SQL/MR

Peter Pawlowski
Member of Technical Staff
January 16, 2009

ASTER BACKGROUND

Our Founders

3 PhD students from Stanford C.S.

9 Cool ideas...

9 ... but no funding, no product, no clients!

?D(d) l)\[({(‘\v\:az‘(~ ~

— Convenidm.

OK, they had
$ 10,000...

Our Product: nCluster

A massively scalable database designed for
analytics.

Runs on a cluster of commodity nodes.
Scales from GBs to 100s of TBs and beyond.
Standard SQL interface (via a command line tool,

JDBC, ODBC, etc).

Support MR-like functionality via user-defined SQL/
MR functions.

Our Approach: Commodity Nodes

Query Server nodes

Results Processing + Storage

SQL/MR

What are SQL/MR functions?

SQL/MR functions:
Are Java functions meeting a particular API.

Are compiled outside the database, installed via a
command line tool, and then invoked via SQL.

Take a database table of one schema as input and
output rows back into the database.

Are polymorphic. During initialization, a function is
told the schema of its input (for example, (key,
value)) and needs to return its output schema.

Accept zero or more argument clauses
(parameters), which can modify their behavior.

Are designed to run on a massively parallel system
by allowing the user to specify which slice of the
data a particular instance of the function sees.

First Example: Word Count

Problem: Count the word frequency distribution
across a set of documents.

Input: A database table containing the documents in
question.

Map Phase: For each word in each document,
outputs a row of the form (word, 1).

Shuffle Phase: Brings all rows with the same value
for word together.

Reduce Phase: Count the number of rows for each
word about output (word, <total-count>).

Input: The Documents Table

BEGIN;

CREATE FACT TABLE documents (body varchar,
PARTITION KEY (body));

INSERT INTO documents VALUES (‘this is a single
test document. it is simple to count the words
in this single document by hand. do we need a
cluster?’);

END;

SELECT body FROM documents;

Map Function: tokenize

public class tokenize implements RowFunction {

public void operateOnSomeRows (RowIterator inputIterator,

RowEmitter outputEmitter)

while (inputIterator.advanceToNextRow()) {

String[] parts =
splitPattern .split(inputIterator.getStringAt(0));

for (String part : parts) {
outputEmitter.addString(part);
outputEmitter.addInt(1l);
outputEmitter.emitRow();

Reduce Function: count tokens

public class count tokens implements PartitionFunction {

public void operateOnPartition(
PartitionDefinition partitionDefinition,
RowIterator inputIterator, RowEmitter outputEmitter)

int count = 0;
String word = inputIterator.getStringAt(0);

while (inputIterator.advanceToNextRow())
count++;

outputEmitter.addString(word) ;
outputEmitter.addInt(count);
outputEmitter.emitRow();

Invoking the Functions

BEGIN;

\install tokenize.jar
\install count tokens.jar

SELECT word, count FROM count tokens (

ON (SELECT word, count
FROM tokenize(ON documents))

PARTITION BY word
) ORDER BY word DESC;

ABORT:

Even Better: Forget the Reduce

BEGIN;

\install tokenize.jar

SELECT word, sum(count)
FROM tokenize(ON documents)

GROUP BY word
ORDER BY word;

ABORT;

Types of SQL/MR Functions

RowFunction
= Corresponds to a map function.

= Must implement the operateOnSomeRows method.
= Must be invoked without a PARTITION BY.

= "Sees” all the appropriate rows on a particular worker.

PartitionFunction
= Corresponds to a reduce function.
= Must implement the operateOnPartition method.

= Must be invoked with a PARTITION BY, which specifies how
rows are reshuffled.

= "Sees” all the appropriate rows in a partition.

Requirements of a SQL/MR Function

Must implement either RowFunction oOr
PartitionFunction.

Must have a single-argument constructor which
takes a single RuntimeContract as a parameter.

Class name must be all lowercase.

Name of jar file must be the same as the SQL/MR
function name.

Note: can also upload a <functionname>.zip file,
containing multiple jars. The jar with the SQL/MR
function must have same name as the function, but
other jars can be included. Useful for including
libraries.

The Constructor

public tokenize(RuntimeContract contract)
{
ArrayList<ColumnDefinition> output =
new ArrayList<ColumnDefinition>();

outputColumns.add(

new ColumnDefinition("word", SqlType.varchar()));
outputColumns.add (

new ColumnDefinition("count", SqlType.bigint()));

contract.setOutputInfo(new OutputInfo(outputColumns));
contract.complete();

The Constructor

The constructor can throw exceptions. If the
exception is a subclass of
ClientVisibleException, the user sees a
descriptive message on the command line tool.
Otherwise, they see a generic error message.

A full stack trace of the exception can be viewed via

the AMC.

Full Syntax

SELECT ...

FROM FunctionName (
ON {tablename | (subquery)}
[PARTITION BY ...]
[ORDER BY ...]
ARGCLAUSEL (eev, «..)
MYCLAUSE (...)

Tip 1: CTAS

BEGIN;
\install tokeninze.jar

CREATE FACT TABLE counts (PARTITION
KEY (word)) AS

SELECT word, sum(count)

FROM tokenize(ON documents)

GROUP BY word;

ORDER BY word;

END;

Tip 2: Use Transactions

BEGIN;
\install tokeninze.jar

CREATE FACT TABLE counts (PARTITION
KEY (word)) AS

SELECT word, sum(count)

FROM tokenize(ON documents)

GROUP BY word;

ORDER BY word;

END;

Tip 3: PARTITION BY c

BEGIN;
\install exact percentile.jar

SELECT *

FROM exact percentile(
ON source data
PARTITION BY 1
PERCENTILE (25, 50, 75)

) 7

ABORT;

Tip 4: Using act

To connect to the cluster, use the command line tool
act.

bash$ act -h <ip-address> -d <databasename> -U <username>

Useful commands

\C List all tables.

\d <table name> Show table details.

\dF List installed SQL/MR files.
\? More detailed help.
\timing Enable query timing.

Beyond Java: Stream

BEGIN;
\install tokeninze.py

SELECT word, sum(count)
FROM STREAM (
ON documents
SCRIPT(‘tokenize.py’)
OUTPUTS(‘word varchar’, ‘count int’)
)
GROUP BY word
ORDER BY word;
ABORT;

Netflix Data Schema
movie__titles. Stores movie id, year, and titles.

training_set. Main training dataset. Stores
(customerid, movieid, viewdate, and rating).

probe_set. A random sample of (customerid, movieid)
pairs from the training set. Designed to be used for
testing your classifier.

qualifying_set. A set of (customerid, movieid,
viewdate) rows not in the training set. To enter the
contest, submit your classifier’s ratings for these
movies.

Netflix Data Notes

Both the probe and qualifying sets are ordered. The
file you submit to Netflix needs to be in that same

order. Therefore, the probe_set and gualifying_set
tables have an extra entryid column.

See www.netflixprize.com for more details about
the dataset and on entering the contest.

