
Tuffy

Scaling up Statistical Inference
in Markov Logic using an RDBMS

Feng Niu, Chris Ré, AnHai Doan, and Jude Shavlik

University of Wisconsin-Madison

One Slide Summary

2

Machine Reading is a DARPA program to capture
knowledge expressed in free-form text

We use Markov Logic, a language that allows rules
that are likely – but not certain – to be correct

Markov Logic yields high quality, but current
implementations are confined to small scales

Tuffy scales up Markov Logic by orders of
magnitude using an RDBMS

Similar challenges in enterprise applications

Outline

v Markov Logic
§  Data model
§  Query language
§  Inference = grounding then search

v Tuffy the System
§  Scaling up grounding with RDBMS
§  Scaling up search with partitioning

3

A Familiar Data Model

4

Relations with
known facts

Relations to
be predicted

Markov Logic program
Datalog?

EDB IDB

Datalog + Weights
≈ Markov Logic

Markov Logic*

5

v Syntax: a set of weighted logical rules

§  Weights: cost for rule violation

v Semantics: a distribution over possible worlds
§  Each possible world 𝐼 incurs total cost cost(𝐼)
§  Pr[𝐼] ∝ exp(−cost(𝐼))
§  Thus most likely world has lowest cost

3 wrote(s,t) ∧ advisedBy(s,p) à wrote(p,t)
// students’ papers tend to be co-authored by advisors

* [Richardson & Domingos 2006]

exponential models

Markov Logic by Example

6

Rules

3 wrote(s,t) ∧ advisedBy(s,p) à wrote(p,t)
 // students’ papers tend to be co-authored by advisors

5 advisedBy(s,p) ∧ advisedBy(s,q) à p = q
 // students tend to have at most one advisor

∞ advisedBy(s,p) à professor(p)
 // advisors must be professors

Evidence
wrote(Tom, Paper1)
wrote(Tom, Paper2)
wrote(Jerry, Paper1)

professor(John)
…

Query

advisedBy(?, ?)
// who advises whom

EDB IDB

Inference

7

Rules

Evidence
Relations

Query
Relations

Inference

regular tuples

tuple probabilities

MAP

Marginal

Inference

8

Rules

Evidence
Relations

Query
Relations

Grounding Search

1.  Find tuples that are relevant
(to the query)

2.  Find tuples that are true
(in most likely world)

How to Perform Inference

v Step 1: Grounding
§  Instantiate the rules

9

3  wrote(s, t) ∧ advisedBy(s, p) à wrote(p, t)

3 wrote(Tom, P1) ∧ advisedBy(Tom, Jerry) à wrote (Jerry, P1)
3 wrote(Tom, P1) ∧ advisedBy(Tom, Chuck) à wrote (Chuck, P1)
3 wrote(Chuck, P1) ∧ advisedBy(Chuck, Jerry) à wrote (Jerry, P1)
3 wrote(Chuck, P2) ∧ advisedBy(Chuck, Jerry) à wrote (Jerry, P2)

…

Grounding

How to Perform Inference

v Step 1: Grounding
§  Instantiated rules à Markov Random Field (MRF)

•  A graphical structure of correlations

10

3 wrote(Tom, P1) ∧ advisedBy(Tom, Jerry) à wrote (Jerry, P1)
3 wrote(Tom, P1) ∧ advisedBy(Tom, Chuck) à wrote (Chuck, P1)
3 wrote(Chuck, P1) ∧ advisedBy(Chuck, Jerry) à wrote (Jerry, P1)
3 wrote(Chuck, P2) ∧ advisedBy(Chuck, Jerry) à wrote (Jerry, P2)

…

Nodes: Truth values of tuples

Edges: Instantiated rules

How to Perform Inference

v Step 2: Search
§  Problem: Find most likely state of the MRF (NP-hard)
§  Algorithm: WalkSAT*, random walk with heuristics
§  Remember lowest-cost world ever seen

11

advisee advisor
Tom Jerry

Tom Chuck Search

* [Kautz et al. 2006]

