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PCY Algorithm

€ Hash-based improvement to A-Priori.

@ During Pass 1 of A-priori, most memory is
idle.

# Use that memory to keep counts of buckets
into which pairs of items are hashed.
+ Just the count, not the pairs themselves.

@ Gives extra condition that candidate pairs
must satisfy on Pass 2.
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PCY Algorithm — Before Pass 1
Organize Main Memory

# Space to count each item.
* One (typically) 4-byte integer per item.
@ Use the rest of the space for as many

integers, representing buckets, as we
can.



PCY Algorithm — Pass 1

FOR (each basket) {
FOR (each item)
add 1 to 1tem’s count;
FOR (each pair of items) {
hash the pair to a bucket;

add 1 to the count for that
bucket



Observations About Buckets

1. If a bucket contains a frequent pair,
then the bucket is surely frequent.

¢+ We cannot use the hash table to
eliminate any member of this bucket.
2. Even without any frequent pair, a
bucket can be frequent.

+ Again, nothing in the bucket can be
eliminated.



Observations — (2)

3. But in the best case, the count for a
bucket is less than the support s.
* Now, all pairs that hash to this bucket can

be eliminated as candidates, even if the
pair consists of two frequent items.



PCY Algorithm — Between
Passes

® Replace the buckets by a bit-vector:

+ 1 means the bucket count exceeds the support
s (a freqguent bucket); 0 means it did not.

€ 4-byte integers are replaced by bits, so the
bit-vector requires 1/32 of memory.

@ Also, decide which items are frequent and
ist them for the second pass.



PCY Algorithm — Pass 2

€ Count all pairs {/, j } that meet the
conditions:
1. Both 7/ and j are frequent items.

2. The pair {/ j}, hashes to a bucket
number whose bit in the bit vector is 1.

€ Notice all these conditions are
necessary for the pair to have a

chance of being frequent.



Memory Details

# Hash table requires buckets of 2-4
bytes.

* Number of buckets thus almost 1/4-1/2 of
the number of bytes of main memory.

€ On second pass, a table of
triples is essential.

* Thus, hash table must eliminate 2/3 of the
candidate pairs to beat a-priori.
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Multistage Algorithm

¢ . After Pass 1 of PCY, rehash
only those pairs that qualify for Pass 2
of PCY.

€ 0On middle pass, fewer pairs contribute
to buckets, so fewer 7alse positives —
frequent buckets with no frequent pair.
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Multistage — Pass 3

€ Count only those pairs {/ j} that
satisfy:
1. Both 7/ and j are frequent items.

2. Using the first hash function, the pair
hashes to a bucket whose bit in the first
pit-vector is 1.

3. Using the second hash function, the pair
nashes to a bucket whose bit in the
second bit-vector is 1.
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Important Points

. The two hash functions have to be
independent.

. We need to check both hashes on the

third pass.
+ If not, we would wind up counting pairs
of frequent items that hashed first to an

infrequent bucket but happened to hash
second to a frequent bucket.
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Multihash

4 : use several independent hash
tables on the first pass.
@ Risk: halving the number of buckets

doubles the average count. We have to
be sure most buckets will still not reach
count s.

@ If so, we can get a benefit like
multistage, but in only 2 passes.
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Extensions

@ Either multistage or multihash can use
more than two hash functions.

€ In multistage, there is a point of
diminishing returns, since the bit-vectors
eventually consume all of main memory.

@ For multihash, the bit-vectors occupy
exactly what one PCY bitmap does, but too
many hash functions makes all counts > s.
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All (Or Most) Frequent Itemsets
In < 2 Passes

@ Simple algorithm.
€ SON (Savasere, Omiecinski, and Navathe).
@ Toivonen.
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Simple Algorithm — (1)

& Take a random sample of the market
baskets.

@ Run a-priori or one of its improvements
(for sets of all sizes, not just pairs) in
main memory, so you don't pay for disk
I/O each time you increase the size of
itemsets.

+ Be sure you leave enough space for counts.
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Simple Algorithm — (2)

# Use as your support threshold a
suitable, scaled-back number.

* E.qg., if your sample is 1/100 of the
baskets, use s/100 as your support
threshold instead of s.
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Simple Algorithm — Option

# Optionally, verify that your guesses are
truly frequent in the entire data set by a
second pass.

€ But you don't catch sets frequent in the
whole but not in the sample.

+ Smaller threshold, e.qg., s/125, helps catch
more truly frequent itemsets.

e But requires more space.
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SON Algorithm — (1)

@ Repeatedly read small subsets of the
baskets into main memory and perform
the first pass of the simple algorithm on
each subset.

&® An itemset becomes a candidate if it is
found to be frequent in one or
more subsets of the baskets.
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SON Algorithm — (2)

€ 0On a second pass, count all the
candidate itemsets and determine
which are frequent in the entire set.

¢ . an itemset
cannot be frequent in the entire set of
baskets unless it is frequent in at least
one subset.

24



SON Algorithm — Distributed Version

# This idea lends itself to distributed data
mining.

@ If baskets are distributed among many
nodes, compute frequent itemsets at

each node, then distribute the
candidates from each node.

@ Finally, accumulate the counts of all
candidates.
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Toivonen'’s Algorithm — (1)

& Start as in the simple algorithm, but
lower the threshold slightly for the
sample.

. . if the sample is 1% of the
baskets, use s/125 as the support
threshold rather than s /100.

+ Goal is to avoid missing any itemset that is
frequent in the full set of baskets.
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Toivonen'’s Algorithm — (2)

€ Add to the itemsets that are frequent in
the sample the negative border of these
itemsets.

€ An itemset is in the negative border if it
is not deemed frequent in the sample,
but its immediate subsets are.
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: Negative Border

® ABCD is in the negative border if and
only if it is not frequent, but all of ABC,
BCD, ACD, and ABD are.

28



Picture of Negative Border

Negative Border

tripletons %

doubletons

singletons

29



Toivonen'’s Algorithm — (3)

€ In a second pass, count all candidate
frequent itemsets from the first pass,
and also count their negative border.

€ If no itemset from the negative border
turns out to be frequent, then the
candidates found to be frequent in the
whole data are the frequent
itemsets.
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Toivonen's Algorithm — (4)

€ What if we find that something in the
negative border is actually frequent?

€ We must start over again!

& Try to choose the support threshold so the
probability of failure is low, while the
number of itemsets checked on the second
pass fits in main-memory.
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€ If there is an itemset that is frequent in
the whole, but not frequent in the
sample, then there is a member of the
negative border for the sample that is
frequent in the whole.
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€ Suppose not; i.e., there is an itemset S
frequent in the whole but

+ Not frequent in the sample, and
+ Not present in the sample’s negative border.

®let 7 bea subset of S that is
not frequent in the sample.

@ 7 is frequent in the whole (S is frequent,
monotonicity).

@ 7 is in the negative border (else not
“smallest”).
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Compacting the Output

1. Maximal Frequent itemsets : no
immediate superset is frequent.

2. Closed itemsets : no immediate
superset has the same count (> 0).

+ Stores not only frequent information, but
exact counts.
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