
1

Association Rules

Market Baskets

Frequent Itemsets

A-priori Algorithm

2

The Market-Basket Model

�A large set of items, e.g., things sold in
a supermarket.

�A large set of baskets, each of which is
a small set of the items, e.g., the things
one customer buys on one day.

3

Support

�Simplest question: find sets of items
that appear “frequently” in the baskets.

�Support for itemset I = the number of
baskets containing all items in I.

�Given a support threshold s, sets of
items that appear in > s baskets are
called frequent itemsets.

4

Example: Frequent Itemsets

�Items={milk, coke, pepsi, beer, juice}.

�Support = 3 baskets.

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

�Frequent itemsets: {m}, {c}, {b}, {j},

, {b,c}, {c,j}.{m,b}

5

Applications – (1)

�Real market baskets: chain stores keep
terabytes of information about what
customers buy together.

� Tells how typical customers navigate
stores, lets them position tempting items.

� Suggests tie-in “tricks,” e.g., run sale on
diapers and raise the price of beer.

�High support needed, or no $$’s.

6

Applications – (2)

�Baskets = sentences; items = words in
those sentences.

� Lets us find words that appear together
unusually frequently, i.e., linked concepts.

�Baskets = sentences, items =
documents containing those sentences.

� Items that appear together too often could
represent plagiarism.

7

Applications – (3)

�Baskets = people; items = genes or
blood-chemistry factors.

� Has been used to detect combinations of
genes that result in diabetes, e. g.

� But requires extension: absence of an item
needs to be observed as well as presence.

8

Many-Many Relationships

�“Market Baskets” is an abstraction that
models any many-many relationship
between two concepts: “items” and
“baskets.”

� Items need not be “contained” in baskets.

�The only distinction is that we count
co-occurrences of items, not baskets

9

Scale of Problem

�WalMart sells 100,000 items and can
store billions of baskets.

�The Web has over 100,000,000 words
and billions of pages.

10

Association Rules

�If-then rules about the contents of
baskets.

�{i1, i2,…,ik} → j means: “if a basket

contains all of i1,…,ik then it is likely to
contain j.”

�Confidence of this association rule is
the probability of j given i1,…,ik.

11

Example: Confidence

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

�An association rule: {m, b} → c.

� Confidence = 2/4 = 50%.

+

_

_

+

12

Interest

�The interest of an association rule
X → Y is the absolute value of the

amount by which the confidence differs
from the probability of Y being in a
given basket.

13

Example: Interest

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

�For association rule {m, b} → c, item c

appears in 5/8 of the baskets.

�Interest = |2/4 - 5/8| = 1/8 --- not
very interesting.

14

Relationships Among Measures

�Rules with high support and confidence
may be useful even if they are not
“interesting.”

�We don’t care if buying bread causes
people to buy milk, or whether simply a lot
of people buy both bread and milk.

�But high interest suggests a cause that
might be worth investigating.

15

Finding Association Rules

�A typical question: “find all association
rules with support ≥ s and confidence ≥ c.”

� Note: “support” of an association rule is the
support of the set of items it mentions.

�Hard part: finding the high-support
(frequent) itemsets.
� Checking the confidence of association rules
involving those sets is relatively easy.

16

Computation Model

�Typically, data is kept in a flat file rather
than a database system.

� Stored on disk.

� Stored basket-by-basket.

� Expand baskets into pairs, triples, etc. as
you read baskets.

• Use k nested loops to generate all sets of size k.

17

File Organization

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Basket 1

Basket 2

Basket 3

Etc.

18

Computation Model – (2)

�The true cost of mining disk-resident
data is usually the number of disk I/O’s.

�In practice, association-rule algorithms
read the data in passes – all baskets
read in turn.

�Thus, we measure the cost by the
number of passes an algorithm takes.

19

Main-Memory Bottleneck

�For many frequent-itemset algorithms,
main memory is the critical resource.

� As we read baskets, we need to count
something, e.g., occurrences of pairs.

� The number of different things we can
count is limited by main memory.

� Swapping counts in/out is a disaster.

20

Finding Frequent Pairs

�The hardest problem often turns out to
be finding the frequent pairs.

�We’ll concentrate on how to do that,
then discuss extensions to finding
frequent triples, etc.

21

Naïve Algorithm

�Read file once, counting in main
memory the occurrences of each pair.

� From each basket of n items, generate its
n (n -1)/2 pairs by two nested loops.

�Fails if (#items)2 exceeds main
memory.

� Remember: #items can be 100K (Wal-
Mart) or 10B (Web pages).

22

Details of Main-Memory Counting

� Two approaches:

1. Count all pairs, using a triangular matrix.

2. Keep a table of triples [i, j, c] = the count
of the pair of items {i,j } is c.

� (1) requires only 4 bytes/pair.

� Note: assume integers are 4 bytes.

� (2) requires 12 bytes, but only for
those pairs with count > 0.

23

4 per pair

Method (1) Method (2)

12 per
occurring pair

24

Triangular-Matrix Approach – (1)

�Number items 1, 2,…

�Requires table of size O(n).

�Keep pairs in the order {1,2}, {1,3},…,
{1,n }, {2,3}, {2,4},…,{2,n }, {3,4},…,
{3,n },…{n -1,n }.

25

Triangular-Matrix Approach – (2)

�Find pair {i, j } at the position
(i –1)(n –i /2) + j – i.

�Total number of pairs n (n –1)/2; total
bytes about 2n 2.

26

Details of Approach #2

�Total bytes used is about 12p, where p is
the number of pairs that actually occur.

� Beats triangular matrix if at most 1/3 of
possible pairs actually occur.

�May require extra space for retrieval
structure, e.g., a hash table.

27

A-Priori Algorithm – (1)

�A two-pass approach called a-priori
limits the need for main memory.

�Key idea: monotonicity : if a set of
items appears at least s times, so does
every subset.

� Contrapositive for pairs: if item i does not
appear in s baskets, then no pair including
i can appear in s baskets.

28

A-Priori Algorithm – (2)

�Pass 1: Read baskets and count in main
memory the occurrences of each item.

� Requires only memory proportional to #items.

�Pass 2: Read baskets again and count in
main memory only those pairs both of
which were found in Pass 1 to be frequent.

� Requires memory proportional to square of
frequent items only.

29

Picture of A-Priori

Item counts

Pass 1 Pass 2

Frequent items

Counts of
candidate
pairs

30

Detail for A-Priori

�You can use the triangular matrix
method with n = number of frequent
items.

� Saves space compared with storing triples.

�Trick: number frequent items 1,2,…
and keep a table relating new numbers
to original item numbers.

31

Frequent Triples, Etc.

�For each k, we construct two sets of
k –tuples:
� Ck = candidate k - tuples = those that
might be frequent sets (support > s)
based on information from the pass for
k –1.

� Lk = the set of truly frequent k –tuples.

32

C1 L1 C2 L2 C3Filter Filter ConstructConstruct

First
pass

Second
pass

All
items

All pairs
of items
from L1

Count
the pairs

To be
explained

Count
the items

33

A-Priori for All Frequent
Itemsets

�One pass for each k.

�Needs room in main memory to count
each candidate k –tuple.

�For typical market-basket data and
reasonable support (e.g., 1%), k = 2
requires the most memory.

34

Frequent Itemsets – (2)

�C1 = all items

�L1 = those counted on first pass to be
frequent.

�C2 = pairs, both chosen from L1.

�In general, Ck = k –tuples, each k –1 of
which is in Lk -1.

�Lk = members of Ck with support ≥ s.