False

True

Outline

v Markov Logic
§  Data model
§  Query language
§  Inference = grounding then search

v Tuffy the System
§  Scaling up grounding with RDBMS
§  Scaling up search with partitioning

12

Challenge 1: Scaling Grounding

v Previous approaches
§  Store all data in RAM
§  Top-down evaluation

13

RAM size quickly becomes bottleneck

Even when runnable,
grounding takes long time

[Singla and Domingos 2006]
[Shavlik and Natarajan 2009]

Grounding in Alchemy*

14

v Prolog-style top-down grounding with C++ loops
§  Hand-coded pruning, reordering strategies

3 wrote(s, t) ∧ advisedBy(s, p) à wrote(p, t)

For each person s:
 For each paper t:
 If !wrote(s, t) then continue
 For each person p:
 If wrote(p, t) then continue
 Emit grounding using <s, t, p>

Grounding sometimes accounts for over 90% of Alchemy’s run time

[*] reference system from UWash

Grounding in Tuffy

Encode grounding as SQL queries

15

Executed and optimized by RDBMS

Grounding Performance

Tuffy achieves orders of magnitude speed-up

16

Relational
Classification

Entity
Resolution

Alchemy
[C++] 68 min 420 min

Tuffy
[Java + PostgreSQL] 1 min 3 min
Evidence tuples 430K 676

Query tuples 10K 16K

Rules 15 3.8K

Yes, join algorithms & optimizer are the key!

Challenge 2: Scaling Search

17

Grounding Search

Challenge 2: Scaling Search

v First attempt: pure RDBMS, search also in SQL
§  No-go: millions of random accesses

v Obvious fix: hybrid architecture

18

Problem: stuck if |MRF | > |RAM|!

RDBMS RAM

RAM RDBMS RAM

RDBMS Grounding

Search

Alchemy Tuffy-DB Tuffy

Partition to Scale up Search

v Observation
§  MRF sometimes have multiple components

v Solution
§  Partition graph into components
§  Process in turn

19

Effect of Partitioning

v Pro

v Con (?)
§  Motivated by scalability
§  Willing to sacrifice quality

20

Scalability Parallelism

What’s the effect on quality?

Partitioning Hurts Quality?

21

0

1000

2000

3000

0 100 200 300

co
st

time (sec)

Tuffy

Tuffy-no-part

Relational Classification

Goal: lower the cost quickly

Partitioning can actually improve quality!

Alchemy took over 1 hr.
Quality similar to

Tuffy-no-part

WalkSAT
iteration cost1 cost2 cost1 + cost2

1 5 20 25

min 5 20 25

Partitioning (Actually) Improves Quality

22

Reason:

Tuffy Tuffy-no-part

WalkSAT
iteration cost1 cost2 cost1 + cost2

1 5 20 25

2 20 10 30

min 5 10 25

Partitioning (Actually) Improves Quality

23

Reason:

Tuffy Tuffy-no-part

WalkSAT
iteration cost1 cost2 cost1 + cost2

1 5 20 25

2 20 10 30

3 20 5 25

min 5 5 25

Partitioning (Actually) Improves Quality

24

Reason:

Tuffy Tuffy-no-part

cost[Tuffy] = 10
cost[Tuffy-no-part] = 25

100 components à 100 years of gap!

Under certain technical conditions, component-wise
partitioning reduces expected time to hit an optimal
state by (2 ^ #components) steps.

Partitioning (Actually) Improves Quality

25

Theorem (roughly):

Further Partitioning

Partition one component further into pieces

26

Graph Scalability Quality

J Sparse

Dense

In the paper: cost-based trade-off model

J

J/L

Conclusion

v Markov Logic is a powerful framework for
statistical inference
§  But existing implementations do not scale

v Tuffy scales up Markov Logic inference
§  RDBMS query processing is perfect fit for grounding
§  Partitioning improves search scalability and quality

v Try it out!

27

http://www.cs.wisc.edu/hazy/tuffy

