
1

Progress Report on XQuery

Don Chamberlin
Almaden Research Center

May 24, 2002

2

History

Dec. '98: W3C sponsors workshop on XML Query

Oct. '99: W3C charters XML Query working group
Chair: Paul Cotton

About 50 members from about 35 companies

Weekly conference calls, meetings every 6-8 weeks

2000: WG publishes req'ts, use cases, data model

June 2000: Quilt proposal presented at WebDB

Feb. 2001: First working draft of XQuery language

2

3

Useful websites

Public website: www.w3.org/XML/Query

Public comments (before May 2002):
Post to: www-xml-query-comments@w3.org

Archived at
lists.w3.org/Archives/Public/www-xml-query-comments

Public comments (after May 2002):
Post to: public-qt-comments@w3.org

Archived at
lists.w3.org/Archives/Public/public-qt-comments

4

Working Drafts

Linked from the XML Query WG homepage:
XQuery 1.0: An XML Query Language
XML Path Language (XPath) 2.0
XQuery and XPath Data Model
XQuery and XPath Functions and Operators
XQuery Formal Semantics
XML Query Requirements
XML Query Use Cases
XML Syntax for XQuery

17 reference implementations (many downloadable)

3

5

Why does XQuery look like this?

XQuery

6

...because it has to fit into the XML world

XML
Schema XQuery

XPath

4

7

XQuery and its close relatives

XPath 2.0

XQuery XSLT
XML

Schema

Owned by
Query WG

Owned by
Schema WG

Owned by
XSLT WG

Owned jointly by
Query and XSLT WGs

8

XML and the Query Data Model

Query Data Model
Nodes and Atomic Values

PSVI
Info. Items &
Schema Components

Infoset
Info. Items

XML Document
Linear text

Parsing

Schema
Validation

Transform

Query

Serialization

Validate Operator

5

9

Why does XQuery need a data model?

What does this mean?

/emp[salary > 10000]

10

The Query Data Model

A value is either the error value, or an ordered
sequence of zero or more items.

An item is a node or an atomic value.

There are seven kinds of nodes:
Document Node
Element Node
Attribute Node
Text Node
Comment Node
Processing Instruction Node
Namespace Node

6

11

Examples of values

47

<goldfish/>

(1, 2, 3)

(47, <goldfish/>, "Hello")

()

An XML document

An attribute standing by itself

ERROR

12

Facts about values

There is no distinction between an item and a
sequence of length one

There are no nested sequences

There is no null value

A sequence can be empty

Sequences can contain heterogeneous values

All sequences are ordered

7

13

An XML Document ...

<?xml version = "1.0"?>
<!-- Requires one trained person -->
<procedure title = "Removing a light bulb">

<time unit = "sec">15</time>
<step>Grip bulb.</step>
<step>

Rotate it
<warning>slowly</warning>
counterclockwise.

</step>
</procedure>

14

... and its Data Model Representation

D

A

T

E

CP

E

E

TT

T

A

E

ET
Grip bulb. Rotate it

warning

counterclockwise.15

title="Removing a light bulb"

unit="sec"
step steptime

procedure

slowly

8

15

Facts about nodes

Nodes have identity (atomic values don't)

Element and attribute nodes have a type annotation
Generated by validating the node
May be a complex type such as PurchaseOrder
Type may be unknown ("anyType")

Each node has a typed value:
a sequence of atomic values (or ERROR)
Type may be unknown ("anySimpleType")

There is a document order among nodes
Ordering among documents and constructed nodes is
implementation-defined but stable

16

General XQuery Rules

XQuery is a case-sensitive language

Keywords are in lower-case

XQuery is a functional language

It consists of 21 kinds of expressions

Every expression has a value and no side effects

Expressions are fully composable

Expressions propagate the error value
Exception: and, or, quantifiers have "early-out"
semantics

9

17

XQuery Expressions

Literals: "Hello" 47 4.7 4.7E-2

Constructed values:
true() false() date("2002-03-15")

Variables: $x

Constructed sequences
$a, $b is the same as ($a, $b)
(1, (2, 3), (), (4)) is the same as 1, 2, 3, 4
5 to 8 is the same as 5, 6, 7, 8

18

Functions

Function calls
three-argument-function(1, 2, 3)
two-argument-function(1, (2, 3))

Functions are not overloaded (except certain built-ins)
Evaluating a function call

Convert arguments to expected types and bind parameters
Evaluate function body
Convert result to expected result type

Conversions (if needed):
Extract typed value from node
Cast "anySimpleType" argument to expected type
Promote numerics and derived types

10

19

Path Expressions

Path expressions are inherited from XPath 1.0

A path always returns a sequence of distinct nodes in
document order

A path consists of a series of steps: E1/E2/E3 . . .

