
Enterprise JavaBeansTM

Linda DeMichiel

Sun Microsystems, Inc.

Agenda

� Quick introduction to EJBTM

� Major new features
� Support for web services

� Container-managed persistence

� Query language

� Support for messaging

� Status and Roadmap

What is Enterprise JavaBeansTM?

� An architecture for component-based distributed
computing

� Part of the Java 2 Platform, Enterprise Edition
(J2EETM)

� Components written to EJBTM spec can be
deployed in any J2EE compatible EJB container
without source-code modification or
recompilation
� Write Once Run Anywhere

EJB Expert Group Work as Part of
Java Community ProcessSM Program

� ATG
� BEA
� Borland
� Fujitsu-Siemens
� HP
� IBM
� IONA
� iPlanet
� Oracle

� Persistence
� Pramati
� SeeBeyond
� Silverstream
� Sun
� Sybase
� Tibco
� Webgain
� Monson-Haefel

What is an EJBTM?

� An enterprise bean is a component that contains
the business logic that operates on an enterprise's
data

� EJB components can be
� coarse-grained, remotable

� fined-grained, local

� Components run within the EJB Container

EJB Container

� Managed environment for the execution of
components

� Provides platform services to the bean
� Container transparently interposes on method

invocations to inject its services

Container-Provided Services

� Concurrency
� Transactions
� Distribution
� Persistence
� Security
� Scalability
� Resource pooling
� EIS Integration
� Administration

EJB Component Model

� EJB spans different object types:
� Object that represents a conversational session with a

client

� Object that represents a stateless service

� Object that represents a web service endpoint

� Object that represents an asynchronously invoked
service

� Entity object that represents a business object that can
be shared across clients

Component Types

� Session Beans
� "Conversation with client"

� Stateful
� Stateless

� Entity Beans
� Model business object as persistent, transactional

data, with identity

� Message-driven Beans
� Asynchronously invoked, anonymous

Parts to an EJB Component

� Client view interface(s)
� Home interface

� Component interface

� Web service endpoint interface

� Bean Class
� implementation of business logic

� Deployment descriptor
� declarative specification of Bean's dependencies on

operational environment

Home Interface

public interface AccountHome extends
javax.ejb.EJBLocalHome {

 Account create(Customer customer)

 throws CreateException;

 Account findByPrimaryKey(String
accountID)

 throws FinderException;

...

}

 Component Interface

public interface Account extends
javax.ejb.EJBLocalObject {

 void debit(double amount)

 throws InsufficientBalanceException;

 void credit(double amount);

 double getBalance();

}

 Bean Class

public class AccountBean implements
javax.ejb.EntityBean {

 public debit(double amount)

 throws InsufficientBalanceException

 {if (amount > balance)

 throw InsufficientBalanceException;

 else balance = balance - amount;}

 ...

 public double getBalance() {

 return balance;

 }

 ...

}

Deployment Descriptor

...
<entity>
<ejb-name>Account</ejb-name>
<local-home>com.example.AccountHome</local-hom

e>
<local>com.example.Account</local>
<ejb-class>com.example.AccountBean</ejb-class>
<persistence-type>Bean</persistence-type>
...
<resource-ref>
<res-ref-name>jdbc/AccountDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
</resource-ref>
</entity>

Interfaces: Local/Remote

� Bean can provide local interface and/or remote
interface
� typically not both are provided

� Local interfaces new in EJB 2.0
� Local EJB interface - standard Java interface
� Remote interface - java.rmi interface
� Bean Provider needs to consider trade-offs

 Local Interface

public interface Account extends
javax.ejb.EJBLocalObject {

 void debit(double amount)

 throws InsufficientBalanceException;

 void credit(double amount);

 double getBalance();

}

 Remote Interface

public interface Account extends
javax.ejb.EJBObject {

 void debit(double amount)

 throws InsufficientBalanceException,

 RemoteException;

 void credit(double amount)

 throws RemoteException;

 double getBalance()

 throws RemoteException;

}

Local vs Remote Trade-offs

� Location independence vs more efficient access
� Flexibility in distribution vs collocation of

components
� Loose vs tight coupling between client and bean
� Pass-by-value vs "pass-by-reference"
� Isolation of components vs ability to share data

across components.

