CS345 Data Mining

Link Analysis 2 Page Rank Variants

Anand Rajaraman, Jeffrey D. Ullman

Topics

- □ This lecture
 - Many-walkers model
 - Tricks for speeding convergence
 - Topic-Specific Page Rank

Random walk interpretation

- ☐ At time 0, pick a page on the web uniformly at random to start the walk
- ☐ Suppose at time t, we are at page j
- ☐ At time t+1
 - With probability β, pick a page uniformly at random from O(j) and walk to it
 - With probability 1-β, pick a page on the web uniformly at random and teleport into it
- Page rank of page p = "steady state" probability that at any given time, the random walker is at page p

Many random walkers

- ☐ Alternative, equivalent model
- □ Imagine a large number M of independent, identical random walkers (M≫N)
- □ At any point in time, let M(p) be the number of random walkers at page p
- ☐ The page rank of p is the fraction of random walkers that are expected to be at page p i.e., **E**[M(p)]/M.

Speeding up convergence

- Exploit locality of links
 - Pages tend to link most often to other pages within the same host or domain
- □ Partition pages into clusters
- host, domain, ...
- ☐ Compute local page rank for each cluster
 - can be done in parallel
- ☐ Compute page rank on graph of clusters
- ☐ Initial rank of a page is the product of its local rank and the rank of its cluster
 - Use as starting vector for normal page rank computation
 - 2-3x speedup

In Pictures 1.5 2.05 3.0 2.0 0.15 0.05 Local ranks Intercluster weights Ranks of clusters Initial eigenvector

Other tricks

- Adaptive methods
- Extrapolation
- □ Typically, small speedups
 - **20-30%**

Problems with page rank

- ☐ Measures generic popularity of a page
 - Biased against topic-specific authorities
 - Ambiguous queries e.g., jaguar
 - This lecture
- ☐ Uses a single measure of importance
 - Other models e.g., hubs-and-authorities
 - Next lecture
- □ Susceptible to Link spam
 - Artificial link topographies created in order to boost page rank
 - Next lecture

Topic-Specific Page Rank

- ☐ Instead of generic popularity, can we measure popularity within a topic?
 - E.g., computer science, health
- Bias the random walk
 - When the random walker teleports, he picks a page from a set S of web pages
 - S contains only pages that are relevant to the topic
 - E.g., Open Directory (DMOZ) pages for a given topic (www.dmoz.org)
- $\hfill\Box$ For each teleport set S, we get a different rank vector $\textbf{r}_{\textbf{S}}$

Matrix formulation

- \square $A_{ij} = \beta M_{ij} + (1-\beta)/|S|$ if $i \in S$
- \square $A_{ij} = \beta M_{ij}$ otherwise
- ☐ Show that **A** is stochastic
- We have weighted all pages in the teleport set S equally
 - Could also assign different weights to them

Example

Suppose $S = \{1\}, \beta = 0.8$

 Node
 Iteration
 2...
 stable

 1
 1.0
 0.2
 0.52
 0.294

 2
 0
 0.4
 0.08
 0.118

 3
 0
 0.4
 0.08
 0.327

 4
 0
 0
 0.32
 0.261

Note how we initialize the page rank vector differently from the unbiased page rank case.

How well does TSPR work?

- ☐ Experimental results [Haveliwala 2000]
- ☐ Picked 16 topics
 - Teleport sets determined using DMOZ
 - E.g., arts, business, sports,...
- □ "Blind study" using volunteers
 - 35 test queries
 - Results ranked using Page Rank and TSPR of most closely related topic
 - E.g., bicycling using Sports ranking
 - In most cases volunteers preferred TSPR ranking

Which topic ranking to use?

- □ User can pick from a menu
- Use Bayesian classification schemes to classify query into a topic
- ☐ Can use the context of the guery
 - E.g., query is launched from a web page talking about a known topic
 - History of queries e.g., "basketball" followed by "jordan"
- ☐ User context e.g., user's My Yahoo settings, bookmarks, ...

Evaporation model

- Alternative, equivalent interpretation of page rank
 - Instead of random teleport
- Assume random surfers "evaporate" from each page at rate (1-β) per time step
 - those surfers vanish from the system
- New random surfers enter the system at the teleport set pages
 - Total of (1-β)M at each step
- System reaches stable state
 - evaporation at each time step = number of new surfers at each time step

Evaporation-based computation

Suppose $S = \{1\}, \beta = 0.8$

Node	Iteration					
	0	1	2	stable		
1	0.2	0.2	0.264	0.294		
2	0	0.08	0.08	0.118		
3	0	0.08	0.08	0.327		
4	0	0	0.064	0.261		

Note how we initialize the page rank vector differently in this model

Scaling with topics and users

- □ Suppose we wanted to cover 1000's of topics
 - Need to compute 1000's of different rank vectors
 - Need to store and retrieve them efficiently at query time
 - For good performance vectors must fit in memory
- Even harder when we consider personalization
 - Each user has their own teleport vector
 - One page rank vector per user!

