
Probabilistic Management of OCR Data using an RDBMS

Arun Kumar
University of Wisconsin-Madison

arun@cs.wisc.edu

Christopher Ré
University of Wisconsin-Madison

chrisre@cs.wisc.edu ∗

ABSTRACT
The digitization of scanned forms and documents is changing
the data sources that enterprises manage. To integrate these
new data sources with enterprise data, the current state-of-
the-art approach is to convert the images to ASCII text us-
ing optical character recognition (OCR) software and then
to store the resulting ASCII text in a relational database.
The OCR problem is challenging, and so the output of OCR
often contains errors. In turn, queries on the output of
OCR may fail to retrieve relevant answers. State-of-the-
art OCR programs, e.g., the OCR powering Google Books,
use a probabilistic model that captures many alternatives
during the OCR process. Only when the results of OCR
are stored in the database, do these approaches discard the
uncertainty. In this work, we propose to retain the prob-
abilistic models produced by OCR process in a relational
database management system. A key technical challenge is
that the probabilistic data produced by OCR software is
very large (a single book blows up to 2GB from 400kB as
ASCII). As a result, a baseline solution that integrates these
models with an RDBMS is over 1000x slower versus stan-
dard text processing for single table select-project queries.
However, many applications may have quality-performance
needs that are in between these two extremes of ASCII and
the complete model output by the OCR software. Thus,
we propose a novel approximation scheme called Staccato
that allows a user to trade recall for query performance.
Additionally, we provide a formal analysis of our scheme’s
properties, and describe how we integrate our scheme with
standard-RDBMS text indexing.

1. INTRODUCTION
The mass digitization of books, printed documents, and

printed forms is changing the types of data that companies
and academics manage. For example, Google Books and

∗This work is supported by the Microsoft Jim Gray Systems
Lab, the National Science Foundation (IIS-1054009) and the
Office of Naval Research (N000141210041).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 3
Copyright 2011 VLDB Endowment 2150-8097/11/11... $ 10.00.

their academic partner, the Hathi Trust, have the goal of
digitizing all of the world’s books to allow scholars to search
human knowledge from the pre-Web era. The hope of this
effort is that digital access to this data will enable scholars
to rapidly mine these vast stores of text for new discover-
ies.1 The potential users of this new content are not lim-
ited to academics. The market for enterprise document cap-
ture (scanning of forms) is already in the multibillion dollar
range [3]. In many of the applications, the translated data is
related to enterprise business data, and so after converting
to plain text, the data are stored in an RDBMS [6].

Translating an image of text (e.g., a jpeg) to ASCII is diffi-
cult for machines to do automatically. To cope with the huge
number of variations in scanned documents, e.g., in spacing
of the glyphs and font faces, state-of-the-art approaches for
optical character recognition (OCR) use probabilistic tech-
niques. For example, the OCRopus tool from Google Books
represents the output of the OCR process as a stochastic
automaton called a finite-state transducer (FST) that de-
fines a probability distribution over all possible strings that
could be represented in the image.2 An example image and
its resulting (simplified) transducer are shown in Figure 1.
Each labeled path through the transducer corresponds to a
potential string (one multiplies the weights along the path
to get the probability of the string). Only to produce the
final plain text do current OCR approaches remove the un-
certainty. Traditionally, they choose to retain only the single
most likely string produced by the FST (called a maximum
a priori estimate or MAP [1]).

As Google Books demonstrates, the MAP works well for
browsing applications. In such applications, one is sensitive
to precision (i.e., are the answers I see correct), but one is
insensitive to recall (i.e., what fraction of all of the answers
in my corpus are returned). But this is not true of all appli-
cations: an English professor looking for the earliest dates
that a word occurs in a corpus is sensitive to recall [5]. As is
an insurance company that wants all insurance claims that
were filled in 2010 that mentioned a ‘Ford’. This latter query
is expressed in SQL in Figure 1(C). In this work, we focus
on such single table select-project queries, whose outputs
are standard probabilistic RDBMS tables. Using the MAP
approach may miss valuable answers. In the example in Fig-
ure 1, the most likely string does not contain ‘Ford’, and so
we (erroneously) miss this claim. However, the string ‘Ford’

1Many repositories of Digging into Data Challenge (a large
joint effort to bring together social scientists with data anal-
ysis) are OCR-based http://www.diggingintodata.org.
2http://code.google.com/p/ocropus/.

3

0 1 5

4

F: 0.8

2

T: 0.2

0: 0.6

o: 0.4

' ': 0.6

r: 0.8

r: 0.4

m: 0.2

d: 0.9

3: 0.1

SELECT DocId, Loss
FROM Claims
WHERE Year = 2010 AND
DocData LIKE '%Ford%';

A B C

...
...

...
...

...
...

Figure 1: (A) An image of text. (B) A portion of a simple FST resulting from the OCR of the highlighted
part of (A). The numbers on the arcs are conditional probabilities of transitioning from one state to another.
An emitted string corresponds to a path from states 0 to 5. The string ‘F0 rd’ (highlighted path) has the
highest probability, 0.8 ∗ 0.6 ∗ 0.6 ∗ 0.8 ∗ 0.9 ≈ 0.21. (C) An SQL query to retrieve loss information that contains
‘Ford’. Using the MAP approach, no claim is found. Using Staccato, a claim is found (with probability 0.12).

does appear (albeit with a lower probability). Empirically,
we show that the recall for simple queries on real-world OCR
can be as low as 0.3 – and so we may throw away almost
70% of our data if we follow the MAP approach.

To remedy this recall problem, our baseline approach is
to store and handle the FSTs as binary large objects inside
the RDBMS. As with a probabilistic relational database, the
user can then pose questions as if the data are deterministic
and it is the job of the system to compute the confidence
in its answer. By combining existing open-source tools for
transducer composition 3 with an RDBMS, we can then an-
swer queries like that in Figure 1(C). This approach achieves
a high quality (empirically, the recall we measured is very
close to 1.0, with up to 0.9 precision). Additionally, the en-
terprise users can ask their existing queries directly on top
of the RDBMS data (the query in Figure 1(C) remains un-
changed). The downside is that query processing is much
slower (up to 1000x slower). While the query processing
time for transducers is linear in the data size, the transduc-
ers themselves are huge, e.g., a single 200-page book blows
up from 400 kB as text to over 2 GB when represented by
transducers after OCR. This motivates our central question:
“Can we devise an approximation scheme that is somewhere
in between these two extremes of recall and performance?”

State-of-the-art OCR tools segment each of the images
corresponding to pages in a document into lines using spe-
cial purpose line-breaking tools. Breaking a single line fur-
ther into individual words is more difficult (spacing is very
difficult to accurately detect). With this in mind, a natu-
ral idea to improve the recall of the MAP approach is to
retain not only the highest probability string for each line,
but instead to retain the k highest probability strings that
appear in each line (called k-MAP [28, 53]). Indeed, this
technique keeps more information around at a linear cost
(in k) in space and processing time. However, we show that
even storing hundreds of paths makes an insignificant jump
in the recall of queries.

To combat this problem, we propose a novel approxima-
tion scheme called Staccato, which is our main techni-
cal contribution. The main idea is to apply k-MAP not
to the whole line, but to first break the line into smaller
chunks which are themselves transducers and apply k-MAP
to each transducer individually. This allows us to store ex-
ponentially more alternatives than k-MAP (exponential in
the number of chunks), while using roughly a linear amount
more space than the MAP approach. If there is only a sin-
gle chunk, then Staccato’s output is equivalent to k-MAP.

3OpenFST. http://www.openfst.org/

If essentially every possible character is a chunk, then we
retain the full FST. Experimentally, we demonstrate that
the Staccato approach gracefully trades off between perfor-
mance and recall. For example, when looking for mentions
of laws on a data set that contains scanned acts of the US
congress, the MAP approach achieves a recall of 0.28 execut-
ing in about 1 second, the full FST approach achieves perfect
recall but takes over 2 minutes. An intermediate representa-
tion from Staccato takes around 10 seconds and achieves
0.76 recall. Of course, there is a fundamental trade off be-
tween precision and recall. On the same query as above,
the MAP has precision 1.0, and the full FST has precision
0.25, while Staccato achieves 0.73. In general, Staccato’s
precision falls in between the MAP and the full FST.

