More Stream-Mining

Counting Distinct Elements
Computing "Moments"
Frequent Itemsets
Elephants and Troops
Exponentially Decaying Windows

Counting Distinct Elements

- ◆ Problem: a data stream consists of elements chosen from a set of size n. Maintain a count of the number of distinct elements seen so far.
- Obvious approach: maintain the set of elements seen.

Applications

- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate artificial pages (spam?).
- How many different Web pages does each customer request in a week?

Using Small Storage

- Real Problem: what if we do not have space to store the complete set?
- Estimate the count in an unbiased way.
- Accept that the count may be in error, but limit the probability that the error is large.

Flajolet-Martin* Approach

- Pick a hash function h that maps each of the n elements to at least log₂n bits.
- For each stream element a, let r(a) be the number of trailing 0's in h(a).
- Record R = the maximum r(a) seen.
- \bullet Estimate = 2^R .

Why It Works

- The probability that a given h(a) ends in at least r 0's is 2^{-r} .
- ◆ If there are m different elements, the probability that $R \ge r$ is $1 (1 2^{-r})^m$.

Prob. all h(a)'s end in fewer than r 0's.

Prob. a given h(a) ends in fewer than r 0's.

Why It Works -(2)

- ♦ Since 2^{-r} is small, 1 $(1-2^{-r})^m \approx 1 e^{-m2^{-r}}$.
- If $2^r >> m$, $1 (1 2^{-r})^m \approx 1 (1 m2^{-r})$ $\approx m/2^r \approx 0$. First 2 terms of the Taylor expansion of e^x
- ◆If $2^r << m$, $1 (1 2^{-r})^m \approx 1 e^{-m2^{-r}} \approx 1$.
- \bullet Thus, 2^R will almost always be around m.

Why It Doesn't Work

- \bullet E(2^R) is actually infinite.
 - Probability halves when R -> R +1, but value doubles.
- Workaround involves using many hash functions and getting many samples.
- How are samples combined?
 - Average? What if one very large value?
 - Median? All values are a power of 2.

Solution

- Partition your samples into small groups.
- Take the average of groups.
- Then take the median of the averages.

Generalization: Moments

- Suppose a stream has elements chosen from a set of n values.
- Let m_i be the number of times value i occurs.
- The k^{th} moment is the sum of $(m_i)^k$ over all i.

Special Cases

- Oth moment = number of different elements in the stream.
 - The problem just considered.
- ◆1st moment = count of the numbers of elements = length of the stream.
 - Easy to compute.
- ◆2nd moment = *surprise number* = a measure of how uneven the distribution is.

Example: Surprise Number

- Stream of length 100; 11 values appear.
- Surprising: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1Surprise # = 8,110.

AMS Method

- Works for all moments; gives an unbiased estimate.
- We'll just concentrate on 2nd moment.
- Based on calculation of many random variables X.
 - Each requires a count in main memory, so number is limited.

One Random Variable

- Assume stream has length n.
- Pick a random time to start, so that any time is equally likely.
- Let the chosen time have element a in the stream.
- $\bigstar X = n^*$ ((twice the number of a's in the stream starting at the chosen time) 1).
 - ◆ Note: store n once, count of a's for each X.

Expected Value of X

- \bullet 2nd moment is $\Sigma_a(m_a)^2$.
- \bullet E(X) = $(1/n)(\Sigma_{\text{all times }t} n^*)$ (twice the number of times the stream element at time t appears from that time on) -1).

$$\bullet = \Sigma_a (1/n)(n)(1+3+5+...+2m_a-1)$$
.

$$= \sum_{a}^{b} (m_a)^2.$$

Group times by the value seen

Time when is seen

Time when the last a the penultimate the first a a is seen

Time when is seen

Combining Samples

- Compute as many variables X as can fit in available memory.
- Average them in groups.
- Take median of averages.
- Proper balance of group sizes and number of groups assures not only correct expected value, but expected error goes to 0 as number of samples gets large.

Problem: Streams Never End

- We assumed there was a number n, the number of positions in the stream.
- But real streams go on forever, so n is a variable – the number of inputs seen so far.

Fixups

- The variables X have n as a factor keep n separately; just hold the count in X.
- 2. Suppose we can only store *k* counts. We must throw some *X*'s out as time goes on.
 - Objective: each starting time t is selected with probability k/n.

Solution to (2)

- Choose the first k times for k variables.
- When the n^{th} element arrives (n > k), choose it with probability k / n.
- ◆If you choose it, throw one of the previously stored variables out, with equal probability.

New Topic: Counting Itemsets

- Problem: given a stream, which items appear more than s times in the window?
- Possible solution: think of the stream of baskets as one binary stream per item.
 - 1 = item present; 0 = not present.
 - Use DGIM to estimate counts of 1's for all items.

Extensions

- In principle, you could count frequent pairs or even larger sets the same way.
 - One stream per itemset.
- Drawbacks:
 - 1. Only approximate.
 - 2. Number of itemsets is way too big.

