
1

Generalizing Map-Reduce

The Computational Model

Map-Reduce-Like Algorithms

Computing Joins

2

Overview

�There is a new computing environment
available:

�Massive files, many compute nodes.

�Map-reduce allows us to exploit this
environment easily.

�But not everything is map-reduce.

�What else can we do in the same
environment?

3

Files

�Stored in dedicated file system.

�Treated like relations.

� Order of elements does not matter.

�Massive chunks (e.g., 64MB).

�Chunks are replicated.

�Parallel read/write of chunks is
possible.

4

Processes

�Each process operates at one node.

�“Infinite” supply of nodes.

�Communication among processes can
be via the file system or special
communication channels.

� Example: Master controller assembling
output of Map processes and passing them
to Reduce processes.

5

Algorithms

� An algorithm is described by an acyclic
graph.

1. A collection of processes (nodes).

2. Arcs from node a to node b, indicating
that (part of) the output of a goes to the
input of b.

6

Example: A Map-Reduce Graph

map

map

map

reduce

reduce

reduce

.

.

.

7

Algorithm Design

�Goal: Algorithms should exploit as
much parallelism as possible.

�To encourage parallelism, we put a
limit s on the amount of input or
output that any one process can have.

� s could be:

• What fits in main memory.

• What fits on local disk.

• No more than a process can handle before
cosmic rays are likely to cause an error.

8

Cost Measures for Algorithms

1. Communication cost = total I/O of all
processes.

2. Elapsed communication cost = max of
I/O along any path.

3. (Elapsed) computation costs
analogous, but count only running
time of processes.

9

Example: Cost Measures

�For a map-reduce algorithm:

� Communication cost = input file size + 2 ×

(sum of the sizes of all files passed from Map
processes to Reduce processes) + the sum of
the output sizes of the Reduce processes.

� Elapsed communication cost is the sum of the
largest input + output for any map process,
plus the same for any reduce process.

10

What Cost Measures Mean

�Either the I/O (communication) or
processing (computation) cost
dominates.

� Ignore one or the other.

�Total costs tell what you pay in rent
from your friendly neighborhood cloud.

�Elapsed costs are wall-clock time using
parallelism.

11

Join By Map-Reduce

�Our first example of an algorithm in this
framework is a map-reduce example.

�Compute the natural join

R(A,B) � S(B,C).

�R and S each are stored in files.

�Tuples are pairs (a,b) or (b,c).

12

Map-Reduce Join – (2)

�Use a hash function h from B-values to
1..k.

�A Map process turns input tuple R(a,b)
into key-value pair (b,(a,R)) and each
input tuple S(b,c) into (b,(c,S)).

13

Map-Reduce Join – (3)

�Map processes send each key-value
pair with key b to Reduce process h(b).

� Hadoop does this automatically; just tell it
what k is.

�Each Reduce process matches all the
pairs (b,(a,R)) with all (b,(c,S)) and
outputs (a,b,c).

14

Cost of Map-Reduce Join

�Total communication cost =

O(|R|+|S|+|R � S|).

�Elapsed communication cost = O(s).

�We’re going to pick k and the number of
Map processes so I/O limit s is respected.

�With proper indexes, computation cost
is linear in the input + output size.

� So computation costs are like comm. costs.

15

Three-Way Join

�We shall consider a simple join of three
relations, the natural join

R(A,B) � S(B,C) � T(C,D).

�One way: cascade of two 2-way joins,
each implemented by map-reduce.

�Fine, unless the 2-way joins produce
large intermediate relations.

16

Example: Large Intermediate
Relations

�A = “good pages”; B, C = “all pages”;
D = “spam pages.”

�R, S, and T each represent links.

�3-way join = “path of length 3 from
good page to spam page.

�R � S = paths of length 2 from good

page to any; S � T = paths of length 2

from any page to spam page.

17

Another 3-Way Join

�Reduce processes use hash values of
entire S(B,C) tuples as key.

�Choose a hash function h that maps
B- and C-values to k buckets.

�There are k 2 Reduce processes, one
for each (B-bucket, C-bucket) pair.

18

Mapping for 3-Way Join

�We map each tuple S(b,c) to
((h(b), h(c)), (S, b, c)).

�We map each R(a,b) tuple to
((h(b), y), (R, a, b)) for all y = 1, 2,…,k.

�We map each T(c,d) tuple to
((x, h(c)), (T, c, d)) for all x = 1, 2,…,k.

Keys Values

Aside: even normal
map-reduce allows
inputs to map to
several key-value
pairs.

19

Assigning Tuples to Reducers

h(b) = 0

1

2

3

h(c) = 0 1 2 3

S(b,c) where
h(b)=1; h(c)=2

R(a,b), where
h(b)=2

T(c,d), where
h(c)=3

20

Job of the Reducers

� Each reducer gets, for certain B-values
b and C-values c :

1. All tuples from R with B = b,

2. All tuples from T with C = c, and

3. The tuple S(b,c) if it exists.

� Thus it can create every tuple of the
form (a, b, c, d) in the join.

21

3-Way Join and Map-Reduce

�This algorithm is not exactly in the
spirit of map-reduce.

�While you could use the hash-function
h in the Map processes, Hadoop
normally does the hashing of keys itself.

22

3-Way Join/Map-Reduce – (2)

�But if you Map to attribute values
rather than hash values, you have a
subtle problem.

�Example: R(a, b) needs to go to all
keys of the form (b, y), where y is any
C-value.

� But you don’t know all the C-values.

23

Semijoin Option

�A possible solution: first semijoin – find
all the C-values in S(B,C).

�Feed these to the Map processes for
R(A,B), so they produce only keys (b, y)
such that y is in πC(S).

�Similarly, compute πB(S), and have the
Map processes for T(C,D) produce only
keys (x, c) such that x is in πB(S).

24

Semijoin Option – (2)

� Problem: while this approach works, it is
not a map-reduce process.

� Rather, it requires three layers of
processes:

1. Map S to πB(S), πC(S), and S itself (for join).

2. Map R and πB(S) to key-value pairs and do
the same for T and πC(S).

3. Reduce (join) the mapped R, S, and T tuples.

