
A Formal Data Model and Algebra for XML Page 1 of 26

9/10/99

A Formal Data Model and Algebra for XML
Editors:

David Beech (Oracle) dbeech@us.oracle.com
Ashok Malhotra (IBM) petsa@us.ibm.com
Michael Rys (Microsoft) mrys@microsoft.com

Requirements for XML Query
As XML becomes more popular and, in particular, becomes more popular for encoding data, a XML query
language will become more important in order to facilitate the query and integration of XML encoded data
without necessitating the transformation of the data into another format such as relational data.

To move towards a formalism for a XML query language, this paper presents a formal data model for XML. It
shows how the components of a XML document and their interrelationships can be represented as a directed
graph. Subsequently, it discusses operations on the graph that form the basis for querying and manipulating
XML.

We see the following requirements for a XML query language:

l Retrieve XML documents or fragments of documents from a collection of documents based on
specified selection criteria.

l The documents may have been originally authored as XML documents (real documents) or they may
be an XML view of existing data (virtual documents).

l Real XML documents may be stored in the underlying repository in a fragmented fashion based on
some mapping.

l The results from a XML query may be XML documents or collections of fragments.
l XML documents or fragments may be selected based on their structural as well as on their data

content.

The following data model is a logical model and is silent on how it's components should be stored. Logical
operations on the model will need to be translated to operations on the underlying storage representation
before they can be executed.

Introduction
An XML document consists of elements that contain data or other elements. Each element is typed and,
depending on its type, may contain one or more attributes. Child elements or sub-elements of a parent
element are ordered whereas its attributes are not ordered. Attributes contain only data, i.e., they cannot
contain elements nor have attributes.

Special attributes are designated as IDs. The value of each ID attribute must be unique in the document.
Other special attributes are designated as IDREFs. The value of each IDREF attribute must equal the value
of an ID attribute. In this way XML elements within a document can refer to each other. Attributes of type
IDREFS can refer to a set of elements. Another mechanism for elements to refer to one another is to store a
URI or a XLink as the data of an element. This allows elements to refer to elements outside as well as inside
the document. These facilities extend XML from a pure hierarchy into a graph.

XML supports entities which allow special symbols to be replaced by simple text or text containing markup. In
most cases, the mapping from XML into the data model occurs after entities have been resolved, so there are
no entities in the data model. For large external entities that are not resolved, the reference to the entity is

A Formal Data Model and Algebra for XML Page 2 of 26

9/10/99

treated as a data value.

XML also has other features such as comments and processing instructions. These are treated as special
kinds of data in the data model.

The XML Infoset Specification describes the required and optional information available from an XML
document. It is, therefore, a data model for XML. While our data model mostly adheres to the XML Infoset
specification, there are some difference. From our viewpoint, the Infoset has too much lexical information and
is missing information about references. For example, it has information about individual characters, about
white space, and about external entities that we do not represent or represent differently. For query purposes
we need less lexical information i.e. we need a more abstract model. The model described in this paper also
has features not present in the Infoset such as explicit information about references.

Data Model Overview
An XML document is represented by a directed graph. The graph contains two types of vertices (or nodes):
vertices that represent elements of the document and vertices that represent data values.

The graph also contains three types of directed edges. A set of directed element containment edges, E,
relates parent elements to their children. The children may be elements or they may be data values. A set of
directed attribute edges, A, relates elements to attribute data values. A set of reference edges R relate
elements to other elements they reference via IDREFs, IDREFSs, XLinks, URIs, or other reference
mechanisms. These edges are present in the model in addition to the edges that relate the element to the
referent data. For attributes that refer to other elements via IDREFs or IDREFSs, the additional reference
edges are present only if there is enough information available to identify the attributes' referential nature
(e.g., via a DTD or schema).

Finally, the ordering of child elements within a parent element is captured in a set of ordering relations O. The
order of children connected by element containment edges is the order in which the children appear within the
parent element. The order of attribute edges is not defined in the model and is implementation dependent.
Multi-valued references that are represented by multiple reference edges will be ordered among themselves
according to the reference ordering rules (e.g., for IDREFS in the order they were written). Even if the order is
not defined in the model, there is always a default implementation order among A and R edges emanting
from a single parent that will be preserved by the ordering relations.

Each XML element is represented by an element vertex with a unique, immutable, system generated
identifier. The model places no restriction on the form of the identifier. In this document we refer to the
identifier of the element vertex that represents the element <x/> as vx. Multiple elements of the same type,
such as children of type x, would be referred to as vx1, vx2 etc..

Every element containment edge in E connects a parent vertex and a child vertex. If the parent and child are
both element vertices the name of the edge is the generic identifier of the child element. Edges from parent
elements to value vertices have the special name ~data. Edges from parent elements to comment and
processing instruction vertices have the names ~comment and ~PI, respectively.

Each element vertex must have a parent. In case of XML fragments where the outermost element has no
super element a fictitious root vertex is provided for this purpose.

Attribute edges in A relate element vertices to attribute values, i.e., value vertices. In the special case that the
attribute value refers to another element via an IDREF, IDREFS, XLink or URI, the value vertex stores the
data value of the reference and one or more R edges connect the element to its referent. For IDREFs this
requires the presence of a DTD or a XML Schema that identifies the attribute as an IDREF. Similarly, if an
attribute can be identified as an IDREFS attribute an additional set of R edges point to a set of elements.

Edges that refer to elements outside the data model scope via a URI or XLink are given a special stub value
that knows how to find the external element being referred to.

A Formal Data Model and Algebra for XML Page 3 of 26

9/10/99

An ordering relationship is defined over the edges from a parent vertex to its children of each type.

Vertex and Edge Properties

Element vertices have as basic properties:

l value returns the identier for the vertex.
l type returns the type of the vertex (for element vertices it is currently always element).

In addition, the following properties can be derived based on edge and order information:

l gi returns the (namespace qualified) name of the vertex.
l parent returns the parent vertex.
l referredby returns the set of vertices that reference the vertex via a reference edge.
l childelements returns the set of all element containment edges originating at the vertex.
l attributes returns the set of all attribute edges originating at the vertex.
l references returns the set of all reference edges originating at the vertex.

Value vertices have two basic properties:

l type indicates the datatype of the value.
l value

For example, the datatype of an IDREF attribute value will be IDREF, a CDATA content of an element will be
of type CDATA (or string).

Element containment edges (including ~data, ~comment and ~PI edges) have four basic properties:

l parent the referring vertex
l child the vertex referred to
l name the name of the edge
l type (E in this case)

In addition, the properties

l next the following edge
l previous the preceding edge

can be derived from the ordering relation and provide the next or previous element containment edge with the
same parent. Attribute edges also have the four basic properties: parent, value, name and type and the two
derived properties next and previous.