Each step can be any expression that returns a
sequence of nodes

Here's what E1/E2 means:
Evaluate E1—it must be a set of nodes
For each node N in E1, evaluate E2 with N as context node
Union together all the E2-values
Eliminate duplicate node-ids and sort in document order

20

Axis Steps

A frequently-used kind of step is an axis step

An axis step maps a node onto a sequence of related
nodes

An axis step has three parts:
The axis (defines the "direction of movement")
The node test (qualifies by name or kind of node)
Zero or more predicates

Example of an axis step:
child::product[price > 100]

Axis steps often use an abbreviated syntax:
product[price > 100]

11

21

Axes

Forward Axes:
child
descendant
attribute
self
descendant-or-self
following-sibling
following
namespace

Reverse axes:
parent
ancestor
preceding-sibling
preceding
ancestor-or-self

Forward Axes:
child
descendant
attribute
self
descendant-or-self

(a growing list?)

Reverse axes:
parent

XPath XQuery

22

Predicates

Serve as a filter on a sequence (often used in paths)

Meaning of E1[E2]:

For each item e in the value of E1, evaluate E2 with:
Context item = e
Context position = position of e within the value of E1

Retain those items in E1 for which the predicate
truth value of E2 is true.

12

23

Predicates, continued

The predicate truth value of an expression E:
If E has a Boolean value: use that value
Example: $emps[salary > 5000]

If E has a numeric value: TRUE if e is equal to the context
position, otherwise FALSE
Example: $emps[5]

If E is an empty sequence: FALSE
If E is a non-empty node sequence: TRUE
Example: $emps[secretary]

Otherwise, return an error.

24

Expressions, continued

Combining sequences: union intersect except
return sequences of distinct nodes in document order

Arithmetic operators: + - * div mod
Extract typed value from node
Cast "anySimpleType" to double
Promote numeric operands to a common type
Multiple values => error
If operand is (), return ()
Arithmetic supported for numeric and date/time types

13

25

Comparison Operators

Four kinds of comparison operators:

eq ne gt ge lt le
Compare single atomic values

= != > >= < <=
Compare sequences of values, with existential
semantics

is isnot
Compare two nodes, based on node identity

<< >> precedes follows
Compare two nodes, based on document order

26

Logical Expressions

Operators: and or

Function: not()

Return TRUE or FALSE (2-valued logic)

Result depends on effective boolean value of operands
If operand is of type boolean, it serves as its own EBV
If operand is (), EBV is FALSE
If operand is a non-empty node sequence, EBV is TRUE
In any other case, return an error

"Early-out" semantics (need not evaluate both operands)

14

27

Constructors

To construct an element with a known name and
content, use XML syntax:

<book isbn="12345">
<title>Huckleberry Finn</title>

</book>

If the content of an element or attribute must be
computed, use a nested expression enclosed in { }

<book isbn="{$x}">
{ $b/title }

</book>

If both the name and the content must be computed,
use a computed constructor:

element { name-expr } { content-expr }
attribute { name-expr } { content-expr }

28

FLWR Expressions

A FLWR expression binds some variables, applies a
predicate, and constructs a new result.

FOR and LET
clauses generate
a list of tuples of
bound variables,
preserving
document order.

WHERE clause
applies a
predicate,
eliminating some
of the tuples

RETURN clause is
executed for each
surviving tuple,
generating an
ordered list of
outputs

for var in expr

let var := expr where expr

return expr

15

29

An Example Query

"Find the description and average price of each red
part that has at least 10 orders"

for $p in document("parts.xml")
//part[color = "Red"]

let $o := document("orders.xml")
//order[partno = $p/partno]

where count($o) >= 10
return

<important_red_part>
{ $p/description }
<avg_price> {avg($o/price)} </avg_price>

</important_red_part>

30

Expressions, continued

expr1 sortby expr2, ...
For each item I in expr1, expr2 is evaluated with I as focus
Resulting values used to reorder the items in expr1

unordered expr
Indicates that the order of expr is not significant

if (expr1) then expr2 else expr3
Uses effective boolean value, like and and or

var in expr1 satisfies expr2

Also based on effective boolean value
Allow early-out for errors

some
every

16

31

Issue: the future of XPath

XPath 1.0
Compatibility

Needs of XQuery

Needs of
XSLT

Language design
principles

32

Fun with XPath 1.0

a[b = 5]
returns a-elements that have any b-child with value 5

a[b+0 = 5]
returns a-elements whose first b-child has value 5

a[b-0 = 5]
returns a-elements that have a child named "b-0" with
value 5

17

33

Fun with XPath 1.0, continued

//person[8]
returns the eighth person in the list of all persons

//person[shoesize]
returns all persons who have at least one shoesize

//person[shoesize + 0]
returns persons whose position in the list of persons
is equal to their (first) shoesize

