
1

Improvements to A-Priori

Park-Chen-Yu Algorithm

Multistage Algorithm

Approximate Algorithms

Compacting Results

2

PCY Algorithm

�Hash-based improvement to A-Priori.

�During Pass 1 of A-priori, most memory is
idle.

�Use that memory to keep counts of buckets
into which pairs of items are hashed.
� Just the count, not the pairs themselves.

�Gives extra condition that candidate pairs
must satisfy on Pass 2.

3

Picture of PCY

Hash
table

Item counts

Bitmap

Pass 1 Pass 2

Frequent items

Counts of
candidate
pairs

4

PCY Algorithm – Before Pass 1
Organize Main Memory

�Space to count each item.

� One (typically) 4-byte integer per item.

�Use the rest of the space for as many
integers, representing buckets, as we
can.

5

PCY Algorithm – Pass 1

FOR (each basket) {

FOR (each item)

add 1 to item’s count;

FOR (each pair of items) {

hash the pair to a bucket;

add 1 to the count for that

bucket

}

}

6

Observations About Buckets

1. If a bucket contains a frequent pair,
then the bucket is surely frequent.

� We cannot use the hash table to
eliminate any member of this bucket.

2. Even without any frequent pair, a
bucket can be frequent.

� Again, nothing in the bucket can be
eliminated.

7

Observations – (2)

3. But in the best case, the count for a
bucket is less than the support s.

� Now, all pairs that hash to this bucket can
be eliminated as candidates, even if the
pair consists of two frequent items.

8

PCY Algorithm – Between
Passes

�Replace the buckets by a bit-vector:

� 1 means the bucket count exceeds the support
s (a frequent bucket); 0 means it did not.

�4-byte integers are replaced by bits, so the
bit-vector requires 1/32 of memory.

�Also, decide which items are frequent and
list them for the second pass.

9

PCY Algorithm – Pass 2

� Count all pairs {i, j } that meet the
conditions:

1. Both i and j are frequent items.

2. The pair {i, j }, hashes to a bucket
number whose bit in the bit vector is 1.

� Notice all these conditions are
necessary for the pair to have a
chance of being frequent.

10

Memory Details

�Hash table requires buckets of 2-4
bytes.

� Number of buckets thus almost 1/4-1/2 of
the number of bytes of main memory.

�On second pass, a table of (item, item,
count) triples is essential.

� Thus, hash table must eliminate 2/3 of the
candidate pairs to beat a-priori.

11

Multistage Algorithm

�Key idea: After Pass 1 of PCY, rehash
only those pairs that qualify for Pass 2
of PCY.

�On middle pass, fewer pairs contribute
to buckets, so fewer false positives –
frequent buckets with no frequent pair.

12

Multistage Picture

First
hash table

Second
hash table

Item counts

Bitmap 1 Bitmap 1

Bitmap 2

Freq. items Freq. items

Counts of
candidate
pairs

Pass 1 Pass 2 Pass 3

13

Multistage – Pass 3

� Count only those pairs {i, j } that
satisfy:

1. Both i and j are frequent items.

2. Using the first hash function, the pair
hashes to a bucket whose bit in the first
bit-vector is 1.

3. Using the second hash function, the pair
hashes to a bucket whose bit in the
second bit-vector is 1.

14

Important Points

1. The two hash functions have to be
independent.

2. We need to check both hashes on the
third pass.

� If not, we would wind up counting pairs
of frequent items that hashed first to an
infrequent bucket but happened to hash
second to a frequent bucket.

15

Multihash

�Key idea: use several independent hash
tables on the first pass.

�Risk: halving the number of buckets
doubles the average count. We have to
be sure most buckets will still not reach
count s.

�If so, we can get a benefit like
multistage, but in only 2 passes.

16

Multihash Picture

First hash
table

Second
hash table

Item counts

Bitmap 1

Bitmap 2

Freq. items

Counts of
candidate
pairs

Pass 1 Pass 2

17

Extensions

�Either multistage or multihash can use
more than two hash functions.

�In multistage, there is a point of
diminishing returns, since the bit-vectors
eventually consume all of main memory.