Tricks

- ☐ Determine a set of basis vectors so that any rank vector is a linear combination of basis vectors
- Encode basis vectors compactly as partial vectors and a hubs skeleton
- At runtime perform a small amount of computation to derive desired rank vector elements

Linearity Theorem

- □ Let S be a teleport set and r_s be the corresponding rank vector
- □ For page i∈S, let r_i be the rank vector corresponding to the teleport set {i}
 - \blacksquare \mathbf{r}_{i} is a vector with N entries
- \square $\mathbf{r_s} = (1/|S|) \sum_{i \in S} \mathbf{r_i}$
- Why is linearity important?
 - Instead of 2^N biased page rank vectors we need to store N vectors

Linearity example

Let us compute $r_{\{1,2\}}$ for $\beta = 0.8$

Node Iteration

	0	1	2	stable
1	0.1	0.1	0.164	0.300
2	0.1	0.14	0.172	0.323
3	0	0.04	0.04	0.120
4	0	0.04	0.056	0.130
5	0	0.04	0.056	0.130

Linearity example

r _{1,2}	r ₁	r_2	$(r_1 + r_2)/2$
0.300	0.407	0.192	0.300
0.323	0.239	0.407	0.323
0.120	0.163	0.077	0.120
0.130	0.096	0.163	0.130
0.130	0.096	0.163	0.130

Intuition behind proof

- ☐ Let's use the many-random-walkers model with M random walkers
- ☐ Let us color a random walker with color i if his most recent teleport was to page i
- ☐ At time t, we expect M/|S| of the random walkers to be colored i
- □ At any page j, we would therefore expect to find (M/|S|)r_i(j) random walkers colored i
- \square So total number of random walkers at page $j = (M/|S|)\sum_{i \in S}\Gamma_i(j)$

Basis Vectors

- ☐ Suppose T = union of all teleport sets of interest
 - Call it the teleport universe
- \square We can compute the rank vector corresponding to any teleport set $S \subseteq T$ as a linear combination of the vectors $\mathbf{r_i}$ for $i \in T$
- ☐ We call these vectors the basis vectors for T
- ☐ We can also compute rank vectors where we assign different weights to teleport pages

Decomposition

- ☐ Still too many basis vectors
 - E.g., |T| might be in the thousands
 - N|T| values
- □ Decompose basis vectors into partial vectors and hubs skeleton

Tours

- ☐ Consider a random walker with teleport set {i}
 - Suppose walker is currently at node j
- □ The random walker's tour is the sequence of nodes on the walker's path since the last teleport
 - E.g., i,a,b,c,a,j
 - Nodes can repeat in tours why?
- ☐ Interior nodes of the tour = {a,b,c}
- □ Start node = $\{i\}$, end node = $\{j\}$
 - A page can be both start node and interior node, etc.

Tour splitting

- ☐ Consider random walker with teleport set {i}, biased rank vector r_i
- □ r_i(j) = probability random walker reaches j by following some tour with start node i and end node j
- ☐ Consider node k
 - Can have k = j but not k = i

Tour splitting

- □ Let r,k(j) be the probability that random surfer reaches page j through a tour that includes page k as an interior or end node.
- □ Let r_i-k(j) be the probability that random surfer reaches page j through a tour that does not include k as an interior or end node.
- $\square r_i(j) = r_i^k(j) + r_i^{-k}(j)$

Example Let us compute r_1^{-2} for $\beta = 0.8$ Node Iteration stable Note that 0.2 0.264 0.294 0.2 many entries are zeros 0 0 0 0.08 0 0.118 3 0.08 0

Rank composition

■ Notice:

 $\Gamma_1^2(3) = \Gamma_1(3) - \Gamma_1^{-2}(3)$

- $r_1(2) * r_2^{-2}(3) = 0.239 * 0.038$ = 0.009
 - 0.009
 - = 0.2 * 0.045
 - = $(1-\beta)*r_1^2(3)$
- $\Gamma_1^2(3) = r_1(2) r_2^{-2}(3) / (1-\beta)$

Rank composition

$$\begin{array}{cccc}
r_{i}(k) & r_{k}^{-k}(j) \\
 & & & & \\
i & k & j
\end{array}$$

$$r_i^k(j) = r_i(k)r_k^{-k}(j)/(1-\beta)$$

Hubs

- ☐ Instead of a single page k, we can use a set H of "hub" pages
 - Define r_i-H(j) as set of tours from i to j that do not include any node from H as interior nodes or end node

Rank composition with hubs

Hubs rule example

 $H = \{1,2\}$ $\beta = 0.8$

$$\begin{split} r_2(3) &= r_2^{-H}(3) + r_2^{-H}(3) = 0 + r_2^{-H}(3) \\ &= [r_2(1)r_1^{-H}(3)]/0.2 + [(r_2(2)-0.2)r_2^{-H}(3)]/0.2 \\ &= [0.192*0.08]/0.2 + [(0.407-0.2)*0]/0.2 \\ &= 0.077 \end{split}$$

Hubs

- ☐ Start with H = T, the teleport universe
- ☐ Add nodes to H such that given any pair of nodes i and j, there is a high probability that H separates i and j
 - i.e., r_i^{-H}(j) is zero for most i,j pairs
- □ Observation: high page rank nodes are good separators and hence good hub nodes

Hubs skeleton

- ☐ To compute $r_i(j)$ we need: $r_i^{-H}(j)$ for all $i \in H$, $j \in V$
 - - □ called the partial vector
 - □ Sparser_i(h) for all h∈H
 - □ called the hubs skeleton

Storage reduction

- ☐ Say |T| = 1000, |H|=2000, N = 1 billion
- Store all basis vectors
 - 1000*1 billion = 1 trillion nonzero values
- ☐ Use partial vectors and hubs skeleton
 - Suppose each partial vector has N/200 nonzero entries
 - Partial vectors = 2000*N/200 = 10 billion nonzero values
 - Hubs skeleton = 2000*2000 = 4 million values
 - Total = approx 10 billion nonzero values
- ☐ Approximately 100x compression