Report Number: CS-TR-73-350
Institution: Stanford University, Department of Computer Science
Title: An almost-optimal algorithm for the assembly line scheduling
problem.
Author: Kaufman, Marc T.
Date: January 1973
Abstract: This paper considers a solution to the multiprocessor
scheduling problem for the case where the ordering relation
between tasks can be represented as a tree. Assume that we
have n identical processors, and a number of tasks to
perform. Each task $T_i$ requires an amount of time ${\mu}_i$
to complete, 0 < ${\u}_i \leq$ k, so that k is an upper bound
on task length. Tasks are indivisible, so that a processor
once assigned must remain assigned until the task completes
(no preemption). Then the "longest path" scheduling method is
almost-optimal in the following sense:
Let $\omage$ be the total time required to process all of the
tasks by the "longest path" algorithm.
Let ${\omega}_o$ be the minimal time in which all of the
tasks can be processed.
Let ${\omega}_p$ be the minimal time to process all of the
tasks if arbitrary preemption of processors is allowed.
Then: ${\omega}_p \leq {\omega}_o \leq \omega \leq
{\omega}_p$ + k - k/n, where n is the number of processors
available to any of the algorithms.
http://i.stanford.edu/pub/cstr/reports/cs/tr/73/350/CS-TR-73-350.pdf