To understand Staccato’s approximation more deeply,
we conduct a formal analysis, which is our second techni-
cal contribution. When constructing Staccato’s approx-
imation, we ensure two properties (1) each chunk forms a
transducer (as opposed to a more general structure), and
(2) that the model retains the unique path property, i.e.,
that every string corresponds to a unique path. While both
of these properties are satisfied by the transducers produced
by OCRopus, neither property is necessary to have a well-
defined approximation scheme. Moreover, enforcing these
two properties increases the complexity of our algorithm and
may preclude some compact approximations. Thus, it is nat-
ural to wonder if we can relax these two properties. While
we cannot prove that these two conditions are necessary, we
show that without these two properties, basic operations be-
come intractable. Without the unique path property, prior
work has shown that determining (even approximating) the
k-MAP is intractable for a fixed k [32]. Even with the
unique path property and a fixed set of chunks, we show
that essentially the simplest violation of property (1) makes
it intractable to construct an approximation even for k = 2
(Theorem 3.1). On the positive side, for any fixed partition,
Staccato retains a set of strings that achieves the high-
est total probability among approximations that satisfy the
above restrictions.

Finally, we describe how to use standard text-indexing
techniques to improve query performance. Directly applying
an inverted index to transducer data is essentially doomed
to failure: the sheer number of terms one would have to
index grows exponentially with the length of the document,
e.g., an FST for a single line may represent over 10100 terms.
To combat this, we allow the user to specify a dictionary of
terms. We then construct an index of those terms specified
in the dictionary. This allows us to process keyword and
some regular expressions using standard techniques [14,52].

Outline. In Section 2, we illustrate our current prototype
system to manage OCR data using an RDBMS with an ex-
ample, and we present a brief background on the use of
transducers in OCR. In Section 3, we briefly describe the
baseline solutions, and then discuss the main novel techni-
cal contributions of this work, viz., the Staccato approx-
imation scheme and our formal analysis of its properties.
In Section 4, we describe our approach for indexing OCR
transducer data, which is another technical contribution of
this work. In Section 5, we empirically validate that our
approach is able to trade off recall for query-runtime per-
formance on several real-world OCR data sets. We validate
that our approximation methods can be efficiently imple-
mented, and that our indexing technique provides the ex-
pected speedups. In Section 6, we discuss related work.

2. PRELIMINARIES
The key functionality that Staccato provides is to en-

able users to query OCR data inside an RDBMS as if it were
regular text. Specifically, we want to enable the LIKE pred-
icate of SQL on OCR data. We describe Staccato through
an example, followed by a more detailed explanation of its
semantics and the formal background.

2.1 Using Staccato with OCR
Consider an insurance company that stores loss data with

scanned report forms in a table with the following schema:

Claims(DocID, Y ear, Loss,DocData)

A document tuple contains an id, the year the form was
filed (Year), the amount of the loss (Loss) and the contents
of the report (DocData). A simple query that an insurance
company may want to ask over the table - “Get loss amounts
of all claims in 2010 where the report mentions ‘Ford’ ”.
Were DocData ASCII text, this could be expressed as an
SQL query as follows:

SELECT DocID, Loss FROM Claims

WHERE Year = 2010 AND DocData LIKE ‘%Ford%’;

If DocData is standard text, the semantics of this query
is straightforward: we examine each document filed in 2010,
and check if it contains the string ‘Ford’. The challenge is
that instead of a single document, in OCR applications Doc-
Data represents many different documents (each document
is weighted by probability). In Staccato, we can express
this as an SQL query that uses a simple pattern in the LIKE

predicate (also in Figure 1(C)). The twist is that the un-
derlying processing must take into account the probabilities
from the OCR model.

Formally, Staccato allows a larger class of queries in
the LIKE predicate that can be expressed as deterministic
finite automata (DFAs). Staccato translates the syntax
above in to a DFA using standard techniques [27]. As with
probabilistic databases [13,22,30,50] , Staccato computes
the probability that the document matches the regular ex-
pression. Staccato does this using algorithms from prior
work [32, 43]. The result is a probabilistic relation; after
this, we can apply probabilistic relational database process-
ing techniques [22, 41, 46]. In this work, we consider only
single table select-project queries (joins are handled using
the above mentioned techniques).

A critical challenge that Staccato must address is given
a DFA find those documents that are relevant to the query

expressed by the DFA. For a fixed query, the existing al-
gorithms are roughly linear in the size of data that they
must process. To improve the runtime of these algorithms,
one strategy (that we take) is to reduce the size of the data
that must be processed using approximations. The primary
contribution of Staccato is the set of mechanisms that we
describe in Section 3 to achieve the trade off of quality and
performance by approximating the data. We formally study
the properties of our algorithms and describe simple mech-
anisms to allow the user to set these parameters in Sec. 3.2.

One way to evaluate the query above in the deterministic
setting is to scan the string in each report and check for
a match. A better strategy may be to use an inverted in-
dex to fetch only those documents that contain ‘Ford’. In
general, this strategy is possible for anchored regular ex-
pressions [19], which are regular expressions that begin or
end with words in the language, e.g. ‘no.(2|3)’ is anchored
while ‘(no|num).(2|8)’ is not. Staccato supports a sim-
ilar optimization using standard text-indexing techniques.
There is, however, one twist: At one extreme, any term
may have some small probability of occurring at every loca-
tion of the document – which renders the index ineffective.
Nevertheless, we show that Staccato is able to provide
efficient indexing for anchored regular expressions using a
dictionary-based approach.

2.2 Background: Stochastic Finite Automata
We formally describe Staccato’s data model that is based

on Stochastic Finite Automata (SFA). This model is es-
sentially identical to the model output by Google’s OCRo-
pus [8, 39].4 An SFA is a finite state machine that emits
strings (e.g., the ASCII conversion of an OCR image). The
model is stochastic, which captures the uncertainty in trans-
lating the glyphs and spaces to ASCII characters.

At a high level, an SFA over an alphabet Σ represents a
discrete probability distribution P over strings in Σ∗, i.e.,

P : Σ∗ → [0, 1] such that
∑
x∈Σ∗

P (x) = 1

The SFA represents the (finitely many) strings with non-
zero probability using an automaton-like structure that we
first describe using an example:

Example 1. Figure 1 shows an image of text and a sim-
plified SFA created by OCRopus from that data. The SFA
is a directed acyclic labeled graph. The graphical structure
(i.e., the branching) in the SFA is used by the OCR tool
to capture correlations between the emitted letters. Each
source-to-sink path (i.e., a path from node 0 to node 5) cor-
responds to a string with non-zero probability. For example,
the string ‘Ford’ is one possible path that uses the following
sequence of nodes 0 → 1 → 2 → 4 → 5. The probability
of this string can be found by multiplying the edge weights
corresponding to the path: 0.8 ∗ 0.4 ∗ 0.4 ∗ 0.9 ≈ 0.12.

Formally, we fix an alphabet Σ (in Staccato, this is the
set of ASCII characters). An SFA S over Σ is a tuple S =
(V,E, s, f, δ) where V is a set of nodes, E ⊆ V × V is a set
of edges such that (V,E) is a directed acyclic graph, and s

4Our prototype uses the same weighted finite state trans-
ducer (FST) model that is used by OpenFST and OCRopus.
We simplify FST to SFAs here only slightly for presentation.
See the full version for more details [34]

(resp. f) is a distinguished start (resp. final) node. The
function δ is a stochastic transition function, i.e.,

δ : E × Σ→ [0, 1] s.t.
∑

y:(x,y)∈E
σ∈Σ

δ((x, y), σ) = 1 ∀x ∈ V

In essence, δ(e, σ), where e = (x, y), is the conditional prob-
ability of transitioning from x→ y and emitting σ.

An SFA defines a probability distribution via its labeled
paths. A labeled path from s to f is denoted by p =
(e1, σ1), . . . , (eN , σN), where ei ∈ E and σi ∈ Σ, correspond-
ing to the string σ1...σn, with its probability: 5

Pr
S

[p] =

|p|∏
i=1

δ(ei, σi)

SFAs in OCR satisfy an important property that we call
the unique paths property that says that any string pro-
duced by the SFA with non-zero probability is generated
by a unique labeled path through the SFA. We denote by
UP the function that takes a string to its unique labeled
path. This property guarantees tractability of many impor-
tant computations over SFAs including finding the highest
probability string produced by the SFA [32].

Unlike the example given here, the SFAs produced by
Google’s OCRopus are much larger: they contain a weighted
arc for every ASCII character. And so, the SFA for a single
line can require as much as 600 kB to store.