Both name properties encode the namespace information by representing the name as a tuple consisting of
the namespace definition edge and the generic identifier. In the case of qualified elements and attributes, the
namespace definition edge is the edge of the attribute that defines the namespace; in the case of unqualified
attribute names, it is its parent's element containment edge. In order to comply with the W3C Namespace
specification section A3 that describes a model of namespace-qualified names in which a full name is a pair
consisting of the namepace URI and the local part of the name, we will introduce derived properties that
return the edge's full name with namespace prefix (qualifiedname) and its URI (ns_uri). Element names that
are unqualified (i.e., they don't have a namespace prefix) have an empty URI, and their qualified name is
equal to their simple name. Note that for reason of simplicity, we will often only write the local part of the
name to identify an edge name.

Finally, reference edges have the three basic properties: parent, child and type. They also have another basic

A Formal Data Model and Algebra for XML Page 4 of 26

9/10/99

property refedges, a set of the attribute or element edges that provide the reference information (if available).
The type property indicates that this edge is a reference and also the kind of reference it is e.g. an XLink or a
URI, etc.. The name property of a reference edge is derived from the refedges' name(s). Reference edges
also have the two derived properties next and previous.

The properties of the ordering relation among edges are:

l e which returns the current edge.
l successor which defines the successor of the current edge.

The order is a total order among all edges of a type, E, A or R that possess the same parent. Note that the
order does not explicitly define an order among edges of different types or edges with different parent
vertices. The properties:

l predecessor
l first
l last
l [n] the nth edge

can be derived from the two basic properties.

The properties of vertices and edges are summarized in the section Property Overview below.

Examples of data models produced from XML are shown in Example 1, Example 2. Example 3 Example 4
and Example 5

Algebra Overview
The query algebra provides a number of operations on the data model. These operations can be composed
and used to select whole documents or parts of documents and to create models from the selected parts.

Navigation Overview

The basic navigation operation follow or, φ, starts with a set of vertices and follows edges of a given type and
with a given name. There is a great deal of flexibility on how the type and name is specified. The type may be
any combination of E, A or R or "all" and the name may be specified as a regular expression.

The follow operation returns a set of edges. To get the vertices reached from these edges the follow operation
must be composed with the child operation. Similarly, follow operations may be composed with one another to
follow a set of edges.

For example, the operation

φ[A, name](Customers)

follows the attribute edge name of all the Customer vertices.

The inverse follow operation φinv returns all the edges of the specified type and name that lead to the specified
set of vertices.

The Kleene star operation, ∗, can be applied to a follow or inverse follow operation to repeat the operation
until a fixed point is reached. That is, the set of vertices does not change by repeating the operation any
more.

A Formal Data Model and Algebra for XML Page 5 of 26

9/10/99

Details of the navigation operation are discussed in the section Navigation.

Selection Overview

The selection operator, σ, allows us to express a selection over a collection. It applies a given condition to
each member of the collection and returns a result collection consisting of those members for which the
condition evaluates true.

For example, the selection

σ[child(φ[A, name](c)) = 'John Doe'](c:Customers)

selects all the customer vertices that have a name attribute with value John Doe.

Since the selection operator takes a collection as input and returns a collection, selection operators can be
composed.

Vertex and edge properties such as value and type can be used to construct selection conditions. With them
the above query is more correctly expressed as:

σ[value(child(φ[A, name](c))) = 'John Doe'](c:Customers)

Other standard comparison operators (such as <>, <, >, <=, >=), can be used instead of = in the selection
condition. Boolean operators (and, or, not) can be used to create more complex conditions and navigation
can be used along with selection to specify conditions on a hierarchy. Existential and universal quantification
are also supported.

Details of the selection operation are discussed in the section Selection.

Joins Overview

A query runs over a collection of documents. In some cases we want to query more than one collection of
documents where individual documents from different collections have some relationship to one another.
These relationships are called joins and are expressed by join conditions.

A join condition takes two collection of vertices as arguments along with a condition. It evaluates the condition
on a cartesian product of vertices from the two collections. For each pair for which the join condition evalues
true a virtual reference edge is created between the two vertices. This is a virtual reference edge in that it
exists only for the span of the query. During the query this edge can be used in the query specification as any
other reference edge.

Details of the join operation are discussed in the section Joins.

Construction Overview

One form that a query may take is to select all documents from a collection that satify certain conditions. For
this, the user can construct selection conditions from the navigation and selection operations. The power of
the algebra provides the ability to create conditions of arbitrary complexity.

Other kinds of queries may want to expose components or fragments of the selected document(s). The
expose and return operations are designed to support this. The expose operation returns the document
fragments identified by navigation operations in conjunction with selection operations. The return operation
returns copies of fragments identified by navigation operations in conjunction with selection operations. The

A Formal Data Model and Algebra for XML Page 6 of 26

9/10/99

algebra does not discuss the form in which the results are presented to the user.

In perhaps what will be the most common form of XML query, new XML documents will be created from
fragments of selected documents. The create vertex and create edge operations are designed to support the
creation of new XML documents. XML documents can be constructed by attaching edges and vertices to the
root and recursively attaching edges and vertices to the attached vertices.

Other Useful Operations

The algebra provides a number of other operations to assist in the specification of queries. Among them are:

l sort allows the reordering of a set of edges.
l map applies a specified function to a collection of edges or vertices.
l unorder indicates that the order of a set of edges is unimportant. This facilitates optimization.
l distinct eliminates duplicates from a set of edges or vertices.

Putting It All Together

Users often want to create vertices and edges based upon information in a group of similar vertices or edges.
The Grouping operation allows collections to be created from similar vertices and edges. This section also
discusses how some of the other algebra operations discussed earlier can be used to create vertices and
edges from information in these collections.

A Formal Data Model
Let graph G = (V, E, A, R, O) represent the data model for XML documents. V is the set of element and value
vertices in the graph (formally, V = Velement∪ Vint∪ Vstring∪ ...). E represents the set of directed edges that
express element containment in a XML document. A is the set of directed edges that represent the
relationships between elements and values expressed by XML attributes. R represents the relationships
between elements referenced from other elements via IDREF and IDREFS attributes in the presence of
schema or DTD information, URI, XLink, or foreign keys. Finally, O represents the total order between edges
of a particular class, E, A or R, that connect a parent element to its children.

Vertices V

Each XML element is represented as an element vertex v ∈Velement. v has a unique, logical and immutable
abstract identifier. It has to be unique to serve its role as identifying key, it is logical in the sense that the
identifier is independent from the physical store (i.e., it is not a ROWID), and it is immutable to preserve
relationships expressed using the identifier. The abstract identifier cannot be directly accessed by the query.
The type of element vertices is element.

