible EJB container
without source-code modification or
recompilation

Write Once Run Anywhere

EJB Expert Group Work as Part of
Java Community ProceS¥Program

ATG Persistence
BEA Pramati
Borland SeeBeyond
~UJjitsu-Siemens Silverstream
P Sun

BM Sybase

ONA Tibco
IPlanet Webgain

- Oracle Monson-Haefel

What is an EJB'?

An enterprise bean Iis a component that contains

the business logic that operates on an enterprise
data

EJB components can be

coarse-grained, remotable
fined-grained, local

Components run within the EJB Container

JAVA

EJB Container

Managed environment for the execution of
components

Provides platform services to the bean

Container transparently interposes on method
Invocations to inject its services

JAvA

Container-Provided Services

Concurrency
Transactions
Distribution
Persistence
Security
Scalability

), Resource pooling
- EIS Integration
— 7 Administration
S

TAVA

EJB Component Model

EJB spans different object types:

Object that represents a conversational session with
client

Object that represents a stateless service
Object that represents a web service endpoint

Object that represents an asynchronously invoked
service

Entity object that represents a business object that c:
be shared across clients

Component Types

Session Beans

"Conversation with client"

e Stateful
e Stateless

Entity Beans

Model business object as persistent, transactional
data, with identity

Message-driven Beans

"CTEZ‘:’ Asynchronously invoked, anonymous

Parts to an EJB Component

Client view Interface(s)

Home interface

Component interface
Web service endpoint interface

Bean Class
Implementation of business logic
Deployment descriptor

J_L;E__EE_: declarative specification of Bean's dependencies on
]AW‘C operational environment

Home Interface

public interface AccountHome extends
javax.ejb.EJBLocalHome {

Account create(Customer customer)
throws CreateException;

Account findByPrimaryKey(String
accountlD)

throws FinderException;

Component Interface

| public interface Account extends
javax.ejb.EJBLocalObject {

void debit(double amount)
throws InsufficientBalanceException;
void credit(double amount);

double getBalance();

Bean Class

public class AccountBean implements
javax.ejb.EntityBean {
public debit(double amount)
throws InsufficientBalanceException
{if (@amount > balance)
throw InsufficientBalanceException;
else balance = balance - amount;}

/+ public double getBalance() {
return balance;

Deployment Descriptor

el <entity>
- | <ejb-name>Account</ejb-name>
~ <local-home>com.example.AccountHome</local-hom
-~ e

. <local>com.example.Account</local>
<ejb-class>com.example.AccountBean</ejb-class>
<persistence-type>Bean</persistence-type>

<resource-ref>
<res-ref-name>jdbc/AccountDB</res-ref-name>

Z<res-type>javax.sgl.DataSource</res-type>
J"E_=-—“—;'E'“)</resource ref>

Interfaces: Local/Remote

Bean can provide local interface and/or remote
Interface

typically not both are provided
_ocal interfaces new in EJB 2.0

_ocal EJB interface - standard Java interface

Remote interface - java.rmi interface
Bean Provider needs to consider trade-offs

| ocal Interface

~ | public interface Account extends
| Javax.ejb.EJBLocalObject {

void debit(double amount)
throws InsufficientBalanceException;
void credit(double amount);

double getBalance();

Remote Interface

public interface Account extends
javax.ejb.EJBODbject {

void debit(double amount)
throws InsufficientBalanceException,
RemoteException;

void credit(double amount)
throws RemoteException;

double getBalance()

S throws RemoteException;
JAVA \

Local vs Remote Trade-offs

Location independence vs more efficient access

Flexibility in distribution vs collocation of
components

_oose Vs tight coupling between client and bean

Pass-by-value vs "pass-by-reference”

solation of components vs ability to share data
across components.

Session Beans

Model stateful service
Maintain conversational state
Model stateless service

Natural fit for modeling web services

What 1s a Web Service ?

A set of endpoints operating on messages

Service Is described abstractly in WSDL
document (XML) and published

Endpoints are defined by set of:
operations

messages (arguments, results)

Service can be bound to XML-based protocol
- (SOAP) and HTTP transport

Providing a Web Service

Create WSDL document describing service

Implement web service endpoints
Publish WSDL

Bottom-up and top-down variants of these
approaches are possible

e.g., Discover WSDL, implement conforming service
endpoints

Implementing Web Services with EJE

Easy! Stateless Session Bean

Define web service endpoint interface for
stateless session bean

Implement business logic for methods in session
bean class

Container delegates invocations on service endpoint
to session bean instance

JAX-RPC runtime handles mapping of
reguests/responses

Web Service Endpoint Interface

| public interface StockQuoteProvider
-~ | extends java.rmi.Remote {

public float getLastTradePrice

(String tickerSymbol)
throws java.rmi.RemoteException;

Session Bean Class

~ | public class StockQuoteProviderBean
Implements javax.ejb.SessionBean {

public float getLastTradePrice
(String tickerSymbol)
throws java.rmi.RemoteException

{

// business logic for method,;

Deployment Descriptor

~ <session>
<ejb-name>StockQuoteEJB</ejb-name>
<service-endpoint>

- com.example.StockQuoteProvider

. </service-endpoint>

- <ejb-class>
com.example.StockQuoteProviderBean
</ejb-class>
<session-type>Stateless</session-type>
transaction-type>Container</transaction-type>

] AVA </session>

How to Use a Web Service from an
Enterprise Bean

Use much like any other resource

use service-ref deployment descriptor element to
declare dependency on JAX-RPC service type

Look up service stub in JNDI
Get stub/proxy for service endpoint
Invoke methods on endpoint