Queries in Staccato are formalized in the standard way
for probabilistic databases. In this paper, we consider LIKE
predicates that contain Boolean queries expressed as DFAs
(Staccato handles non-Boolean queries using algorithms
in Kimmelfeld and Ré [32]). Fix an alphabet Σ (the ASCII
characters). Let q : Σ∗ → {0, 1} be expressed as DFA and x
be any string. We have q(x) = 1 when x satisfies the query,
i.e., it’s accepted by the DFA. We compute the probability
that q is true; this quantity is denoted Pr[q] and is defined by
Pr[q] =

∑
x∈Σ∗ q(x) Pr(x) (i.e., simply sum over all possible

strings where q is true). There is a straightforward algorithm
based on matrix multiplication to process these queries that
is linear in the size of the data and cubic in the number of
states of the DFA [43].

3. MANAGING SFAS IN AN RDBMS
We start by outlining two baseline approaches that rep-

resent the two extremes of query performance and recall.
Then, we describe the novel approximation scheme of Stac-
cato, which enables us to trade performance for recall.

Baseline Approaches. We study two baseline approaches:
k-MAP and the FullSFA approach. Fix some k ≥ 1. In
the k-MAP approach we store the k highest probability
strings (simply, top k strings) generated by each SFA in
our databases. We store one tuple per string along with the
associated probability. Query processing is straightforward:
we process each string using standard text-processing tech-
niques, and then sum the probability of each string (since
each string is a disjoint probabilistic event). In the FullSFA
approach, we store the entire SFA as a BLOB inside the

5Many (including OpenFST) tools use a formalization with
log-odds instead of probabilities. It has some intuitive prop-
erty for graph concepts, e.g., the shortest path corresponds
to the most likely string.

RDBMS. To answer a query, we retrieve the BLOB, deseri-
alize it, and then use an open source C++ automata com-
position library to answer the query [11,12] and compute all
probabilities. Table 1 summarizes the time and space costs
for a simple chain SFA (no branching). This table gives
an engineer’s intuition about the time and space complexity
of the baseline approaches. The factor 16 accounts for the
metadata – tuple ID, location in SFA, and probability value
(the schema is described in the full version [34]). We also
include our proposed approach, Staccato that depends on
a parameter m (the number of chunks) that we describe be-
low. From the table, we can read that query processing time
for Staccato is essentially linear in m. Let l be the length
of the document, since m ∈ [1, l] query processing time in
Staccato interpolates linearly from the k-MAP approach
to the FullSFA approach.

k-MAP FullSFA Staccato

Query lqk lq|Σ|+ q3(l − 1) lqk + q3(m− 1)
Space lk + 16k l|Σ|+ 16l|Σ| lk + 16mk

l : length of the SFA’s strings
q : # states in the query DFA
k : # paths parameter in k-MAP, Staccato
m : # chunks in Staccato (1 ≤ m ≤ l)

Table 1: Space costs and query processing times for
a simple chain SFA. The space indicates the number
of bytes of storage required.

3.1 Approximating an SFA with Chunks
As mentioned before, the SFAs in OCR are much larger

than our example, e.g. one OCR line from a scanned book
yielded an SFA of size 600 kB. In turn, the 200-page book
blows up to over 2 GB when represented by SFAs. Thus,
to answer a query that spans many books in the FullSFA
approach, we must read a huge amount of data. This can be
a major bottleneck in query processing. To combat this we
propose to approximate an SFA with a collection of smaller-
sized SFAs (that we call chunks). Our goal is to create
an approximation that allows us to gracefully tradeoff from
the fast-but-low-recall MAP approach to the slow-but-high-
recall FullSFA approach.

Recall that the k-MAP approach is a natural first approx-
imation, wherein we simply store the top-k paths in each of
the per-line SFAs. This approach can increase the recall at
a linear cost in k. However, as we demonstrate experimen-
tally, simply increasing k is insufficient to tradeoff between
the two extremes. That is, even for huge values of k we do
not achieve full recall.

Our idea to combat the slow increase of recall starts with
the following intuition: the more strings from the SFA we
store, the higher our recall will be. We observe that if we
store the top k in each of m smaller SFAs (that we refer to as
‘chunks’), we effectively store km distinct strings. Thus, in-
creasing the value of k increases the number of strings poly-
nomially. In contrast, increasing m, the number of smaller
SFAs, increases the number of paths exponentially, as il-
lustrated in Figure 2. This observation motivates the idea
that to improve quality, we should divide the SFA further.
As we demonstrate experimentally, Staccato achieves the
most conceptually important feature of our approximation:

Algorithm 1: FindMinSFA

Inputs: SFA S with partial order ≤ on its
nodes, X ⊆ V
while X does not form a valid SFA do

if No unique start node in X then
Compute the least common
ancestor of X, say, l
X ← X ∪ {y ∈ V | l ≤ y and
∀x ∈ X, y ≤ x}

if No unique end node in X then
Compute greatest common
descendant of X, say, g
X ← X ∪ {y ∈ V | y ≤ g and
∀x ∈ X,x ≤ y}

∀e ∈ E s.t. exactly one end-point is in
X − {l, g}, add other end-point to X

4

0 5

3

a
e f

b
c

d
1

2

4

0 1 5

3

a
e f

bc d

BGood Merge

4

0 1
5

3

a
e f

b
c d

C

Collapse

4

0 5

3

a
e f

b
c

1

2

d
0 1 5

a
ef

bcd

D

5 is Greatest Common Descendant

Bad Merge

Original SFA

A

Figure 3: Algorithm 1: FindMinSFA. Illustrating merge and FindMinSFA: (A) Original: The SFA emits
two strings: aef and abcd. Two merges considered: {(1,2),(2,3)} (successive edges), and {(1,2),(1,4)} (sibling
edges). (B) Good merge: First set gives new edge (1,3), emitting bc. The SFA still emits only aef and abcd.
(C) Bad merge: Second set gives new edge (1,4), emitting e and b. But, the SFA now wrongly emits new
strings, e.g., abf (dashed lines). (D) Using Algorithm 1 on the second set, the greatest common descendant
is obtained (node 5), and the resulting set is collapsed to edge (1,5). The SFA now emits only aef and abcd.

0 1

a : 0.6

2 3

c : 0.4

4

b : 0.5 d : 0.7

p : 0.2 r : 0.3q : 0.3 s : 0.2

w : 0.1 y : 0.1x : 0.2 z : 0.1

k-MAP, k = 3
1. a b c d (0.0840)
2. a b r d (0.0630)
3. a q c d (0.0504)

strings = k = 3

STACCATO, m = 2, k = 3

 … … … ...

0 1 0 1

… … … ...

1. a b (0.30)
2. a q (0.18)
3. a x (0.12)

strings = km = 32 = 9

Top 3 Top 3

Split

1. c d (0.28)
2. r d (0.21)
3. c s (0.08)

X

2 3 42

Figure 2: A depiction of conventional Top-k versus
Staccato’s approximation.

it allows us to smoothly tradeoff recall for performance. In
other words, increasing m (and k) increases the recall at the
expense of performance.

SFA Approximation. Given an SFA S, our goal is to find a
new SFA S′ that satisfies two competing properties: (1) S′

should be smaller than S, and (2) the set of strings repre-
sented by S′ should contain as many of the high probability
strings from S as possible without containing any strings
not in S.6 Our technique to approximate the SFA S is to
merge a set of transitions in S (a ‘chunk’) to produce a new
SFA S′; then we retain only the top k transitions on each
edge in S′.

To describe our algorithm, we need some notation. We
generalize the definition of SFAs (Section 2) to allow transi-
tions that produce strings (as opposed to single characters).
Formally, the transition function δ has the type δ : E×Σ+ →
[0, 1]. Any SFA meets this generalized SFA definition, and
so we assume this generalized definition of SFAs for the rest
of the section.

6This is a type of sufficient lineage approximation [44].

Before describing the merging operation formally, we il-
lustrate the challenge in the merging process in Figure 3.
Figure 3(A) shows an SFA (without probabilities for read-
ability). We consider two merging operations. First, we have
chosen to merge the edges (1, 2) and (2, 3) and replaced it
with a single edge (1, 3). To retain the same strings that
are present in the SFA in (A), the transition function must
emit the string ‘bc’ on the new edge (1, 3) as illustrated in
Figure 3(B). In contrast, if we choose to merge the edges
(1, 2) and (1, 4), there is an issue: no matter what we put on
the transition from (1, 4) we will introduce strings that are
not present in the original SFA (Figure 3(C)). The problem
is that the set of nodes {1, 2, 4} do not form an SFA by
themselves (there is no unique final node). One could imag-
ine generalizing the definition of SFA to allow richer struc-
tures that could capture the correlations between strings,
but as we explain in Section 3.2, this approach creates se-
rious technical challenges. Instead, we propose to fix this
issue by searching for a minimal SFA S′ that contains this
set of nodes (the operation called FindMinSFA). Then, we
replace the nodes in the set with a single edge, retaining
only the top k highest probability strings from S′. We refer
to this operation of replacing S’ with an edge as Collapse.
In our example, the result of these operations is illustrated
in Figure 3(D).