Each data value in the XML document is represented by a value vertex v ∈Vtype(v). A value vertex does not
have a unique identifier and has value and type properties. In the following, we will often only write the value
when the type is clear from the context. E.g., ("42", string) will be represented as "42".

We can specify the function vertex(x) that transforms an XML element or concrete value into a vertex. If x is
an XML element, it returns the element's abstract identifier and element as its type; else it returns its value
and concrete datatype:

x is XML element: vertex(x) ∈V≡ (get_oid(x), element) ∈Velement

otherwise: vertex(x) ∈V≡ (x, type(x)) ∈Vtype(x)

A Formal Data Model and Algebra for XML Page 7 of 26

9/10/99

In order to access a vertex, the vertex has to be referenced via an edge.

Derived Vertex Properties

There are several properties of a vertex that can be derived from edge and order properties.

The property gi:V→ Tname returns the name of the vertex: gi(v)≡name(e) | ∃e ∈E:child(e)=v. This name
corresponds to the generic identifier of the XML element represented by the vertex. Tname denotes the name
type that preserves the namespace information.

The property parent:V→ Velement returns the parent element vertex that contains the vertex: parent(v)≡parent
(e) | ∃e ∈E:child(e)=v.

The property referredby:V→ {Velement} returns the set of element vertices that reference the vertex via a
reference edge: referredby(v)≡ {parent(e) | ∃e ∈R:child(e)=v} . Note that this property could be further refined
according to the type of edge that defined reference, e.g., referredby_attr(v)≡ {parent(e) | ∃e ∈R:child(e)=v ∧
refedges(e)⊆A} .

The property childelements:V→ {E} returns the set of element containment edges originating at the vertex:
childelements(v)≡ {e | ∃e ∈E:parent(e)=v} .

The property attributes:V→ {A} returns the set of attribute edges originating at the vertex: attributes(v)≡ {e | ∃e
∈A:parent(e)=v} .

The property references:V→ {R} returns the set of reference edges originating at the vertex: references(v)≡ {e
| ∃e ∈R:parent(e)=v} .

In addition, we can define derived properties to navigate among the children. An example is
first_contained_child:V→ V that returns the vertex of the first contained subelement. It is defined as
first_contained_child(v)≡child(e) | ∃e ∈E:parent(e)=v ∧ ∀ o ∈O:child(e)≠succ(o). Note that many of these child
related properties can also be expressed using the navigational operator introduced in the algebra.

Edges E, A, R and their Order O

Every edge e ∈E is a directed relationship (name ∈Tname, parent ∈Velement, child ∈V) from an element parent
vertex to a child vertex with the name name. In the case of ~data, ~comment and ~PI edges, child is a value
vertex, otherwise it is an element vertex.

Every edge e ∈A is a directed relationship (name ∈Tname, parent ∈Velement, child ∈Vvalue) from an element
parent vertex to a child vertex with the name name.

Every edge e ∈R is a directed relationship (parent ∈Velement, refegdes ∈P(E∪ A), child ∈V) from an element
parent vertex to an element child vertex that is indicated by a IDREF or IDREFS attribute in the presence of a
DTD or other schema information, a XLink, foreign key reference, or URI value. refedges denotes the set of
edges that form the basis of the reference. An IDREFS attribute or a multivalued XLink is mapped into
multiple R edges, one for every element referred to.

O defines an order between edges if and only if they share the same parent and they are all of the same class
i.e. all E, A or R. Formally,

A Formal Data Model and Algebra for XML Page 8 of 26

9/10/99

O≡ {(e ∈E∪ A∪ R, succ ∈E∪ A∪ R) | parent(e) = parent(succ) ∧ (e ∈E ∧ succ ∈E ∨ e ∈A ∧ succ ∈A ∨ e ∈R ∧
succ ∈R)}

where succ denotes the successor of e in the order. In case of reference edges, the order among individual
references of multi-valued references is defined according to the rules of the reference mechanism. In
addition, the order among the refedges determine the order among the different references. This implies, that
there is only a total order among references that have the same type of refedges and the order among all
reference edges is partial.

The predecessor edge in the order can be determined by pred(x) ∈E∪ A∪ R≡e(o) | ∃o ∈O:succ(o) = x.

Element Containment Edges E

Each vertex v that represents an XML element x has exactly one incoming edge e ∈E such that e = (name(x),
vertex(parent(x)), vertex(x)) where name(x) returns the name of element x, parent(x) returns the element that
contains x, and vertex(y) maps the element y to a vertex v ∈V as previously defined. Thus, vertex(x) = v.
Informally, each element vertex has an element containment edge from its parent to it.

In case of XML fragments where the outermost element has no explicit parent, an artificial root vertex is
created and parent(e) is the object representing this root vertex vroot. The order among such outermost
elements is preserved in O.

Example 1: The XML fragment <foo><bar/><goo/></foo> is represented as

Note that null represents the non-existent object in all examples. Graphically, we represent the above XML
graph as follows (order is implied from left to right unless otherwise indicated):

Value and Containment Edges

Since contained PCDATA might not be tagged (see Example 2) or might be contained by an element that
also possesses attributes (see Example 3) the incoming edge to a value vertex is in general not an element
containment edge with the name of the containing element but a special ~data edge.

Example 2: The XML fragment <A>foobargoo is represented as

E O
Edge name parent child e succ
e1 "foo" vroot vfoo e1 null

e2 "bar" vfoo vbar e2 e3

e3 "goo" vfoo vgoo e3 null

A Formal Data Model and Algebra for XML Page 9 of 26

9/10/99

Or graphically:

Note that element A has mixed content. The outgoing edges from A are ordered according to the occurrence
of the text (data) or markup.

Example 3: The XML fragment <foo a="bar">goo</foo> is represented as

Or graphically:

E O
Edge name parent child e succ
e1 "A" vroot vA e1 null

e2 ~data vA
"foo" e2 e3

e3 "em" vA vem e3 e5

e4 ~data vem
"bar" e4 null

e5 ~data vA
"goo" e5 null

E O
Edge name parent child e succ
e1 "foo" vroot vfoo e1 null

e3 ~data vfoo
goo e2 null

e3 null

A
Edge name parent child
e2 "a" vfoo

bar

A Formal Data Model and Algebra for XML Page 10 of 26

9/10/99

The ~comment and ~PI edges are treated in a manner similar to ~data edges. The edges that connect them
to their parent appear in the order that the information appears in the parent element.

Derived Properties

The derived property next:E→ E provides the next element edge within the same parent. It is defined as: next
(e)≡succ(o) | ∃o ∈O:e=e(o). previous is defined in an analogous manner.

Containment edges e(as all other type of edges) have a derived property type(e) = E that returns their edge
type.