Session Beans

� Model stateful service
� Maintain conversational state

� Model stateless service
� Natural fit for modeling web services

What is a Web Service ?

� A set of endpoints operating on messages
� Service is described abstractly in WSDL

document (XML) and published
� Endpoints are defined by set of:

� operations

� messages (arguments, results)

� Service can be bound to XML-based protocol
(SOAP) and HTTP transport

Providing a Web Service

� Create WSDL document describing service
� Implement web service endpoints
� Publish WSDL
� Bottom-up and top-down variants of these

approaches are possible
� e.g., Discover WSDL, implement conforming service

endpoints

Implementing Web Services with EJB

� Easy! Stateless Session Bean
� Define web service endpoint interface for

stateless session bean
� Implement business logic for methods in session

bean class
� Container delegates invocations on service endpoint

to session bean instance

� JAX-RPC runtime handles mapping of
requests/responses

 Web Service Endpoint Interface

public interface StockQuoteProvider
extends java.rmi.Remote {

 public float getLastTradePrice

 (String tickerSymbol)

 throws java.rmi.RemoteException;

 ...

}

 Session Bean Class

public class StockQuoteProviderBean
implements javax.ejb.SessionBean {

 public float getLastTradePrice

 (String tickerSymbol)

 throws java.rmi.RemoteException

 {

 // business logic for method;

 ...

 }

}

 Deployment Descriptor

<session>

<ejb-name>StockQuoteEJB</ejb-name>

<service-endpoint>

com.example.StockQuoteProvider

</service-endpoint>

<ejb-class>

com.example.StockQuoteProviderBean

</ejb-class>

<session-type>Stateless</session-type>

<transaction-type>Container</transaction-type>

...

</session>

How to Use a Web Service from an
Enterprise Bean

� Use much like any other resource
� use service-ref deployment descriptor element to

declare dependency on JAX-RPC service type

� Look up service stub in JNDI
� Get stub/proxy for service endpoint
� Invoke methods on endpoint
� JAX-RPC runtime in container handles

invocations on service endpoints

 EJB Client View of Web Service

public class InvestmentBean implements
javax.ejb.SessionBean {

public void checkPortfolio(...) {

 Context ctx = new InitialContext();

 StockQuoteService sqs = ctx.lookup(

 "java:comp/env/service/StockQuoteService");

 StockQuoteProvider sqp =

 sqs.getStockQuoteProviderPort();

 float quotePrice sqp.getLastTradePrice(...);

 ...}

}

Entity Beans

� Model business objects, e.g.,
� Account

� PurchaseOrder

� Employee

� Persistent, long-lived entities
� Transactional
� Queryable
� Can have bean-managed or container-managed

persistence

Entity Bean Persistence

� Bean Managed Persistence
� Extremely flexible

� Can hand-tailor database access

� Tools can be used to supply data access components

� Container Managed Persistence
� Frees developer from data access task

� Allows independence of bean from data source

� Allows independence of bean from database schema

Container Managed Persistence:
Goals

� Introduced in EJB 1.0
� Completely re-architected in EJB 2.0
� Allow for scalable, high-performance

implementations
� Allow leverage of object-relational mapping

technology
� Allow wide range of modeling:

� remotable, coarse-grained entities
� fine-grained modeling of persistent state
� relationships among entities to model complex state

Global View

� Bean operates in a managed environment
� Container provides services to the bean

� Management of persistent state
� Relationship management, including

� Referential integrity management
� Collection management

� Query service (for finder methods)
� Services have associated contracts/protocols
� Deployment descriptor embodies semantic

contract between Bean and Container

Bean Provider's View:
Abstract Schema

� Logical abstraction over persistent state
� Declaratively defined in deployment descriptor

