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Generalizing Map-Reduce

The Computational Model

Map-Reduce-Like Algorithms

Computing Joins
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Overview

�There is a new computing environment 
available:

�Massive files, many compute nodes.

�Map-reduce allows us to exploit this 
environment easily.

�But not everything is map-reduce.

�What else can we do in the same 
environment?
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Files

�Stored in dedicated file system.

�Treated like relations.

� Order of elements does not matter.

�Massive chunks (e.g., 64MB).

�Chunks are replicated.

�Parallel read/write of chunks is 
possible.
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Processes

�Each process operates at one node.

�“Infinite” supply of nodes.

�Communication among processes can 
be via the file system or special 
communication channels.

� Example: Master controller assembling 
output of Map processes and passing them 
to Reduce processes.
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Algorithms

� An algorithm is described by an acyclic 
graph.

1. A collection of processes (nodes).

2. Arcs from node a to node b, indicating 
that (part of) the output of a goes to the 
input of b.
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Example: A Map-Reduce Graph
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Algorithm Design

�Goal: Algorithms should exploit as 
much parallelism as possible.

�To encourage parallelism, we put a 
limit s on the amount of input or 
output that any one process can have.

� s could be:

• What fits in main memory.

• What fits on local disk.

• No more than a process can handle before 
cosmic rays are likely to cause an error.
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Cost Measures for Algorithms

1. Communication cost = total I/O of all 
processes.

2. Elapsed communication cost = max of 
I/O along any path.

3. (Elapsed ) computation costs
analogous, but count only running 
time of processes.
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Example: Cost Measures

�For a map-reduce algorithm:

� Communication cost = input file size + 2 ×

(sum of the sizes of all files passed from Map 
processes to Reduce processes) + the sum of 
the output sizes of the Reduce processes.

� Elapsed communication cost is the sum of the 
largest input + output for any map process, 
plus the same for any reduce process.
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What Cost Measures Mean

�Either the I/O (communication) or 
processing (computation) cost 
dominates.

� Ignore one or the other.

�Total costs tell what you pay in rent 
from your friendly neighborhood cloud.

�Elapsed costs are wall-clock time using 
parallelism.
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Join By Map-Reduce

�Our first example of an algorithm in this 
framework is a map-reduce example.

�Compute the natural join 

R(A,B) � S(B,C).

�R and S each are stored in files.

�Tuples are pairs (a,b) or (b,c).
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Map-Reduce Join – (2)

�Use a hash function h from B-values to 
1..k.

�A Map process turns input tuple R(a,b) 
into key-value pair (b,(a,R)) and each 
input tuple S(b,c) into (b,(c,S)).
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Map-Reduce Join – (3)

�Map processes send each key-value 
pair with key b to Reduce process h(b).

� Hadoop does this automatically; just tell it 
what k is.

�Each Reduce process matches all the 
pairs (b,(a,R)) with all (b,(c,S)) and 
outputs (a,b,c).
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Cost of Map-Reduce Join

�Total communication cost = 

O(|R|+|S|+|R � S|).

�Elapsed communication cost = O(s ).

�We’re going to pick k and the number of 
Map processes so I/O limit s is respected.

�With proper indexes, computation cost 
is linear in the input + output size.

� So computation costs are like comm. costs. 
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Three-Way Join

�We shall consider a simple join of three 
relations, the natural join              

R(A,B) � S(B,C) � T(C,D).

�One way: cascade of two 2-way joins, 
each implemented by map-reduce.

�Fine, unless the 2-way joins produce 
large intermediate relations.
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Example: Large Intermediate 
Relations

�A = “good pages”; B, C = “all pages”; 
D = “spam pages.”

�R, S, and T each represent links.

�3-way join = “path of length 3 from 
good page to spam page.

�R � S = paths of length 2 from good 

page to any; S � T = paths of length 2 

from any page to spam page.
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Another 3-Way Join

�Reduce processes use hash values of
entire S(B,C) tuples as key.

�Choose a hash function h that maps  
B- and C-values to k buckets.

�There are k 2 Reduce processes, one 
for each (B-bucket, C-bucket) pair.
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Mapping for 3-Way Join

�We map each tuple S(b,c) to         
((h(b), h(c)), (S, b, c)).

�We map each R(a,b) tuple to        
((h(b), y), (R, a, b)) for all y = 1, 2,…,k.

�We map each T(c,d) tuple to 
((x, h(c)), (T, c, d)) for all x = 1, 2,…,k.

Keys Values

Aside: even normal
map-reduce allows
inputs to map to
several key-value
pairs.
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Assigning Tuples to Reducers

h(b) = 0

1

2

3

h(c) =      0          1          2          3

S(b,c) where
h(b)=1; h(c)=2

R(a,b), where
h(b)=2

T(c,d), where
h(c)=3
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Job of the Reducers

� Each reducer gets, for certain B-values 
b and C-values c :

1. All tuples from R with B = b,

2. All tuples from T with C = c, and

3. The tuple S(b,c) if it exists.

� Thus it can create every tuple of the 
form (a, b, c, d) in the join.
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3-Way Join and Map-Reduce

�This algorithm is not exactly in the 
spirit of map-reduce.

�While you could use the hash-function 
h in the Map processes, Hadoop 
normally does the hashing of keys itself.
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3-Way Join/Map-Reduce – (2)

�But if you Map to attribute values 
rather than hash values, you have a 
subtle problem.

�Example: R(a, b) needs to go to all 
keys of the form (b, y), where y is any 
C-value.

� But you don’t know all the C-values.
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Semijoin Option

�A possible solution: first semijoin – find 
all the C-values in S(B,C).

�Feed these to the Map processes for 
R(A,B), so they produce only keys (b, y) 
such that y  is in πC(S).

�Similarly, compute πB(S), and have the 
Map processes for T(C,D) produce only 
keys (x, c) such that x is in πB(S).
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Semijoin Option – (2)

� Problem: while this approach works, it is 
not a map-reduce process.

� Rather, it requires three layers of 
processes:

1. Map S to πB(S), πC(S), and S itself (for join).

2. Map R and πB(S) to key-value pairs and do 
the same for T and πC(S).

3. Reduce (join) the mapped R, S, and T tuples.