Attribute Edges A

Each XML attribute a=(name, value, type) of an element <x/>, where name is the attribute name, value the
attribute's value and type its datatype, is represented as an edge e ∈A,such that e= (name(a), vertex(x), value
(a)).

Reference Edges R

If the datatype of the attribute can be identified as being a reference (e.g., if it is of type IDREF, IDREFS, a
foreign key, a XLink, a URI or a generated by a join operation), additional edges {ri} ∈R are defined. In the
case of references introduced through typing (such as IDREF), ri = (parent(e), {e}, refattr(childi(e))) where e
denotes the attribute edge that has the reference typed vertex as child, childi(e) denotes the i-th reference (an
IDREFS typed attribute can have more than 1 reference). The function refattr(v) returns the vertex that is
referenced by the value vertex v, if v is of a reference type (such as IDREF, HREF etc.). Formally, where ID
stands for all id types and REF for all reference types.

refattr(v) ∈Velement≡parent(a) | type(v) = REF ∧ ∃a ∈A:child(a) = value(v) ∧ type(child(a)) = ID

Note that the definition of R edges is slightly different for references via element content or multi-attribute
reference constructs such as multi-attribute foreign keys.

While the above works for simple XLinks (xml:link="simple"), the data model can also provides a special
understanding of extended XLinks (xml:link="extended") because they actually imply a named reference
originating at the extended link element instead of the element locator. The names of these reference edges
are given by the role attributes of the locator elements (the role attribute can also become the name for the
simple link). Currently the data model does not handle extended link groups.

The type property of reference edges indicates that the edge is a reference edge and also the kind of
reference it is. It can have the following values:

l Rid for an ID reference
l Rkey for a key reference
l Rlink for a link reference
l Ruri for an URI reference
l Rjoin for a join reference

The use of reference edges in conjunction with joins is explained in the join section of the algebra description.
Essentially, joins introduce temporary reference edges that exist only for the duration of the query.

Note that by adding the reference edges (instead of replacing the attribute or element edges), we preserve

A Formal Data Model and Algebra for XML Page 11 of 26

9/10/99

the actual values used for expressing the references. This allows us to generate the same subgraph of
element containment and attribute edges regardless of whether schema information is available or not to
identify ID/IDREFs. In addition, if an attribute references an element with two attributes that serve as two
possible identifiers for the element such as an ID and a URI, we can preserve the exact nature of the
reference, i.e., we can reconstruct the right attribute reference if we reconstruct the original XML document.
Example 4 illustrates this.

Example 4: In the following, we use attr::type to indicate that the attribute is of the specified type. The XML
fragment

<Person SSNo::ID="666-66-6666" Empno::URI="../foo.html"/>
<INS Taxpayer::IDREF="666-66-6666" />
<Company Employee::HREF="../foo.html" />

is represented as

Or graphically:

E O
Edge name parent child e succ
e1 "Person" vroot vPerson e1 e4

e4 "INS" vroot vINS e2 e3

e6 "Company" vroot vCompany e3 null

e4 e6

A e5 null

Edge name parent child e6 null

e2 "SSNo" vPerson
("666-66-6666", ID) e7 null

e3 "Empno" vPerson
("../foo.html", URI) e8 null

e5 "TaxPayer" vINS
("666-66-6666", IDREF) e9 null

e7 "Employee" vCompany
("../foo.html", HREF)

R
Edge parent refedges child
e8 vINS {e5} vPerson

e9 vCompany {e7} vPerson

A Formal Data Model and Algebra for XML Page 12 of 26

9/10/99

This example shows two reference edges, ref(Employee) and ref(Taxpayer) (ref() is added to the graph to
distinguish them from the element edges of the same name) that refer to the same vPerson vertex. Reference
edges might point to an external XML element. If the element referred to is not in the same graph, a local
surrogate object (or stub object) is added to the graph to provide information about the location of the external
object.

While XML currently does not require that the order of attributes or the order of elements in multi-valued
attributes is preserved, O can preserve such orderings to preserve the exact nature of the XML document
(see Example 4).

Derived Properties

A reference edge possesses the derived property name:R→ Tname that returns the name of the edge based on
the naming scheme implied by the reference type. For example, references implied by an IDREF attribute
(type = Rid) have the same name as their base attribute.

Complex Example

The following shows a more complex XML example and its data model graph. Element containment edges
are represented as solid lines with arrows. Dashed lines with arrows denote attribute edges, dotted lines with
arrows denote reference edges. We assume that there is enough schema information to identify id as an ID
and supplier as an IDREF. The edges are mapped left to right according to their order.

<Store name="Joe's Clothes">

<Company id="Company-1" name="Shirts-b-Us" webPage="http:www.shirts-b-
us.com"/>
<Company id="Company-2" name="General Shoe"/>
<Inventory>

<Shirt quantity="12" size="10" supplier="Company -1"/>
<Shoe quantity="10" size="12 E" color="cordovan" supplier="Company -2">

<Description>These excellent shoes have been made by our
family of gnomes for seventy generations, using only the finest
hides from virgin Naugas.</Description>

</Shoe>
</Inventory>

</Store>

A Formal Data Model and Algebra for XML Page 13 of 26

9/10/99

Property Overview

The following table gives an overview over the simple properties on the vertices and the edges of the graph.
The properties in italics are primitive operations while the operations in regular font are derived properties.

Component Operation Result type
Element vertex value unique identifier

type "element"
gi (generic identifier) name
parent element vertex
referredby list of element vertices: traversing

back over reference edges
childelements list of element containment edges
attributes set of attribute edges
referents list of reference edges

Value vertex value value
type data type

Element containment edge name name
parent element vertex
child vertex
type E
next element containment edge
previous element containment edge

Attribute edge name name
parent element vertex
child value vertex
type A
next attribute edge
previous attribute edge

Reference edge parent refering element vertex
refedges list of edges that define the reference
child referred element vertex (dereference)
type Rx where x indicates reference

mechanism
name derived name
next reference edge
previous reference edge

Order (over a list of edges) e edge
succ successor of e
pred predecessor of e
first edge
last edge

A Formal Data Model and Algebra for XML Page 14 of 26

9/10/99

XML Algebra

Goals

The XML algebra should operate on a collection of XML documents in their data model representation. It
should provide capabilities for selecting documents that meet given criteria and components of documents
that meet given criteria. The algebra should also support the composition of XML documents from selected
documents and their components.

The algebra should be minimal enough to provide an abstraction of the basic functionality, it should be
composable into algebra "macros" that are more user-friendly and/or more efficient to implement (e.g., a
relational join is a selection over a cartesian product).

