Report Number: CS-TR-86-1114
Institution: Stanford University, Department of Computer Science
Title: Optimizing function-free recursive inference rules
Author: Naughton, Jeffrey F.
Date: May 1986
Abstract: Recursive inference rules arise in recursive definitions in
logic programming systems and in database systems with
recursive query languages. Let D be a recursive definition of
a relation t. We say that D is minimal if for any predicate p
in a recursive rule in D, p must appear in a recursive rule
in any definition of t. We show that testing for minimality
is in general undecidable. However, we do present an
efficient algorithm for a useful class of recursive rules,
and show how to use it to transform a recursive definition to
a minimal recursive definition. Evaluating the optimized
definition will avoid redundant computation without the
overhead of caching intermediate results and run-time
checking for duplicate goals.
http://i.stanford.edu/pub/cstr/reports/cs/tr/86/1114/CS-TR-86-1114.pdf