We describe our algorithm’s subroutine FindMinSFA and
then the entire heuristic.

FindMinSFA. Given an SFA S and a set of nodes X ⊆ V ,
our goal is to find a SFA S′ whose node set Y is such that
that X ⊆ Y . We want the set Y to be minimal in the sense
that removing any node y ∈ Y causes S′ to violate the SFA
property, that is removing y causes S′ to no longer have a
unique start (resp. end) state. Presented in Algorithm 1,
our algorithm is based on the observation that the unique
start node s of S′ must come before all nodes in X in the
topological order of the graph (a partial order). Similarly,

the end node f of the SFA S′ must come after all nodes in X
in topological order. To satisfy these properties, we repeat-
edly enlarge Y by computing the start (resp. final node)
using the least common ancestor (resp. greatest common
descendant) in the DAG. Additionally, we require that any
edge in S that is incident to a node in Y can be incident
to only either s or f . (Any node incident to both will be
internal to S′) If there are no such edges, we are done. Oth-
erwise, for each such edge e, we include its endpoints in Y
and repeat this algorithm with X enlarged to Y . Once we
find a suitable set Y , we replace the set of nodes in the SFA
S with a single edge from s (the start node of S′) to f (the
final node of S′). Figure 3(D) illustrates a case when there
is no unique end node, and the greatest common descendant
has to be computed. More illustrations, covering the other
cases, are presented in the full version [34].

Algorithm Description. The inputs to our algorithm are
the parameters k (the number of strings retained per edge)
and m (the maximum number of edges that we are allowed
to retain in the resulting graph). We describe how a user
chooses these parameters in Section 3.2. For now, we focus
on the algorithm. At each step, our approximation creates
a restricted type of SFA where each edge emits at most k
strings, i.e., ∀e ∈ E, |{σ ∈ Σ∗ | δ(e, σ) > 0}| ≤ k. When
given an SFA not satisfying this property, our algorithm
chooses to retain those strings σ ∈ Σ∗ with the highest val-
ues of δ (ties broken arbitrarily). This set can be computed
efficiently using the standard Viterbi algorithm [24], which
is a dynamic programming algorithm for finding the most
likely outputs in probabilistic sequence models, like HMMs.
By memoizing the best partial results till a particular state,
it can compute the globally optimal results in polynomial
time. To compute the top-k results more efficiently, we use
an incremental variant by Yen et al [51].

Algorithm 2: Greedy heuristic over SFA S = (V,E)

Choose {x, y, z} s.t. (x, y), (y, z) ∈ E and maximizing
the probability mass of the retained strings.
S ← Collapse(FindMinSFA(S, {x, y, z}))
Repeat above steps till |E| ≤ m

Algorithm 2 summarizes our heuristic: for each triple of
nodes {x, y, z} such that (x, y), (y, z) ∈ E, we find a mini-
mal containing SFA Sij by calling FindMinSFA({x, y, z}).
We then replace the set of nodes in Sij by a single edge f
(Collapse above). This edge f keeps only the top-k strings
produced by Sij . Thus, the triple of nodes {x, y, z} gener-
ates a candidate SFA. We choose the candidate such that the
probability mass of all generated strings is as high as possi-
ble (note that since we have thrown away some strings, the
total probability mass may be less than 1). Given an SFA we
can compute this using the standard sum-product algorithm
(a faster incremental variant is actually used in Staccato).
We then continue to recurse until we have reached our goal
of finding an SFA that contains fewer than m edges. A sim-
ple optimization (employed by Staccato) is to cache those
candidates we have considered in previous iterations.

While our algorithm is not necessarily optimal, it serves as
a proof of concept that our conceptual goal can be achieved.
That is, Staccato offers a knob to tradeoff recall for perfor-
mance. We describe the experimental setup in more detail

in Section 5, but we illustrate our point with a simple ex-
perimental result. Figure 4 plots the recall and runtimes of
the two baselines and Staccato. Here, we have set k = 100
and m = 10. On these two queries, Staccato falls in the
middle on both recall and performance.

0.1 1 10 100 1000
0

0.2

0.4

0.6

0.8

1

M
S

F

M

S

F

R
ec

al
l

Runtime (in secs)

M
S
F

: MAP
: STACCATO

: FullSFA

Query 2

Query 1

Figure 4: Recall - Runtime tradeoff for a keyword
query (Query 1) and a regular expression query
(Query 2). The parameters are: number of chunks
(m) = 10, number of paths per chunk (k) = 100, and
number of answers queried for (NumAns) = 100.

3.2 Extensions and Analysis
To understand the formal underpinning of our approach,

we perform a theoretical analysis. Informally, the first ques-
tion is: “in what sense is choosing the k-MAP the best ap-
proximation for each chunk in our algorithm?” The second
question we ask is to justify our restriction to SFAs as op-
posed to richer graphical structures in our approximation.
We show that k-MAP in each chunk is no longer the best
approximation and that there is likely no simple algorithm
(as an underlying problem is NP-complete.)

We formally define the goal of our algorithms. Recall
that an SFA S on Σ represents a probability distribution
PrS : Σ∗ → [0, 1]. Given a set X ⊆ Σ∗, define PrS [X] =∑
x∈X Prs[x]. All the approximations that we consider emit

a subset of strings from the original model. Given an approx-
imation scheme α, we denote by Emit(α) the set of strings
that are emitted (retained) by that scheme. All other things
being equal, we prefer a scheme α to α′ whenever

Pr
S

[Emit(α)] ≥ Pr
S

[Emit(α′)]

That is, α retains more probability mass than α′. The
formal basis for this choice is a standard statistical mea-
sure called the Kullback-Leibler Divergence [15], between the
original and the approximate probability distributions. In
the full version [34], we show that this divergence is lower
(which means the approximate distribution is more similar
to the original distribution) if the approximation satisfies
the above inequality. In other words, a better approxima-
tion retains more of the high-probability strings.

We now describe our two main theoretical results. First
for SFAs, Staccato’s approach to choosing the k highest
probability strings in each chunk is optimal. For richer struc-
tures than SFAs, finding the optimal approximation is in-
tractable (even if we are given the chunk structure, described
below). Showing the first statement is straightforward, while
the result about richer structures is more challenging.

Optimality of k-MAP for SFAs. Given a generalized SFA
S = (V, δ). Fix k ≥ 1. Let S[k] be the set of all SFAs (V, δ′)
that arise from picking k strings on each edge of S to store.

That is, for any pair of nodes x, y ∈ V the set of strings with
non-zero probability has size smaller than k:∣∣{σ ∈ Σ∗ | δ′((x, y), σ) > 0}

∣∣ ≤ k
Let Sk denote an SFA that for each pair (x, y) ∈ V chooses
the highest probability strings in the model (breaking ties
arbitrarily). Then,

Proposition 3.1. For any S′ ∈ S[k], we have:

Pr
S

[Emit(Sk)] ≥ Pr
S

[Emit(S′)]

Since Sk is selected by Staccato, we view this as formal
justification for Staccato’s choice.

Richer Structural Approximation. We now ask a follow-
up question: “If we allow more general partitions (rather
than collapsing edges), is k-MAP still optimal?” To make
this precise, we consider a partition of the underlying edges
of the SFA into connected components (call that partition
Φ). Keeping with our early terminology, an element of the
partition is called a chunk. In each chunk, we select at
most k strings (corresponding to labeled paths through the
chunk). Let α : Φ × Σ∗ → {0, 1} be an indicator function
such that α(φ, σ) = 1 only if in chunk φ we choose string σ.
For any k ≥ 1, let Ak denote the set of all such αs that picks
at most k strings from each chunk, i.e., for any φ ∈ Φ we
have |{σ ∈ Σ∗ | α(φ, σ) > 0}| ≤ k. Let Emit(α) be the set of
strings emitted by this representation with non-zero prob-
ability (all strings that can be created from concatenating
paths in the model).

Following the intuition from the SFA case described above,
the best α would select the k-highest probability strings in
each chunk. However, this is not the case. Moreover, we
exhibit chunk structures, where finding the optimal choice
of α is NP-hard in the size of the structure. This makes it
unlikely that there is any simple description of the optimal
approximation.

Theorem 3.1. Fix k ≥ 2. The following problem is NP-
complete. Given as input (S,Φ, λ) where S is an SFA, Φ
partitions the underlying graph of S, and λ ≥ 0, determine
if there exists an α ∈ Ak satisfying Pr[Emit(α)] ≥ λ.