It should be able to deal with the specific nature of XML, such as

l Graph structure
l Heterogeneity of types and graph structure
l Ownership vs reference
l Order (there should be an option to preserve it or not to care)

While preserving standard algebra virtues such as

l Composability
l Optimizability

As a basis for discussion, we propose the following operations. Every operation has an explicit result, and - as
a side effect - transforms the underlying graph(s) into a new graph that will form the basis of the next
operation.

The operations of the form o[f(x)](x:A) (including φ) are all specialized lambda-expressions that bind x to each
element of A and apply f(x) according to the semantics of the operation o. This fact can be used to define the
semantics of the operations more formally - a task that for now is left as an exercise to the reader.

Collections, Duplicates, Order and Unorder

The following operations will be composed to expressions that return collections of items (e.g., vertices,
nodes or other collections). Most operations will preserve the input order in accordance to their semantics and
not do any duplicate elimination unless required by the operation semantics.

In the following, we will use the term sequence to denote an item collection with a given order, that can be
partial or distinct (in the case of no duplicates). The term bag denotes the unordered collection with
duplicates, whereas the term set denotes the unordered collection without duplicates. Finally, we will use the
generic term collection when any of the above is allowed.

Distinct

[n] n-th edge
Name name unqualified name

namespace edge that provides namespace
information

qualifiedname name with namespace prefix
ns_uri namespace URI

A Formal Data Model and Algebra for XML Page 15 of 26

9/10/99

To eliminate duplicates in a collection, we provide the distinct operation

δ(expression)

δ takes an expression that evaluates to an collection as input and returns a collection containing the distinct
members of the input collection i.e. it eliminates duplicates. The order of the original collection is maintained
if present.

Unorder

In order to transform a sequence into a unordered collection (i.e., a set or bag), we provide the operation

χ(expression)

χ takes an expression that evaluates to an collection as input and returns the unordered collection. In order to
guarantee a set, it would have to be combined with the distinct operation: δ(χ(expression)).

Sort

In order to reorder the sequence or to order any unordered collection, we provide the sort operation

Σ[value_expr(x)](e:expression)

Σ takes an expression that evaluates to a collection as input and returns a sequence ordered on the
value_expr. value_expr needs to end in a value vertex. value_expr is followed for each member of the input
collection and the result sequence is ordered according to the value of the value vertex.

Collation order and the value of the xml:lang may have an influence on the sort order. This is outside of the
scope of the algebra.

Pick and flatten

In principle, most operators work over a collection of items. The pick operation performs an automatic
conversion to a singleton collection (a sequence), if an operation results in a singleton but the subsequent
operation expects a collection. However, a singleton set will not be automatically transformed into a singleton
item when no collection is expected.

pick(expression)

transforms an element of the collection specified by the expression into a singleton.

Some operations may create collections of collections. The flatten operation

flatten(expression)

will flatten a collection of collections (of any nesting depth) into a flat collection.

Navigation

Path navigation allows us to start with a collection of vertices (or nodes) in the graph and to follow paths that
are described by name and type. The basic operation of the algebra is follow:

A Formal Data Model and Algebra for XML Page 16 of 26

9/10/99

φ[edgetype, name](vertex-expression)

This follows the edges with the specified edgetype and the given name that originate at the specified
collection of vertices specified by the vertex-expression. Edge type is either E for element containment, A for
attribute, R for reference, or a combination of the three (e.g., E | A means follow both element containment
and attribute edges but not reference edges of the given name). The name is either a valid edge name or a
set of names specified by a regular expression over the names (e.g., (a|A)d[d]ress# describes names that
start with either adress, Adress, address, or Address). # is a wildcard that matches any name, similar to the
XPath * operator.

vertex-expression describes a collection of vertices in the graph that form the source (i.e., they are the
parents of the described edges). The result is the collection of all edges that are described by the follow
operation. If vertex-expression is a sequence, the result order is determined first by the order of the vertex-
expression and for each vertex in vertex-expression by the order of the outgoing edges. In the case of mixed
edge types, this may lead to partial orderings because there is no order between the different edge types. The
result collection contains unique edges unless vertex-expression contained duplicates.

Thus, in order to follow a path along A then B then C element containment edges starting at the element
vertices denoted by the variable var, we would write:

φ[E, C](child(φ[E, B](child(φ[E, A](var))))),

where child is the edge property "child" described above, that given an edge (set of edges) returns its child
vertex (children vertices).

The innermost function in the above expression starts with var and follows all element (E) edges called A
from it. It then applies the child operation to the returned edges to get the sequence of vertices reached by
these edges. The next outer operation follows all element edges called B starting from this set of vertices and
so on.

Subsequently, we will also use the following abbreviated syntax similar to the abbreviated XPath syntax:

l a/b stands for: φ[E, b](a), where a stands for any vertex collection expression.
l a/@b stands for: φ[A, b](a), where a stands for any vertex collection expression.
l a/>b stands for: φ[R, b](a), where a stands for any vertex collection expression.

In all three cases, intermediate child calls will be implied. The result of a sequence of these path operations
will, however, always be a collection of edges. With this syntax the above example may be written as:
var/A/B/C.

The inverse follow operation φinv returns all the edges of the specified type and name that lead to the
specified set of vertices.

Note that if we use concatenated follow and inverse follow along with child operations to find the descendants
of some node collection, we lose the paths that got us to the result collection of vertices. In order to preserve
intermediate edge traversals, paths can be bound to variables. E.g., if we wanted to preserve path traversals
in the above example, we would write:

a := φ[E, A](foo); b := φ[E, B](child(a)); c := φ[E, C](child(b));

where the variables a, b and c preserve the collection of paths traversed at each stage.

Regular path expressions expressing alternative paths such as root/A/(B|C)/D where root denotes the root
vertex, can be expressed as

A Formal Data Model and Algebra for XML Page 17 of 26

9/10/99

φ[E, D](child(φ[E, B|C](child(φ[E, A](root)))))

which is equivalent to

a := φ[E, A](root); φ[E, D](child(φ[E, B](child(a))∪ φ[E, C](child(a))))

where the union respects the order among the edges. Regular path expressions such as root/A/(B+C)/D
where B+C denotes that two paths have to lead to the same objects are equivalent to

a :=φ[E, A](root); φ[E, D](child(φ[E, B](child(a))∩ φ[E, C](child(a))))

where the intersection respects the order among the edges. Regular path expressions such as root/A/(B-C)/D
where B-C denotes that the path has to lead to vertices that are reachable through B edges but not through C
edges. This is equivalent to

a :=φ[E, A](root); φ[E, D](child(φ[E, B](child(a)) - φ[E, C](child(a))))

where - denotes the order-preserving difference operator.