JAX-RPC runtime in container handles
Invocations on service endpoints

JAVA

EJB Client View of Web Service

“ public class InvestmentBean implements
javax.ejb.SessionBean {

"?;E;_ public void checkPortfolio(...) {
| Context ctx = new InitialContext();
StockQuoteService sqgs = ctx.lookup(
"Java:comp/env/service/StockQuoteService");
StockQuoteProvider sgp =
sgs.getStockQuoteProviderPort();
float quotePrice sgp.getLastTradePrice(...);

Entity Beans

Model business objects, e.q.,
Account

PurchaseOrder

Employee
Persistent, long-lived entities
), Transactional

Queryable

%= Can have bean-managed or container-managed
JAVA persistence

Entity Bean Persistence

Bean Managed Persistence
Extremely flexible

Can hand-tailor database access
Tools can be used to supply data access component

Container Managed Persistence

Frees developer from data access task
Allows independence of bean from data source

Allows iIndependence of bean from database scheme

Container Managed Persistence:
Goals

Introduced in EJB 1.0

Completely re-architected in EJB 2.0

Allow for scalable, high-performance
Implementations

Allow leverage of object-relational mapping
technology

% Allow wide range of modeling:

: remotable, coarse-grained entities
277 fine-grained modeling of persistent state
f-‘?ﬁef relationships among entities to model complex state
AVA

Global View

Bean operates in a managed environment

Container provides services to the bean
Management of persistent state

Relationship management, including
« Referential integrity management
 Collection management

Query service (for finder methods)
-) Services have associated contracts/protocols

s Deployment descriptor embodies semantic
JAvA contract between Bean and Container

Bean Provider's View:
Abstract Schema

Logical abstraction over persistent state

Declaratively defined in deployment descriptor
cmp-fields capture persistent state

cmr-fields capture persistent relationships

Embodied in method-based API

abstract get and set methods defined for access to
persistent state and relationships

java.util.Collection API for collection-valued
cmr-fields

Provides basis for declarative query language

Container's View

Provides implementation of abstract schema
Provides state management

Provides relationship management

Provides implementation of declarative queries
against abstract schema

), Spec allows wide variety of implementation
techniques

Container-Managed Support for
Relationships

1-1, 1-N, M-N associations among beans

Provides programmatic navigabllity
Container maintains referential integrity

Defined by Bean Provider in deployment
descriptor

Tightly-integrated set of beans: assumes
co-location in same JVM

Example

| public abstract class OrderBean implements
javax.ejb.EntityBean {

public abstract java.util.Collection
getLineltems();

public void addLineltem(Product p, int

guantity) {
LineltemHome = .../JNDI lookup

Lineltem | = LineltemHome.create();
|.setQuantity(quantity);
|.setProduct(p);

Se=== getLineltems().add(l);
JAVAY o

Expected Design Patterns

Use of session beans and message-driven beans to fro
network of entity beans

Use of remote and/or coarse-grained entity beans as
aggregators for internal network of fine-grained entity
beans

Expect dual-mode remote+local interface use to be
relatively uncommon

EJB™ QL

Portable definition of query methods for
container-managed persistence entities

New in EJB 2.0
Declarative language, independent of data store

Queries defined at abstract schema level In
deployment descriptor

SQL-like SELECT...FROM...WHERE syntax

——"

<= Based on navigability over relationships

JAVA" supports parameterized queries

Query Methods

Finder methods

Return EJBODbjects or EJBLocalObjects of same type
as entity bean

Select methods

for internal use of bean class
can return any cmp- or cmr-field type
fuller range (superset) of queries available

JAvA

EJB QL Example

Find orders for a specific product:

SELECT OBJECT(0)
FROM Orders o, IN(o.lineltems) |
WHERE |.product.name = ?1

JAvA

EJB™ QL Example

Order by quantity and cost:

SELECT OBJECT(0)
FROM Customer c, IN(c.orders) o

WHERE c.address.state = 'CA'
ORDER BY o.quantity ASC,
o.totalcost DESC

EJB™ QL Example

Use of aggregate function:

SELECT SUM(l.price)
FROM Order o, IN(o.lineltems) |

WHERE o.customer.lasthame = 'Smith’
AND o.customer.firsthame = 'John'

Message-Driven Beans

Provide loose coupling among heterogeneous
systems

Interoperate with legacy systems that use messaging
for integration

Interoperate with B2B systems not based on the J2E
platform

Provide asynchronous communication

s»-m Provide support for disconnected use of enterpri
. beans

Message-Driven Beans

New enterprise bean type added in EJB 2.0
Asynchronous

Activated upon message arrival
Stateless
No home or component interface

Message listener method in message-driven bean
class contains business logic

Use with container-managed or bean-managed
transaction demarcation

Message-Driven Bean Enhancement

Message-driven beans were very JMS-centric In
EJB 2.0

Generalizing in EJB 2.1 to support other
messaging types
e.g., JAXM

Message-driven bean class can implement specific
messaging interface

* Previously restricted to javax.jms.MessageListener

R
T

< Pluggability of messaging providers through
JavA Connector APIs in J2EE 1.4

-

EJB 2.0

Main new features:
Message-driven beans
Container-managed persistence
EJB QL
Interoperability contracts
Security Enhancements

Released as part of J2FEL.3 platform in September
2001

Specification

Reference Implementation

Compatibility Test Suite
http://java.sun.com/products/ejb/docs.html

EJB 2.1

Main new features:

Web service support

EJB QL enhancements
Message-driven bean extensions
Timer service

EJB 2.1 currently in JCP Community Review
Public draft targeted for late June

For More Information

http://java.sun.com/products/ejb
http://java.sun.com/j2ee

]AVPE