The above problem remains NP-complete if S is restricted
to satisfy the unique path property and restricted to a binary
alphabet. A direct consequence of this theorem is that find-
ing the maximizer is at least NP-hard. We provide the proof
of this theorem in the full version [34]. The proof includes a
detailed outline of a reduction from a matrix multiplication-
related problem that is known be to hard. The reduction
is by a gadget construction that encodes matrix multipli-
cation as SFAs. Each chunk has at most 2 nodes in either
border (as opposed to an SFA which has a single start and
final node). This is about the weakest violation of the SFA
property that we can imagine, and suggests to us that the
SFA property is critical for tractable approximations.

Automated Construction of Staccato. Part of our goal
is to allow knobs to trade recall for performance on a per
application basis, but setting the correct values for m and
k may be unintuitive for users. To reduce the burden on
the user, we devise a simple parameter tuning heuristic that
maximizes query performance, while achieving acceptable

recall. To measure recall, the user provides a set of labeled
examples and representative queries. The user specifies a
quality constraint (average recall for the set of queries) and
a size constraint (storage space as percentage of the original
dataset size). The goal is to find a pair of parameters (m,k)
that satisfies both these constraints. We note that the size
of the data is a function of (m,k) (see Table 1), which along
with the size constraint helps us express k in terms of m (or
vice versa). We empirically observed that for a fixed size,
a smaller m usually yields faster query performance than a
smaller k, which suggests that we need to minimize the value
of m to maximize query performance. Our method works
as follows: we pick a given value of m, then calculate the
corresponding k that lies on the size constraint boundary.
Given the resulting (m,k) pair, we compute the Staccato
approximation of the dataset and estimate the average re-
call. This problem is now a one-dimensional search problem:
our goal is to find the smallest m that satisfies the recall con-
straint. We solve this using essentially a binary search. If
infeasible, the user relaxes one of the constraints and repeats
the above method. We experimentally validated this tuning
method and compared it with an exhaustive search on the
parameter space. The results are discussed in Section 5.5.

4. INVERTED INDEXING
To speedup keywords and anchored regex queries on stan-

dard ASCII text, a popular technique is to use standard
inverted-indexing [14]. While indexing k-MAP data is pretty
straightforward, the FullSFA is difficult. The reason is that
the FullSFA encodes exponentially many strings in its length,
and so indexing all strings for even a moderate-sized SFA is
hopeless. Figure 5 shows the size of the index obtained (in
number of postings [14], in our case line number item pairs)
when we try to directly index the Staccato text of a single
SFA (one OCR line).

1 10 25 50 75 100
1E1

1E2

1E3

1E4

1E5

1 1020 40 60 80 100
1E1

1E9

1E17

m 5

m 20

A

k 50

k 10

B#
P

o
s

ti
n

g
s

P

o
s

ti
n

g
s

1E5

k: # Paths Parameter m: # Chunks Parameter

1E13

1E21

Figure 5: Number of postings (in logscale) from di-
rectly indexing one SFA. (A) Fix m, vary k. (B) Fix
k, vary m. In (B), for k = 50, the number of postings
overflows the 64-bit representation beyond m = 60.

Figure 5 shows an exponential blowup with m – which
is not surprising as we store exponentially more paths with
increasing m. Our observation is that many of these expo-
nentially many terms are useless to applications. Thus, to
extend the reach of indexing, we apply a standard technique.
We use a dictionary of terms input by the user, and con-
struct the index only for these terms [20]. These terms may
be extracted from a known clean text corpus or from other
sources like an English dictionary. Our construction algo-
rithm builds a DFA from the dictionary of terms, and runs
a slight modification of the SFA composition algorithm [27]
with the data to find the start locations of all terms (details
of the modification are in the full version [34]). The running
time of the algorithm is linear in the size of the dictionary.

Projection. In traditional text processing, given the length
of the keyword and the offset of a match, we can read only
that small portion of the document to process the query. We
extend this idea to Staccato by finding a small portion of
the SFA that is needed to answer the query – an operation
that we call projection. Given a term t of length u, we
obtain start locations of t from the postings. For each start
location, we compute an (over)estimate of the nodes that we
must process to obtain the term t. More precisely, we want
the descendant nodes in the DAG that can be reached by
a directed path from the start location that contains u or
fewer edges (we find such nodes using a breadth-first search).
This gives us a set of nodes that we must retrieve, which is
often much smaller than the entire SFA.

We empirically show that even a simple indexing scheme
as above can be used by Staccato to speedup keyword
and anchored regular expression queries by over an order of
magnitude versus a filescan-based approach. This validates
our claim that indexing is possible for OCR transducers, and
opens the possibility of adapting more advanced indexing
techniques to improve the runtime speedups.

5. EXPERIMENTAL EVALUATION
We experimentally verify that the Staccato approach

can gracefully tradeoff between performance and quality.
We also validate that our modifications to standard inverted
indexing allow us to speedup query answering.

Dataset
No. of No. of Size as:
Pages SFAs SFAs Text

Cong. Acts (CA) 38 1590 533MB 90kB
English Lit. (LT) 32 1211 524MB 78kB
DB Papers (DB) 16 627 359MB 54kB

Table 2: Dataset Statistics. Each SFA represents
one line of a scanned page.

Datasets Used. We use three real-world datasets from do-
mains where document digitization is growing. Congress
Acts (CA) is a set of scans of acts of the U.S. Congress, ob-
tained from The Hathi Trust [9]. English Literature (LT) is
a set of scans of an English literature book, obtained from
the JSTOR Archive [10]. Database Papers (DB) is a set
of papers that we scanned ourselves to simulate a setting
where an organization would scan documents for in-house
usage. All the scan images were converted to SFAs using
the OCRopus tool [8]. Each line of each document is repre-
sented by one SFA. We created a manual ground truth for
these documents. The relevant statistics of these datasets
are shown in Table 2. In order to study the scalability of
the approaches on much larger datasets, we used a 100 GB
dataset obtained from Google Books [7].

Experimental Setup. The three approaches were imple-
mented in C++ using PostgreSQL 9.0.3. The current im-
plementation is single threaded so as to assess the impact of
the approximation. All experiments are run on Intel Core-2
E6600 machines with 2.4 GHz CPU, 4 GB RAM, running
Linux 2.6.18-194. The runtimes are averaged over 7 runs.
The notation for the parameters is summarized in Table 3.
We set NumAns = 100, which is greater than the number
of answers in the ground truth for all reported queries. If

Symbol Description
k # Paths Parameter (k-MAP, Staccato)
m # Chunks Parameter (Staccato)

NumAns # Answers queried for

Table 3: Notations for Parameters

Staccato finds fewer matches than NumAns, it may re-
turn fewer answers. NumAns affects precision, and we do
sensitivity analysis for NumAns in the full version [34].

5.1 Quality - Performance Tradeoff (Filescan)
We now present the detailed quality and performance re-

sults for queries run with a full filescan. The central tech-
nical claim of this paper is that Staccato bridges the gap
from the low-recall-but-fast MAP to the high-recall-but-slow
FullSFA. To verify this claim, we measured the recall and
performance of 21 queries on the three datasets. We formu-
lated these queries based on our discussions with practition-
ers in companies and researchers in the social sciences who
work with real-world OCR data. Table 4 presents a subset
of these results (the rest are presented in the full version of
this paper [34]).

Query MAP k-MAP FullSFA Staccato
Precision/Recall

CA1 1.00/0.79 1.00/0.79 0.14/1.00 1.00/0.79
CA2 1.00/0.28 1.00/0.52 0.25/1.00 0.73/0.76
LT1 0.96/0.87 0.96/0.90 0.92/1.00 0.97/0.91
LT2 0.78/0.66 0.76/0.66 0.31/0.97 0.44/0.81
DB1 0.93/0.75 0.90/0.92 0.67/0.99 0.90/0.96
DB2 0.96/0.76 0.96/0.76 0.33/1.00 0.91/0.97

Runtime (in seconds)
CA1 0.17 0.75 86.72 2.87
CA2 0.18 0.84 150.35 3.36
LT1 0.13 0.19 83.78 1.98
LT2 0.14 0.24 155.45 2.88
DB1 0.07 0.29 40.73 0.75
DB2 0.07 0.33 619.31 0.86

Table 4: Recall and runtime results across datasets.
The keyword queries are – CA1: ‘President’, LT1:
‘Brinkmann’ and DB1: ‘Trio’. The regex queries
are – CA2: ‘U.S.C. 2\d\d\d’, LT2: ‘19\d\d, \d\d’ and
DB2: ‘Sec(\x) ∗ \d’. Here, \x is any character and \d
is any digit. The number of ground truth matches
are – CA1: 28, LT1: 92, DB1: 68, CA2: 55, LT2:
32 and DB2: 33. The parameter setting here is:
k = 25, m = 40, NumAns = 100.