Kleene star

The Kleene star operator ∗

∗[f(x)](x:expression)

is a fixpoint operator that repeats the function f 0 to (potentially) infinite times starting with the initial seed
given by the expression. After each iteration, the results of the function are added to the seed and the
function is reapplied until we reach a fixpoint of the seed collection. Note that the resulting fixpoint will be
ordered according to the order of the seed collection and the order implied by the recursively applied function.
If the collection semantics of the seed collection is that of a bag, then the fixpoint is reached when no
elements are added anymore, if it has set semantics, then the fixpoint is reached when the seed collection
does not grow anymore.

The alternate syntax

∗[f(x), n](x:expression)

denotes that the function has to be applied 0 to n times or until we have reached a fixpoint, whatever occurs
first. It holds

∗[f(x), 0](x:A) = A

For example, the Kleene-∗ operator allows us to navigate among paths repeatedly. ∗[pexpr(x)](x:source)
means repeat the path expression pexpr(x) 0 to infinite times starting with the initial collection of vertices
given in source until we reach a fixpoint with respect to the collection of vertices reached. For example,

φ[E, C](∗[child(φ[E, #](y)), 2](y:∗[child(φ[E, B](child(φ[E, A](x))))](x:root)))

starts at the root vertex, follows the A/B path combination several times until it reaches a fix point, then
follows all of the available edges two levels down, before following the final edge called C. In an abbreviated
XPath syntax this could look like: root/(A/B)*/#*2/C.

A Formal Data Model and Algebra for XML Page 18 of 26

9/10/99

Map

Often, the same complex expression should be applied over a collection of items (edges or vertices). The
map operator

µ[f(x)](x:expression)

allows one to apply the expression f(x) to each element of the collection generated by the expression. Unlike
the Kleene-∗ operation, map does not include the input collection in the result collection, but only the result of
the expression application. Assuming duplicate semantics, it holds:

µ[f(x)](x:A) = ∗[f(x), 1](x:A) - A

In this paper, we implicitly employ the map operation when we apply a single vertex or edge property function
over a collection. For example, child(A) is equivalent to µ[child(x)](x:A) if A denotes a collection.

For an example, see the last example of create edge.

Selection

A query algebra also needs a selection operator. The operator

σ[condition(e)](e:expression)

allows us to express selection over a collection indicated by expression. The variable e is bound in turn to
elements of the collection. If condition(e) evaluates true the corresponding element is added to the result
collection. If it evaluates false (or if it returns UNKNOWN in case of a three-valued logic), e is not added to
the result collection. The fact that the selection operator takes a collection as input and returns a collection
can be used to compose selection operators.

Earlier we discussed properties of vertices and edges such as value and type. These can be used to construct
selection conditions. Consider a simple case. The variable var contains a sequence of value vertices. We
want to select the vertices where their value equals "3". This can be expressed as:

σ[value(v)=3](v:var)

The result will be either a sequence containing those elements in var that satisfy the condition, or the empty
sequence if the condition is not satisfied.

In the same way, we can write selection operators on the type of the vertex on the GI of an element vertex
and so on. Instead of equality in the above example, other standard comparison operators (such as <>, <, >,
<=, >=), can be used. Boolean operators (and, or, not) can be used to create more complex conditions.
Finally, other type specific operations such as string or numeric operations can also be used to form selection
conditions.

Navigation can be used in selection conditions. For example, if we want to select all Customer names that
have an order with today's date, we could write the following three expressions:

A := φ[E, Customer](∗[child(φ[E, #](x))](x:root));
B := σ[value(child(φ[E, Date](child(φ[E, Order](child(c)))))) = TODAY()](c:A);

C := child(φ[E, Name](child(B)));

A Formal Data Model and Algebra for XML Page 19 of 26

9/10/99

A contains all Customer edges in the document. The ∗ operator reaches all vertices that are reachable from
the root vertex (or vertices), and the follow operator then follows all existing Customer edges. The algebraic
expression is complex and describes the process inefficiently. The query language will provide an operation
with simpler syntax (such as the XPath expression "//Customer") that is easier on the eye and easier to
optimize.

B contains all Customer edges that have at least one order with the requested date.

C is the final result: the requested Customer names.

Existential and Universal Quantification

Note that the operation that created the collection B was a selection over children, orders, of a parent,
customer. We added the parent to the result set, i.e., selected the parent if any of the children met the
condition. This, existential quantification, is the default. If we wanted all the orders to have today's date the
above expression would have to be modified to:

B := σ[all(value(child(φ[E, Date](child(φ[E, Order](child(c)))))) = TODAY())](c:A);

Existential quantification can be explicitly specified, if desired by using the any operator.

In the general case, with sets on both sides of the comparison operator we need to introduce iterator variables
that let us iterate over the sets. any(i, pred(i)) and all(i, pred(i)) allow us to express conditions such as any(i,
seqAi = seqBi) and any(i, any(j, seqAi = seqBj)).

Joins

A query operation selects documents that meet stated criteria from a collection of documents. It may also
extract components from selected documents and construct new documents from these components. In some
cases, we may want to start with more than one source collection and perform the initial selection on
documents from these collections that are related by some condition. This is called a join.

A join

(a:expression)⊗ [condition(a, b)](b:expression)

operates on the two sets of element vertices specified by the left and right expressions. These may, for
example, be sets of vertices from two separate collections. The join is evaluated over the cartesian product of
the element vertices. For each tuple (a,b), for which the join condition condition(a, b) evaluates true, it returns
a single virtual reference edge from a to b that embodies the information in the join.

The reference edges introduced by the join are called virtual because they are not part of the document
structure but are added as a part of the query process. Later we will see other examples of such virtual edges
added as part of the query process.

Adding the R edges creates a single collection from the multiple source collections. It is this single collection
that the rest of the query uses as the source.

Formally, the join can be defined as

(a:A⊆Velement)⊗ [condition(a, b)](b:B⊆Velement)≡ {r ∈R | ∃a ∈A, b ∈B:condition(a, b) ∧ r = ν[Rjoin, -, b](a)}

A Formal Data Model and Algebra for XML Page 20 of 26

9/10/99

where ν[Rjoin, -, b](a) is the operation that creates the new join R edge from a to b. The resulting R edges
preserve the order of the elements in the left join partner A.

N-way joins are expressed through join sequences such as

(a:expression)⊗ [condition(a, b)](b:expression)⊗ [condition(b, c)](c:expression).