� cmp-fields capture persistent state

� cmr-fields capture persistent relationships

� Embodied in method-based API
� abstract get and set methods defined for access to

persistent state and relationships

� java.util.Collection API for collection-valued
cmr-fields

� Provides basis for declarative query language

Container's View

� Provides implementation of abstract schema
� Provides state management
� Provides relationship management
� Provides implementation of declarative queries

against abstract schema
� Spec allows wide variety of implementation

techniques

Container-Managed Support for
Relationships

� 1-1, 1-N, M-N associations among beans

� Provides programmatic navigability

� Container maintains referential integrity

� Defined by Bean Provider in deployment
descriptor

� Tightly-integrated set of beans: assumes
co-location in same JVM

Example

public abstract class OrderBean implements
javax.ejb.EntityBean {

 public abstract java.util.Collection

 getLineItems();

 ...

 public void addLineItem(Product p, int
quantity) {

 LineItemHome = .../JNDI lookup

 LineItem l = LineItemHome.create();

 l.setQuantity(quantity);

 l.setProduct(p);

 getLineItems().add(l);

}...}

Expected Design Patterns

� Use of session beans and message-driven beans to front
network of entity beans

� Use of remote and/or coarse-grained entity beans as
aggregators for internal network of fine-grained entity
beans

� Expect dual-mode remote+local interface use to be
relatively uncommon

EJBTM QL

� Portable definition of query methods for
container-managed persistence entities

� New in EJB 2.0
� Declarative language, independent of data store
� Queries defined at abstract schema level in

deployment descriptor
� SQL-like SELECT...FROM...WHERE syntax
� Based on navigability over relationships
� Supports parameterized queries

Query Methods

� Finder methods
� Return EJBObjects or EJBLocalObjects of same type

as entity bean

� Select methods
� for internal use of bean class

� can return any cmp- or cmr-field type

� fuller range (superset) of queries available

EJB QL Example

Find orders for a specific product:

 SELECT OBJECT(o)

 FROM Orders o, IN(o.lineItems) l

 WHERE l.product.name = ?1

EJBTM QL Example

Order by quantity and cost:

 SELECT OBJECT(o)

 FROM Customer c, IN(c.orders) o

 WHERE c.address.state = 'CA'

 ORDER BY o.quantity ASC,

 o.totalcost DESC

EJBTM QL Example

Use of aggregate function:

 SELECT SUM(l.price)

 FROM Order o, IN(o.lineItems) l

 WHERE o.customer.lastname = 'Smith'

 AND o.customer.firstname = 'John'

Message-Driven Beans

� Provide loose coupling among heterogeneous
systems
� Interoperate with legacy systems that use messaging

for integration

� Interoperate with B2B systems not based on the J2EE
platform

� Provide asynchronous communication
� Provide support for disconnected use of enterprise

beans

Message-Driven Beans

� New enterprise bean type added in EJB 2.0
� Asynchronous

� Activated upon message arrival

� Stateless

� No home or component interface

� Message listener method in message-driven bean
class contains business logic

� Use with container-managed or bean-managed
transaction demarcation

Message-Driven Bean Enhancements

� Message-driven beans were very JMS-centric in
EJB 2.0

� Generalizing in EJB 2.1 to support other
messaging types
� e.g., JAXM

� Message-driven bean class can implement specific
messaging interface

� Previously restricted to javax.jms.MessageListener

� Pluggability of messaging providers through
Connector APIs in J2EE 1.4

EJB 2.0

� Main new features:
� Message-driven beans

� Container-managed persistence

� EJB QL

� Interoperability contracts

� Security Enhancements

� Released as part of J2EETM 1.3 platform in September
2001
� Specification

� Reference Implementation

� Compatibility Test Suite

� http://java.sun.com/products/ejb/docs.html

EJB 2.1

� Main new features:
� Web service support

� EJB QL enhancements

� Message-driven bean extensions

� Timer service

� EJB 2.1 currently in JCP Community Review
� Public draft targeted for late June

For More Information

� http://java.sun.com/products/ejb
� http://java.sun.com/j2ee