We classify the kinds of queries to keywords and regu-
lar expressions. The intuition is that keyword queries are
likely to achieve higher recall on k-MAP compared to more
complex queries that contain spaces, special characters, and
wildcards. Table 4 presents the recall and runtime results for
six queries – one keyword and one regular expression (regex)
query per dataset. Table 4 confirms that indeed there are
intermediate points in our approximation that have faster
runtimes than FullSFA (even up to two orders of magni-
tude), while providing higher quality than k-MAP.

We would like the tradeoff of quality for performance to
be smooth as we vary m and k. To validate that our approx-
imation can support this, we present two queries, a keyword

1 10 25 50 75 100
0

0.2

0.4

0.6

0.8

1
R

ec
al

l

1 10 25 50 75 100
0

0.2

0.4

0.6

0.8

1

R
ec

al
l

1 10 25 50 75 100
0.01

0.1

1

10

100

1000

R
u

n
ti

m
e

(i
n

 s
)

1 10 25 50 75 100
0.01

0.1

1

10

100

1000

R
u

n
ti

m
e

(i
n

 s
)

A1

B2

A2

B1

k: # Paths Parameter

k: # Paths Parameter

k: # Paths Parameter

k: # Paths Parameter

Column B
Column F
Column F
Column F
Column B
Column B
Column J

FullSFA

STACCATO m 100
STACCATO m 40
STACCATO m 10
k-MAP
MAP

STACCATO m Max

Figure 6: Recall and Runtime variations with k, for
different values of m, on two queries: (A) ‘President’
(keyword), and (B) ‘U.S.C. 2\d\d\d’ (regex). The \d
is short for (0|1|...|9). The runtimes are in logscale.
NumAns is set to 100. Recall that m is the number
of chunks parameter and NumAns is the number of
answers queried for.

and a regex, on the Congress Acts dataset (described be-
low). To demonstrate this point, we vary k (the number of
paths) for several values of m (the number of chunks) and
plot the results in Figure 6. Given an SFA, m takes values
from 1 to the number of the edges in the SFA (the latter
being the nominal parameter setting ‘Max’). When m = 1,
Staccato is equivalent to k-MAP. Note that the state-of-
the-art in our comparison is essentially the MAP approach
(k-MAP with k = 1, or Staccato with m = 1, k = 1),
which is what is employed by Google Books.

Keyword Queries. In Figures 6 (A1) and (A2), we see the
recall and performance behavior of running a keyword query
(here ‘President’) in Staccato for various combinations of
k and m. We observe that the recall of k-MAP is high (0.8)
but not perfect and in (A2) k-MAP is efficient (0.1s) to an-
swer the query. Further, as we increase k there is essentially
no change in recall (the running time does increase by an
order of magnitude). We verified that the reason is that the
top-k paths change in only a small set of locations – and so
no new occurrences of the string ‘President’ are found. In
contrast, the FullSFA approach achieves perfect recall, but it
takes over 3 orders of magnitude longer to process the query.
As we can see from the plots, for the Staccato approach,
the recall improves as we increase m – with corresponding
slowdowns in query time. We believe that our approach is
promising because of the gradual tradeoff of running time
for quality. The fact that the k-MAP recall does not in-
crease substantially with k, and does not manage to achieve
the recall of FullSFA even for large k underscores the need
for finer-grained partition, which is what Staccato does.

Regular Expressions. Figures 6 (B1) and (B2) present the
results for a more sophisticated regex query that looks for a
congressional code (‘U.S.C. 2\d\d\d’) referenced in the text.

As the figure shows, this more sophisticated query has much
lower recall for the MAP approach, and increases slowly
with increasing k. Again, we see the same tradeoff that
the FullSFA approach is orders of magnitude slower than
k-MAP, but achieves perfect recall. Here, we see that the
Staccato approach does well: there are substantial (but
smooth) jumps in quality as we increase k and m, going
all the way from MAP to FullSFA. This suggests that more
sophisticated queries benefit from our scheme more, which
is an encouraging first step to enable applications to do rich
analytics over such data.

4 7 10 13 16

0.1

1

10

100

1000

4 7 10 13 16
0

0.25

0.5

0.75

1

R
u

n
ti

m
e

 (
i n

 s
)

R
e

c
a

ll

Query length Query length

A

B

1
2
3

FullSFA
STACCATO m 40 k 25
k-MAP k 25

Figure 7: Impact of Query Length on (A) Runtime
and (B) Recall. NumAns, the number of answers
queried for, is set to 100.

Query Efficiency. To assess the impact of query length on
recall and runtime, we plot the two for a set of keyword
queries of increasing length in Figure 7. We observe that
the runtimes increase polynomially but slowly for all the
approaches, while no clear trends exist for the recall. We saw
similar results with regular expression queries, and discuss
the details in the full version [34].

We also studied the impact of m and k on precision (and
F-1 score), and observed that the precision of Staccato
usually falls in between k-MAP and FullSFA (but F-1 of
Staccato can be better than both in some cases). Similar
to the recall-runtime tradeoff, Staccato also manages to
gracefully tradeoff on precision and recall. Due to space con-
straints, these results are discussed in the full version [34].

5.2 Staccato Construction Time

1 100 200 300 400 500

0

20

40

60

80

T
im

e
 (

in
 s

)

1 100 200 300 400 500
0

20

40

60

80

T
im

e
 (

in
 s

)

n: Size of SFA m: # Chunks Parameter

A Bm 1 k 100

m 40 k 100

n 500 k 100

n 150 k 100

Figure 8: (A) Variation of Staccato approximation
runtimes with the size of the SFA (n = number of
nodes + edges) fixing m and k. (B) Sensitivity of the
runtimes to m, fixing n and k. Recall that m is the
number of chunks parameter and k is the number of
paths parameter.

We now investigate the runtime of the Staccato’s ap-
proximation algorithm. The runtime depends on the size of
the input SFA data as well as m and k. We first fix m and
k, then we plot the construction time for SFAs of varying
size (number of nodes) from the CA dataset (Figure 8(A)).
Overall, we can see that the algorithm runs efficiently – even
in our unoptimized implementation. As this is an offline pro-
cess, speed may not be critical for some applications. Also,

this computation is embarassingly parallel (across SFAs).
We used Condor [2] to run the Staccato construction on
all the SFAs in the three datasets, for all of the above param-
eters. This process completed in approximately 11 hours.

To study the sensitivity of the construction time to m, we
select a fixed SFA from the CA dataset (Figure 8(B)). When
m ≥ |E|, the algorithm picks each transition as a block, and
terminates. But when m = 300 < |E|, the algorithm com-
putes several candidate merges, leading to a sudden spike
in the runtime. There onwards, the runtime varies almost
linearly with decreasing m. However, there are some spikes
in the middle. We verified that the spikes arise since the
‘FindMinSFA’ operation has to fix merged chunks not sat-
isfying the SFA property, thus causing the variation to be
less smooth. We also verified that the runtime was linear in
k, fixing the SFA and m (see full version [34]). In general, a
linear runtime in k is not guaranteed since the chunk struc-
ture obtained during merging may not be similar across k,
for a given SFA and m.

5.3 Inverted Indexing
We now verify that standard inverted indexing can be

made to work on SFAs. We implement the index as a re-
lational table with a B+-tree on top of it. More efficient
inverted indexing implementations are possible, and so our
results are an upperbound on indexing performance. How-
ever, this prototype serves to illustrate our main technical
point that indexing is possible for such data.

A dictionary of about 60,000 terms from a freely available
dictionary [4] was converted to a prefix-trie automaton, and
used for index construction. While parsing the query, we
ascertain if the given regex contains a left-anchor term. If
so, we look up the anchor in the index to obtain the postings,
and retrieve the data to employ query processing on them.

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

6 6.3 6.6
3.5

5

6.5

8

0.01

0.1

1

10
Max
100
40
10
1

A B m Max
m 100
m 40
m 10
m 1

m Max

m 100

m 40

m 1 m 10

Query Selectivity in %k: # Paths Parameter

R
u

n
ti

m
e

 (
in

 s
)

%
 o

f
S

ca
n

 R
u

n
ti

m
e

1 25 50 75 100

Figure 9: (A) Total Runtimes, and (B) Frac-
tional Runtimes Vs Selectivity for the query
‘Public Law (8|9)\d’, using the inverted index with the
left anchor term ‘public’. Runtimes are in logscale.
Recall that m is the number of chunks parameter.