The first join that is executed generates a collection of R edges and not a collection of element vertices.
Therefore, the n-way join notation is a notational convenience. The result of such a join sequence is the union
of the collection of R edges from a to b and the collection of R edges from b to c if and only if the first b is
equal to the second b. If somebody would like to generate the collection of direct R edges from a to c only, an
additional self-join needs to be performed. The following picture illustrates the result of a three-way join:

Formally, the n-way join can be expressed as

(a:A⊆Velement)⊗ [condition(a, b)](b:B⊆Velement)⊗ [condition(b, c)](c:C⊆Velement)⊗ ... ≡
{r ∈R | ∃a ∈A, b ∈B, c ∈C, ... :condition(a, b) ∧ condition(b, c) ∧ ... ∧ (r = ν[Rjoin, -, b](a) ∨ r = ν[Rjoin, -, c](b)

∨ ...) }

Note that this is different than

C :=(a:A)⊗ [condition(a, b)](b:B); (c:C)⊗ [condition(c, d)](d:D)

because C is a collection of edges and not element vertices, which makes this join formulation invalid.

The n-way join is associative, i.e., it does not matter, in what order the joins are processed. On the other
hand, commutativity is not preserved, because the introduced reference edges are directed and derive their
order from the left join partner.

Several special cases are possible:

One-to-one Joins

A Formal Data Model and Algebra for XML Page 21 of 26

9/10/99

Consider the case where we have a XML document that has the name, address and social security number of
individuals and has as root root1 and where we have another XML document with the social security number
and investment portfolio for individuals and root root2. We would like to create a mailing list with the name,
address and portfolio for each individual. To do this, we would write a join that matches the documents by
social security number. Assume that the social security number is stored as an element in the first collection
of documents and as an attribute in the second collection and are spelt differently.

The following join

(a: child(φ[E, Person](root1)))⊗ [child(φ[E, ~data](child(φ[E, SocSecNo](a)))) = child(φ[A, SSN](b))](b: child(φ[E,
Person](root2)))

creates R edges between the persons of the first and second document that have the same value and type for
the social security number.

Note that the join

(a: child(φ[E, ~data](child(φ[E, SocSecNo](child(φ[E, Person](root1)))))))⊗ [value(a) = value(b)](b: child(φ[A,
SSN](child(φ[E, Person](root2)))))

would connect the vertices that represent the Social Security Number. This join is illegal, since join produced
reference edges can only go from element to element vertex.

One-to-many Joins

Now, consider the case where we have a XML document that has information about employees identified by
an employee number (rooted in root1) and another XML collection representing orders and their assigned
employee (rooted in root2). We would like to match each employee with the orders initiated by him. To do
this, we would write the following join that matches the documents by the employee number (we assume that
no ID/IDREF reference is made explicit).

(a: child(φ[E, Employee](root1)))⊗ [child(φ[A, empid](a)) = child(φ[A, employee](b))](b: child(φ[E, Order](root2)))

This join connects the two documents by creating multiple R edges from each employee vertex to the vertices
representing orders initiated by him.

Many-to-many Joins

Now, let's suppose that there is a single, large XML document of car manufacturers and the various models
they offer (rooted in root1) and that there is another single, large XML document of car dealers (rooted in
root2). Each dealer element contains child elements with the car models he sells. With a join on model
number:

(a: child(φ[E, Model](child(φ[E, Manufacturer](root1)))))⊗ [child(φ[A, modelnumber](a)) = child(φ[A, modelNo]
(b))](b: child(φ[E, Dealer](root2)))

we create multiple R edges from each model in the manufacturer document to dealers who sell that model in
the dealer document.

Additional join operations such as left outer joins can be expressed by composing joins and selections by
means of collection operations such as unions.

Result Construction

A Formal Data Model and Algebra for XML Page 22 of 26

9/10/99

The results of a query operation may just be the sub collection of the documents from the input set that
satisfy the selection criteria. Often, however, the user wants to get back specified components of the selected
documents. For example, from a set of books he may want only the titles and authors of the books. He may
then want to process the returned values in various ways. A very important option is to create one or more
XML documents from them. This can be done by using XSL transformations or by direct construction.

In this section we discuss how to specify what has to be returned and how to construct new XML documents
from the document components that are returned. We will not discuss how to construct XML documents using
XSL transformations on returned values.

Expose

The expose operation

ε[edge1(a), edge2(a), ...](a:expression)

is a special map operation and exposes the edges edge1, edge2, etc. that originate at the set of vertices
specified by the given expression. The exposed edges can be either already existing edges or edges that are
newly generated using the edge creation operation explained below. The expose operation is object-
preserving and returns a sub collection of the edges in the data model (after adding the virtual edges newly
created by the edge creation operations). For examples of the expose operation and the create edge and
create vertex operations defined below see the grouping operation.

The expose operation can be composed recursively in a manner similar to the follow operation. For example,

∗[ε[φ[E, #](child(y))](y:x)](x:root)

exposes all the E edges from the root recursively as far as possible. In effect, it returns the whole document
tree without attributes and references.

Analogously, we can define a hide or "except" operator or an argument to expose that exposes all sub-edges
except the specified ones. This would allow us to be able to deal with open content where we might not know
a priori what is there but only what we do not want to provide.

Create Vertex

This operation generates a simple vertex in the graph. Note that it cannot stand alone in a valid expression
but always needs to be an argument to an edge creation. The syntax is

ν[type](value)

where type is the vertex type and value the vertex value if the type is concrete. For example, ν[integer](2*21)
creates a new integer vertex with the value 42. When creating an element vertex using ν[element](), no value
needs to be given, since the object id will be created automatically (any given value will be ignored). Note
that the element's GI is the name of the edge and will be given when creating the element containment edge.

Copying a vertex v can be done with the statement ν[type(v)](value(v)).

Create Edge

Edges are created with

ν[edgetype, name, child](parent)

A Formal Data Model and Algebra for XML Page 23 of 26

9/10/99

where the edgetype is either A for an attribute edge or E for an element edge. R edges are created implicitly
by creating the correct attribute and/or element containment edges and the correctly typed vertices. Virtual R
edges are generated by joins. name gives either the attribute name or the element's GI, whereas child is the
child vertex (in the case of an attribute edge of a concrete type) and parent is the parent element vertex of
the edge. Note that the names ~data, ~comment and ~PI are reserved to create the special containment
edges.

The order in which edges with the same parent are created gives the default order in the order relation O.
Newly created edges will be appended at the end. In order to change an edge's position, an optional position
parameter could be added

For example,

a := ν[E, "MyRoot", ν[element]()](null)

creates a new root element and assigns it to a.

ν[E, "~data", ν[string]("This is a test")](b)

adds the string "This is a test" as content to the element b.

ν[A, "creation", ν[date](TODAY())](a)

adds a new attribute named creation with today's date to the newly created MyRoot element.

For children with concrete types, we can also use the short form ν[edge type, name, value](parent) if the type
is clear from the value (e.g., ν[A, "author", "Jane Doe"](a)).

The operation will make sure that no ill-formed XML can be generated. For example, in order to copy an
edge, the vertex that it points to needs to be copied as well.