//person[married = true()]
returns all persons that have a "married" subelement,
regardless of its value

34

Fun with XPath 1.0, continued

Comparisons:
"4" = 4.0 returns True
"4" = "4.0" returns False
"4" >= "4.0" returns True
"4" <= "4.0" returns True
"Apple" < "Banana" returns False (treated as NaN < NaN)

Arithmetic:
1 + 2 returns 3.0 (all arithmetic is floating point)
"1" + 2 returns 3.0
"1" + "2" returns 3.0
"Apple" + "Banana" returns NaN

18

35

Fun with XPath 1.0, continued

The following two elements are "equal" (the XPath 1.0
"=" operator returns TRUE when comparing them):

<book>
<author> Mark Twain </author>
<title> Huckleberry Finn </title>

</book>

<book>
<title> Mark Twain </title>
<author> Huckleberry Finn </author>

</book>

36

What to do about all this?

A few incompatible changes to XPath

A compromise: "type exceptions"

Examples of type exceptions:
Arithmetic on a sequence of multiple values
Comparison of two elements by "="

Type exceptions can be handled by the "host language"
XQuery treats all type exceptions as errors
XSLT handles type exceptions by "fallback conversions"
Mostly, these preserve the semantics of XPath 1.0

19

37

Issue: Types in XQuery

XPath

XML Schema

Static
Type

Checking

38

Types in XPath

XPath 1.0 recognizes four basic types:
String
Float
Boolean
Node Set

XPath has various rules for coercing any type into any
other type without raising any run-time errors

20

39

Types in XML Schema

W3C Recommendation: 3 parts, 341 pages

19 primitive datatypes: string, decimal, etc.

25 built-in derived datatypes

User-defined types, both simple and complex

The type of an element is different from its name

2 different ways to define derived types
extension: adding to the content
restriction: placing constraints on the content

40

Types in XQuery

Where do types occur in queries?
Function signatures (parameter and return types)
Other expressions that operate on types

cast
instanceof
typeswitch
treat
assert

21

41

SequenceType

?
*
+

empty

QName of type QName

QName in
/ QName
QName

type

document

node

processing-instruction

QName

atomic value

comment

text

item

unknown

attribute

element

42

validate Expression

Syntax: validate { expr }

Semantics: evaluate expr, then serialize its value as an
XML string and invoke the schema validator on it

Elements and attributes that are recognized by the
validator receive type annotations.

<a>{5} has annotation anyType

validate {<a>{5}} might have annotation hatsize

22

43

Testing Types

Instance Of expression returns TRUE or FALSE:

$animal instance of element dog

Typeswitch expression executes one branch,
based on the type of its operand:

typeswitch($animal)
case element dog return woof($animal)
case element duck return quack($animal)
default return "No sound"

44

Tinkering with Types

cast as ST (expr)
Converts value to target type
Only for predefined type pairs and derived -> base type
May return error at run-time

treat as ST (expr)
Serves as a compile-time "promise"
At run-time, returns an error if type of expr is not ST
treat as element of type USAddress ($myaddress)

assert as ST (expr)
Serves as a compile-time assertion
Compile-time error if static type of expr is not ST
assert as PurchaseOrder (query)

23

45

Structure of an XQuery

The Query Prolog contains:
Namespace declarations (bind namespace prefixes to URI's)
Schema imports (import namespaces and their schemas)
Function definitions (may be recursive)

The Query Expression contains:
an expression that defines the result of the query

Query Prolog

Query Expression

46

Formal Semantics of XQuery

http://www.w3.org/TR/query-semantics/

Defines static and dynamic semantics for every type
of expression

Static type-checking (compile-time)
Depends only on the query itself
Infers result type based on types of operands
Purpose: catch errors early, guarantee result type
May not be required at all conformance levels of XQuery

Dynamic execution (run-time)
Depends on input data
Defines the result value based on the operand values

24

47

Formal Semantics, continued

If a query passes static type checking, it may still
return the error value

It may divide by zero
Casts may fail. Example:
cast as integer($x) where value of $x is "garbage"

If a query fails static type checking, it may still
execute successfully and compute a useful result.
Example (with no schema):

$emp/salary + 1000

Static semantics says this is a type error
Dynamic semantics executes it successfully if $emp has
exactly one salary subelement with a numeric value

48

Beyond Version 1

Updates

View definitions

Language bindings

Full-text search

Output serialization

Importing function libraries
Defined in XQuery
Defined in host language

25

49

Summary: XQuery on one slide

Query prolog: namespaces, schemas, function def'ns
Composable expressions:

Literals & variables
Sequences
Function calls
Path expressions
Predicates
Constructors
Union, intersect, except
Comparisons
and, or
Arithmetic

FLWR expressions
sortby
unordered
if ... then ... else
some, every
instanceof
typeswitch
cast as
treat as
assert as
validate