Figure 9 shows the results for a fixed length left anchored
regex on the CA data set that is anchored by a word in
the dictionary (here, ‘Public’). We omit some combinations
(m = 100,Max and k = 50, 75, 100) since their indexes had
nearly 100% selectivity for all queries that we consider, ren-
dering them useless. The first plot shows the sensitivity of
the total runtimes to m and k. Mostly, there is a linear
trend with k, except for a spike at m = 40, k = 50. To un-
derstand this behavior, we plot the runtime, as a percentage
of the filescan runtime, against the selectivity of the term in
the index. Ideally, the points should lie on the Y = X line,
or slightly above it. For the lowest values of m and k, the

relative speedup is slightly lowered by the index lookup over-
head. But as k increases, the query processing dominates,
and hence the speedup improves, though selectivity changes
only slightly. For higher m, the projection overhead lowers
the speedup, and as k goes up, the selectivity shoots up, in-
creasing the runtime. Overall, we see that dictionary-based
indexing provides substantial speedups in many cases.

5.4 Scalability
To understand the feasibility of our approaches on larger

amounts of data, we now study how the runtimes scale with
increasing dataset sizes. We use a set of 8 scanned books
from Google Books [7] and use OCRopus to obtain the SFAs.
The total size of the SFA dataset is 100 GB.

Size (GB) # SFAs

1 3400

10 32000

25 86000

50 172000

100 345000
0 25 50 75 100

0.1

1

10

100

1000

10000

100000

R
u

n
ti

m
e

(i
n

 s
)

STACCATO m 40 k 50

STACCATO m 10 k 50

Dataset Size (in GB) B

FullSFA

MAP

A
1

Figure 10: (A) Filescan runtimes (logscale) against
the dataset size for MAP, FullSFA and Staccato with
two parameter settings. (B) Number of SFAs in the
respective datasets.

Figure 10 shows the scalability results for a regex query.
The filescans for FullSFA, MAP and Staccato all scale lin-
early in the dataset size. Overall, the filescan runtimes are
in the order a few hours for FullSFA. The runtimes are one
to two orders of magnitude lower for Staccato, depend-
ing on the parameters, and about three orders of magnitude
lower for MAP. We also verified that indexing over this data
provides further speedup (subject to query selectivity) as
shown before. One can speedup query answering in all of
the approaches by partitioning the dataset across multiple
machines (or even using multiple disks). Thus, to scale to
much larger corpora (say, millions of books), we plan to in-
vestigate the use of parallel data processing frameworks to
attack this problem.

5.5 Automated Parameter Tuning
We now empirically demonstrate the parameter tuning

method on a labeled set of 1590 SFAs (from the CA dataset),
and a set of 5 queries (both keywords and regular expres-
sions). The size constraint is chosen as 10% and the re-
call constraint is chosen as 0.9. We use increments of 5 for
both m and k. Based on the tuning method described in
Section 3.2, we obtain the following size equation: 20mk +
58k = 45540, and the resultant parameter estimates of m =
45, k = 45, with a recall of 0.91. We then performed an ex-
haustive search on the parameter space to obtain the optimal
values subject to the same constraints. Figure 11 shows the
surface plots of the size and the recall obtained by varying
m and k. The optimal values obtained are: m = 35, k = 80,
again with a recall of 0.91. The difference in the parameter
values arises primarily because the tuning method overesti-
mated the size at this location. Nevertheless, we see that
the tuning method provides parameter estimates satisfying
the user requirements.

 A B

Figure 11: 3-D plots showing the variation of (A)
the size of the approximated dataset (in MB), and
(B) the average recall obtained. Recall that m is the
number of chunks parameter and k is the number of
paths parameter.

6. RELATED WORK
Transducers are widely used in the OCR and speech com-

munities [11,39] and mature open-source tools exist to pro-
cess in-memory transducers [12]. For example we use a pop-
ular open-source tool, OCRopus [8], from Google Books that
provides well-trained language models and outputs trans-
ducers. See Mohri et al. [39] for a discussion of why trans-
ducers are well-suited to represent the uncertainty for OCR.
In the same work, Mohri et al. also describe speech data. We
experimented with speech data, but we were hampered by
the lack of high quality open-source speech recognizer toolk-
its. Using the available toolkits, we found that the language
quality from open source speech recognizers is substantially
below commercial quality.

The Lahar system [37,43] manages Hidden Markov Mod-
els (HMMs) as Markovian streams inside an RDBMS and
allows querying them with SQL-like semantics. In contrast
to an HMM [42] that requires that all strings be of the same
length, transducers are able to encode strings of different
lengths. This is useful in OCR, since identifying spaces be-
tween words is difficult, and this uncertainty is captured
by the branching in the SFA [39]. Our work drew inspi-
ration from the empirical study of work of approximation
trade-offs from Letchner et al. [37]. Directly relevant to
this work is the recent theoretical results of Kimelfeld and
Ré [32], who studied the problem of evaluating transduc-
ers as queries over uncertain sequence data modeled using
Hidden Markov Models [42, 43]. Staccato represents both
the data and query by transducers which simplifies the en-
gineering of our system.

Transducers are a graphical representation of probabil-
ity models which makes them related to graphical models.
Graphical models have been a hot topic in the database re-
search community. Kanagal et al. [30] handle general graph-
ical models. Wang et al. [49] also process Conditional Ran-
dom Fields (CRFs) [35]. Though transducers can be viewed
as a specialized directed graphical model, the primary fo-
cus of our work here is on the application of transducers
to OCR in the domain of content management and the ap-
proximations that are critical to achieve good performance.
However, our work is similar in spirit to these in that we
too want to enable SQL-like querying of probabilistic OCR
data inside an RDBMS.

Probabilistic graphical models have been successfully ap-
plied to various kinds of sequential data including OCR [17],
RFID [43], speech [38], etc. Various models have been stud-
ied in both the machine learning and data management com-
munities [21,29,30,43,49].

Many approximation schemes for probabilistic models have
been studied [28,37]. We built on the technique k-MAP [1],
which is particularly relevant to us. Essentially, the idea is
to infer the top k most likely results from the model and
keep only those around. Another popular type of approx-
imation is based on mean-field theory, where the intuition
is that we replace complex dependencies (say in a graph-
ical model) with their average (in some sense) [48]. Both
mean-field theory and our approach share a common formal
framework: minimizing KL-divergence. For a good overview
of various probabilistic graphical models, approximation and
inference techniques, we refer the reader to the excellent
book by Wainwright and Jordan [48].

Gupta and Sarawagi [25] devise efficient approximation
schemes to represent the outputs of a CRF, viz., labeled
segmentations of text, in a probabilistic database. They
partition the space of segmentations (i.e., the outputs) us-
ing boolean constraints on the output segment labels, and
then structurally merge the partitions to a pre-defined count
using Expectation Maximization, without any enumeration.
Thus, their final partitions are disjoint sets of full-row out-
puts (‘horizontally’ partitioned). Both their approach and
Staccato use KL-divergence to measure the goodness of
approximation. However, Staccato is different in that we
partition the underlying structure of the model (‘vertically’
partitioned). They also consider soft-partitioning approaches
to overcome the limitations of disjoint partitioning. It is in-
teresting future work to adapt such ideas for our problem,
and compare with Staccato’s approach.

Probabilistic databases have been studied in several recent
projects (e.g., ORION [18],Trio [45], MystiQ [22], Sprout [41],
and MayBMS [13]). Our work is complementary to these ef-
forts: the queries we consider can produce probabilistic data
that can be ingested by many of the above systems, while
the above systems focus on querying restricted models (e.g.,
U-Relations or BIDs). We also use model-based views [23]
to expose the results of query-time inference over the OCR
transducers to applications.

The OCR, speech and IR communities have explored er-
ror correction techniques as well as approximate retrieval
schemes [16,26,40]. However, prior work primarily focus on
keyword search over plain-text transcriptions. Staccato
can benefit from these approaches and is orthogonal to our
goal of integrating OCR data into an RDBMS. In contrast,
we advocate retaining the uncertainty in the transcription.

Many authors have explored indexing techniques for prob-
abilistic data [31, 33, 36, 47]. Letchner et al. [36] design new
indexes for RFID data stored in an RDBMS as Marko-
vian streams. Kanagal et al. [31] consider indexing cor-
related probabilistic streams using tree partitioning algo-
rithms and describe a new technique called shortcut poten-
tials to speedup query answering. Kimura et al. [33] pro-
pose a new uncertain primary index that clusters heap files
according to uncertain attributes. Singh et al. [47] consider
indexing categorical data and propose an R-tree based index
as well as a probabilistic inverted index. Our work focuses
on the challenges that content models like OCR raise for
integrating indexing with an RDBMS.