The following operation using the map and the Kleene star clones the complete subgraph of that starts at an
element foo:

µ[ν[type(e), name(e), ν[type(child(e))](value(child(e)))]](e: ∗[φ[E | A, #](child(x))](x: φ[E | A, #](foo)))

Return

Often, queries should make copies of the result. Instead of using the map and create operations, the return
operation

ρ[edge1(a), edge2(a), ...](a:expression)

simplifies this frequent operation. return, like the expose operation, returns the edges edge1, edge2, etc. that
originate at the set of vertices specified by the given expression. The returned edges can either be already
existing edges or edges that are newly generated using the edge creation operation explained above. Unlike
expose, the return operation is object-generating and generate copies of the vertices and edges into a new
graph.

Grouping

Grouping operations can be used to create element and attribute vertices in the result that aggregate or
summarize information from a group of similar vertices or edges. Several styles of grouping operations are

A Formal Data Model and Algebra for XML Page 24 of 26

9/10/99

possible. For example, the substructure:

<Customer>
<Order oid="o1" price="4"/>
<Order oid="o2" price="6"/>

</Customer>

may be grouped and aggregated as:

<Customer avgprice="5" />

or

<Customer avgprice="5">

<Order oid="o1"/>
<Order oid="o2"/>

</Customer>

or

<Customer>

<avgprice>5</avgprice>
</Customer>

The group-by operator

γ[grouping_expr(x)](x:expression)

creates groups from a collection of items bound to x based upon the values of the grouping_expr i.e.
members of each group have the same value of the grouping_expr. Thus, groups form disjoint subcollections
of the original collection generated by the expression bound to x.

For example, one may want to create groups of employees grouped by department number from a list of
employees. The following would create groups of employee vertices where each members of each group
would have the same department number.

EmpList:= child(φ[E, Employees](root))
EmpGroups:= γ[value(child(φ[A, Dept_Number](a)))](a:EmpList)

The default ordering of the created groups is by the order of the first element in the original collection. The
sort operation can be used to reorder the groups. Its order expression value_expr may be a scalar function of
properties of the members of the group such as avg or it could be the grouping expression itself. For
example, to order the employee groups by department number one would write:

EmpGroups:= Σ[value(child(φ[A, Dept_Number](x)))](x: γ[value(child(φ[A, Dept_Number](a)))](a:EmpList))

Together with the other operators in the algebra and aggregation functions such as sum, avg etc., we can
specify the aggregations presented above. For example, given the XML document fragment

<Book bid="b1" authors="a1 a2"/>
<Book bid="b2" authors="a3 a2"/>
<Author aid="a1" name="A"/>
<Author aid="a2" name="A"/>
<Author aid="a3" name="C"/>

A Formal Data Model and Algebra for XML Page 25 of 26

9/10/99

where authors is of type IDREFS and aid of type ID, the algebra expressions

A:= child(φ[E, Book](root))
Agroup:= γ[child(a)](a: φ[R, authors](A))
B:= µ[ε[ν[E, "Aut", x](null)
 , φ[A, name](x)
 , ν[A, "no_of_books", ν[integer](count(ga))](x)
](x: δ(child(ga)))
](ga:Agroup)

group the author element edges by their child vertices (Agroup) and expose their name (using the already
existing edges) and the aggregation over their number of books. Assuming that ra1 and ra2 denote the two
reference edges implied by the authors attribute of the first book and ra3 and ra4 denote the two reference
edges implied by the authors attribute of the second book, Agroup is {{ra1}, {ra2, ra4}, {ra3}}. The map operation
then applies the creation and projection of the new "Aut" elements, their name and no_of_books attributes.
The resulting XML fragment referenced by B looks like:

<Aut name="A" no_of_books="1"/>
<Aut name="A" no_of_books="2"/>
<Aut name="C" no_of_books="1"/>

The following algebra expression groups according to the author names and provides the aggregation of the
number of books written by authors with the same name as subelement together with the ids of the
corresponding authors. It generates all new copies for the element type vertices.

A:= child(φ[E, Book](root))
Agroup:= γ[value(child(φ[A, name](child(a))))](a: φ[R, authors](A))
B:= µ[ε[ν[E, "Aut", x](null)
 , ν[A, "name", child(φ[A, name](child(pick(ga))))](x)
 , µ[ν[E, "aid", parent(ν[E, ~data, ν[integer](value(child(φ[A, aid](y))))](ν[element]()))](x)](y: δ(child(ga)))
 , ν[E, "no_of_books", parent(ν[E, ~data, ν[integer](count(ga))](ν[element]()))](x)
](x: ν[element]())
](ga:Agroup)

generates

<Aut name="A">

<aid>a1</aid>
<aid>a2</aid>
<no_of_books>3</no_of_books>

</Aut>
<Aut name="C">

<aid>a3</aid>
<no_of_books>1</no_of_books>

</Aut>

Future Work

The algebra described above can be made yet more powerful by the addition of a few advanced functions
such as the ones mentioned below and by adding manipulation functions (update etc.).

Skolem functions:

A Formal Data Model and Algebra for XML Page 26 of 26

9/10/99

νSkolem[idexpr, type](value)

generates a new vertex of the given type with the given value and the object id specified with idexpr.
Similarly, the function

νSkolem[idexpr, type, name, child](parent)

generates a new edge. If a vertex or edge with the given id already exists, the Skolem functions return the
already existing vertex or edge instead of generating a new one. This functionality can be used in result
construction to fuse objects based on the idexpr. For example, assume, that the collections C1 and C2
contain two different customer representations. C1 customers are identified by a subelement called Id, C2
customers by an attribute cid. For the sake of simplicity we assume that the same value in either of these
fields identify the same customer. The following application of the Skolem function generates a copy for each
customer and adds the id as customerid attribute. The Skolem functions guarantee that only one node and
edge is generated for each customer with the same id.

µ[νSkolem[value(child(x/Id)), A, customerid, value(child(x/Id))](νSkolem[value(child(x/Id)), element]())](x:C1)∪ µ
[νSkolem[value(child(x/@cid)), A, customerid, value(child(x/@cid))](νSkolem[value(child(x/@cid)), element]())]
(x:C2)

Bound function:

bound[set_of_bvar2](bvar1)

returns all instances that can be bound to the bound variable bvar1, such that they contain the set of bound
variables set_of_bvar2. This can be used to invert hierarchy in construction. Example: years contains months
contains regions contains sales. We have bound the years to y, months to m, regions to r and sales to s. Now
the result should aggregate the sales by regions and by year. Here we would generate a new region object
using the Skolem function (id on region name), and would use bound to get to any year y that binds to the
regions with the same region name to get to their sales figures that are then aggregated.

References
[Infoset]

The XML Information Set Specification.
[Namespace]

The XML Namespace Specification.
[XPath]

The XPath Specification.