Approaches

- 1. "Elephants and troops": a heuristic way to converge on unusually strongly connected itemsets.
- Exponentially decaying windows: a heuristic for selecting likely frequent itemsets.

Elephants and Troops

- When Sergey Brin wasn't worrying about Google, he tried the following experiment.
- ◆Goal: find unusually correlated sets of words.
 - * "High Correlation" = frequency of occurrence of set >> product of frequencies of members.

Experimental Setup

- The data was an early Google crawl of the Stanford Web.
- Each night, the data would be streamed to a process that counted a preselected collection of itemsets.
 - If {a, b, c} is selected, count {a, b, c}, {a}, {b}, and {c}.
 - "Correlation" = $n^2 \times \#abc/(\#a \times \#b \times \#c)$.
 - n = number of pages.

After Each Night's Processing . . .

- 1. Find the most correlated sets counted.
- 2. Construct a new collection of itemsets to count the next night.
 - All the most correlated sets ("winners").
 - Pairs of a word in some winner and a random word.
 - Winners combined in various ways.
 - Some random pairs.

After a Week . . .

- The pair {"elephants", "troops"} came up as the big winner.
- Why? It turns out that Stanford students were playing a Punic-War simulation game internationally, where moves were sent by Web pages.

New Topic: Mining Streams Versus Mining DB's

- Unlike mining databases, mining streams doesn't have a fixed answer.
- We're really mining in the "Stat" point of view, e.g., "Which itemsets are frequent in the underlying model that generates the stream?"

Stationarity

Our assumptions make a big difference:

- 1. Is the model *stationary*?
 - I.e., are the same statistics used throughout all time to generate the stream?
- 2. Or does the frequency of generating given items or itemsets change over time?

Some Options for Frequent Itemsets

- 1. Run periodic experiments, like E&T.
 - Like SON itemset is a candidate if it is found frequent on any "day."
 - Good for stationary statistics.
- Frame the problem as finding all frequent itemsets in an "exponentially decaying window."
 - Good for nonstationary statistics.

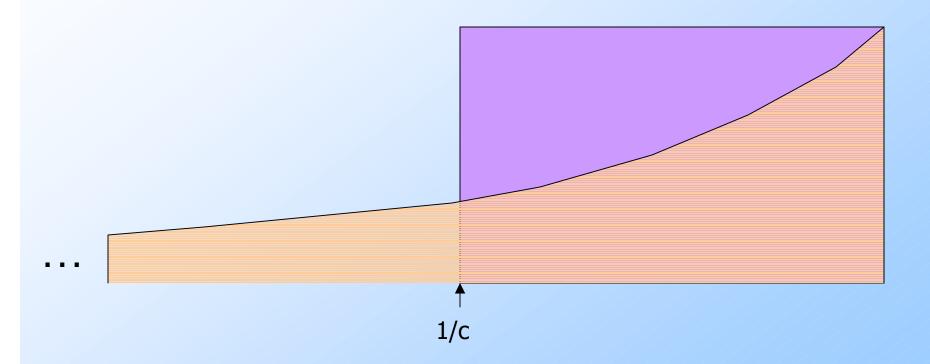
Exponentially Decaying Windows

- If stream is a_1 , a_2 ,... and we are taking the sum of the stream, take the answer at time t to be: $\sum_{i=1,2,...,t} a_i e^{-c(t-i)}$.
- \bullet c is a constant, presumably tiny, like 10^{-6} or 10^{-9} .

Example: Counting Items

- If each a_i is an "item" we can compute the *characteristic function* of each possible item x as an E.D.W.
- That is: $\Sigma_{i=1,2,...,t} \delta_i e^{-c(t-i)}$, where $\delta_i = 1$ if $a_i = x$, and 0 otherwise.
 - Call this sum the "count" of item x.

Sliding Versus Decaying Windows



Counting Items – (2)

- Suppose we want to find those items of weight at least ½.
- ◆Important property: sum over all weights is $1/(1 e^{-c})$ or very close to 1/[1 (1 c)] = 1/c.
- Thus: at most 2/c items have weight at least 1/2.

Extension to Larger Itemsets*

- Count (some) itemsets in an E.D.W.
- When a basket B comes in:
 - 1. Multiply all counts by (1-c);
 - 2. For uncounted items in B, create new count.
 - 3. Add 1 to count of any item in *B* and to any counted itemset contained in *B*.
 - 4. Drop counts $< \frac{1}{2}$.
 - 5. Initiate new counts (next slide).

Initiation of New Counts

- ♦ Start a count for an itemset $S \subseteq B$ if every proper subset of S had a count prior to arrival of basket B.
- ◆Example: Start counting {*i*, *j*} iff both *i* and *j* were counted prior to seeing *B*.
- ◆Example: Start counting { i, j, k } iff { i, j }, { i, k }, and { j, k } were all counted prior to seeing B.

How Many Counts?

- Counts for single items \leq (2/c) times the average number of items in a basket.
- ◆ Counts for larger itemsets = ??. But we are conservative about starting counts of large sets.
 - If we counted every set we saw, one basket of 20 items would initiate 1M counts.