7. CONCLUSION AND FUTURE WORK
We present our prototype system, Staccato, that inte-

grates a probabilistic model for OCR into an RDBMS. We
demonstrated that it is possible to devise an approximation
scheme that trades query runtime performance for result
quality (in particular, increased recall). The technical con-
tributions are a novel approximation scheme and a formal
analysis of this scheme. Additionally, we showed how to
adapt standard text-indexing schemes to OCR data, while
retaining more answers.

Our future work is in two main directions. Firstly, we
aim to extend Staccato to handle larger data sets and
more sophisticated querying (e.g., using aggregation with a
probabilistic RDBMS, sophisticated indexing, parallel pro-
cessing etc.). Secondly, we aim to extend our techniques to
more types of content-management data such as speech tran-
scription data. Interestingly, transducers provide a unifying
formal framework for both transcription processes. Our ini-
tial experiments with speech data suggest that similar ap-
proximations techniques may be useful. This direction is
particularly exciting to us: it is a first step towards unifying
RDBMS and content-management systems, two multibillion
dollar industries.

8. REFERENCES
[1] A Brief Introduction to Graphical Models and Bayesian

Networks. http://www.cs.ubc.ca/ murphyk/Bayes/bayes.html.

[2] Condor high-throughput computing system.
http://www.cs.wisc.edu/condor/.

[3] Content Management Systems. http://www.cmswire.com/.

[4] Corncob List. http://www.mieliestronk.com/wordlist.html.

[5] Digital humanities by UW’s Prof. Witmore.
http://winedarksea.org.

[6] ExperVision Inc. http://www.expervision.com/.

[7] Google Books. http://books.google.com/.

[8] OCRopus open source OCR system.
http://code.google.com/p/ocropus.

[9] The Hathi Trust. http://www.hathitrust.org/.

[10] The JSTOR Archive. http://www.jstor.org/.

[11] C. Allauzen, M. Mohri, and M. Saraclar. General indexation of
weighted automata - application to spoken utterance retrieval.
In Workshop on Interdisciplinary Approaches to Speech
Indexing and Retrieval (HLT/NAACL), pages 33–40, 2004.

[12] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri.
Openfst: A general and efficient weighted finite-state
transducer library. In CIAA, pages 11–23, 2007.

[13] L. Antova, C. Koch, and D. Olteanu. Maybms: Managing
incomplete information with probabilistic world-set
decompositions. In ICDE, pages 1479–1480, 2007.

[14] R. A. Baeza-Yates and B. Ribeiro-Neto. Modern Information
Retrieval. Addison-Wesley Longman Publishing Co., Inc., 1999.

[15] C. M. Bishop. Pattern Recognition and Machine Learning.
Springer-Verlag New York, Inc., 2006.

[16] J. Callan, W. B. Croft, and S. M. Harding. The inquery
retrieval system. In DEXA, pages 78–83, 1992.

[17] M. Y. Chen, A. Kundu, and J. Zhou. Off-line handwritten word
recognition using a hidden markov model type stochastic
network. Pattern Anal. Mach. Intell., 16:481–496, May 1994.

[18] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating
probabilistic queries over imprecise data. In SIGMOD, pages
551–562, 2003.

[19] J. Cho and S. Rajagopalan. A fast regular expression indexing
engine. In ICDE, pages 419–430, 2001.

[20] R. Cole, L.-A. Gottlieb, and M. Lewenstein. Dictionary
matching and indexing with errors and don’t cares. In STOC,
pages 91–100, 2004.

[21] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J.
Spiegelhalter. Probabilistic Networks and Expert Systems:
Exact Computational Methods for Bayesian Networks.
Springer, 2007.

[22] N. N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. In VLDB, pages 864–875, 2004.

[23] A. Deshpande and S. Madden. Mauvedb: supporting
model-based user views in database systems. In SIGMOD,
pages 73–84, 2006.

[24] J. Forney, G.D. The viterbi algorithm. Proc. IEEE,
61:268–278, 1973.

[25] R. Gupta and S. Sarawagi. Creating probabilistic databases
from information extraction models. In VLDB, pages 965–976,
2006.

[26] S. Harding, W. B. Croft, and C. Weir. Probabilistic retrieval of
ocr degraded text using n-grams. In ECDL, pages 345–359,
1997.

[27] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to
Automata Theory, Languages, and Computation (3rd
Edition). Addison-Wesley Longman Publishing Co., Inc., 2006.

[28] F. Jensen and S. Andersen. Approx. in bayesian belief universes
for knowledge-based systems. In UAI, pages 162–169, 1990.

[29] M. I. Jordan. Learning in graphical models. MIT Press, 1999.

[30] B. Kanagal and A. Deshpande. Efficient query evaluation over
temporally correlated probabilistic streams. In ICDE, pages
1315–1318, 2009.

[31] B. Kanagal and A. Deshpande. Indexing correlated
probabilistic databases. In SIGMOD, pages 455–468, 2009.

[32] B. Kimelfeld and C. Ré. Transducing markov sequences. In
PODS, pages 15–26, 2010.

[33] H. Kimura, S. Madden, and S. B. Zdonik. Upi: A primary
index for uncertain databases. PVLDB, 3(1):630–637, 2010.

[34] A. Kumar and C. Ré. Probabilistic management of ocr data
using an rdbms. UW-CS-Technical Report, 2011. available from
http://www.cs.wisc.edu/hazy/staccato/papers/HazyOCR_TR.pdf.

[35] J. Lafferty. Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. Morgan Kaufmann,
2001.

[36] J. Letchner, C. Ré, M. Balazinska, and M. Philipose. Access
methods for markovian streams. In ICDE, pages 246–257, 2009.

[37] J. Letchner, C. Ré, M. Balazinska, and M. Philipose.
Approximation trade-offs in markovian stream processing: An
empirical study. In ICDE, pages 936–939, 2010.

[38] S. E. Levinson, L. R. Rabiner, and M. M. Sondhi. An
introduction to the application of the theory of probabilistic
functions of a markov process to automatic speech recognition.
Bell Systems Technical Journal, 62:1035–1074, 1983.

[39] M. Mohri. Finite-state transducers in language and speech
processing. Computational Linguistics, 23(2):269–311, 1997.

[40] S. Mori, H. Nishida, and H. Yamada. Optical character
recognition. John Wiley & Sons, Inc., 1999.

[41] D. Olteanu, J. Huang, and C. Koch. Sprout: Lazy vs. eager
query plans for tuple-independent probabilistic databases. In
ICDE, pages 640–651, 2009.

[42] L. R. Rabiner. A tutorial on hidden markov models and
selected applications in speech recognition. In Proc. of IEEE,
pages 257–286, 1989.

[43] C. Ré, J. Letchner, M. Balazinska, and D. Suciu. Event queries
on correlated probabilistic streams. In SIGMOD, pages
715–728, 2008.

[44] C. Ré and D. Suciu. Approximate lineage for probabilistic
databases. PVLDB, 1(1):797–808, 2008.

[45] A. D. Sarma, O. Benjelloun, A. Halevy, and J. Widom.
Working models for uncertain data. ICDE, pages 7–18, 2006.

[46] A. D. Sarma, M. Theobald, and J. Widom. Exploiting lineage
for confidence computation in uncertain and probabilistic
databases. In ICDE, pages 1023–1032, 2008.

[47] S. Singh, C. Mayfield, S. Prabhakar, R. Shah, and
S. Hambrusch. Indexing uncertain categorical data. In ICDE,
pages 616–625, 2007.

[48] M. J. Wainwright and M. I. Jordan. Graphical models,
exponential families, and variational inference. Foundations
and Trends of Machine Learning, 1, 2008.

[49] D. Z. Wang, E. Michelakis, M. N. Garofalakis, and J. M.
Hellerstein. Bayesstore: managing large, uncertain data
repositories with probabilistic graphical models. PVLDB,
1(1):340–351, 2008.

[50] J. Widom. Trio: A system for integrated management of data,
accuracy, and lineage. In CIDR, pages 262–276, 2005.

[51] J. Y. Yen. Finding the k shortest loopless paths in a network.
In Management Science, 1971.

[52] J. Zobel, A. Moffat, and R. Sacks-davis. An efficient indexing
technique for full-text database systems. In VLDB, 1992.

[53] A. Zymnis, S. Boyd, and D. Gorinevsky. Relaxed maximum a
posteriori fault identification. Signal Process., 89, June 2009.