�For multihash, the bit-vectors occupy
exactly what one PCY bitmap does, but too
many hash functions makes all counts > s.

18

All (Or Most) Frequent Itemsets
In < 2 Passes

�Simple algorithm.

�SON (Savasere, Omiecinski, and Navathe).

�Toivonen.

19

Simple Algorithm – (1)

�Take a random sample of the market
baskets.

�Run a-priori or one of its improvements
(for sets of all sizes, not just pairs) in
main memory, so you don’t pay for disk
I/O each time you increase the size of
itemsets.

� Be sure you leave enough space for counts.

20

Main-Memory Picture

Copy of
sample
baskets

Space
for
counts

21

Simple Algorithm – (2)

�Use as your support threshold a
suitable, scaled-back number.

� E.g., if your sample is 1/100 of the
baskets, use s /100 as your support
threshold instead of s .

22

Simple Algorithm – Option

�Optionally, verify that your guesses are
truly frequent in the entire data set by a
second pass.

�But you don’t catch sets frequent in the
whole but not in the sample.

� Smaller threshold, e.g., s /125, helps catch
more truly frequent itemsets.

• But requires more space.

23

SON Algorithm – (1)

�Repeatedly read small subsets of the
baskets into main memory and perform
the first pass of the simple algorithm on
each subset.

�An itemset becomes a candidate if it is
found to be frequent in any one or
more subsets of the baskets.

24

SON Algorithm – (2)

�On a second pass, count all the
candidate itemsets and determine
which are frequent in the entire set.

�Key “monotonicity” idea: an itemset
cannot be frequent in the entire set of
baskets unless it is frequent in at least
one subset.

25

SON Algorithm – Distributed Version

�This idea lends itself to distributed data
mining.

�If baskets are distributed among many
nodes, compute frequent itemsets at
each node, then distribute the
candidates from each node.

�Finally, accumulate the counts of all
candidates.

26

Toivonen’s Algorithm – (1)

�Start as in the simple algorithm, but
lower the threshold slightly for the
sample.

� Example: if the sample is 1% of the
baskets, use s /125 as the support
threshold rather than s /100.

� Goal is to avoid missing any itemset that is
frequent in the full set of baskets.

27

Toivonen’s Algorithm – (2)

�Add to the itemsets that are frequent in
the sample the negative border of these
itemsets.

�An itemset is in the negative border if it
is not deemed frequent in the sample,
but all its immediate subsets are.

28

Example: Negative Border

�ABCD is in the negative border if and
only if it is not frequent, but all of ABC,
BCD, ACD, and ABD are.

29

Picture of Negative Border

…

tripletons

doubletons

singletons

Negative Border

Frequent Itemsets

30

Toivonen’s Algorithm – (3)

�In a second pass, count all candidate
frequent itemsets from the first pass,
and also count their negative border.

�If no itemset from the negative border
turns out to be frequent, then the
candidates found to be frequent in the
whole data are exactly the frequent
itemsets.

31

Toivonen’s Algorithm – (4)

�What if we find that something in the
negative border is actually frequent?

�We must start over again!

�Try to choose the support threshold so the
probability of failure is low, while the
number of itemsets checked on the second
pass fits in main-memory.

32

Theorem:

�If there is an itemset that is frequent in
the whole, but not frequent in the
sample, then there is a member of the
negative border for the sample that is
frequent in the whole.

33

Proof:

�Suppose not; i.e., there is an itemset S
frequent in the whole but
� Not frequent in the sample, and

� Not present in the sample’s negative border.

�Let T be a smallest subset of S that is
not frequent in the sample.

�T is frequent in the whole (S is frequent,
monotonicity).

�T is in the negative border (else not
“smallest”).

34

Compacting the Output

1. Maximal Frequent itemsets : no
immediate superset is frequent.

2. Closed itemsets : no immediate
superset has the same count (> 0).

� Stores not only frequent information, but
exact counts.

35

Example: Maximal/Closed

Count Maximal (s=3) Closed

A 4 No No

B 5 No Yes

C 3 No No

AB 4 Yes Yes

AC 2 No No

BC 3 Yes Yes

ABC 2 No Yes

