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Topics

O This lecture
B Many-walkers model
B Tricks for speeding convergence
B Topic-Specific Page Rank

Random walk interpretation

O At time O, pick a page on the web
uniformly at random to start the walk
O Suppose at time t, we are at page j
O At time t+1
B With probability B, pick a page uniformly at
random from O(j) and walk to it
B With probability 1-B, pick a page on the web
uniformly at random and teleport into it
O Page rank of page p = “steady state”
probability that at any given time, the
random walker is at page p

Many random walkers

O Alternative, equivalent model

O Imagine a large number M of
independent, identical random walkers
(M>N)

O At any point in time, let M(p) be the
number of random walkers at page p

O The page rank of p is the fraction of
random walkers that are expected to be
at page p i.e., E[M(p)]/M.

Speeding up convergence

O Exploit locality of links

B Pages tend to link most often to other pages within
the same host or domain

O Partition pages into clusters
B host, domain, ...

O Compute local page rank for each cluster
B can be done in parallel

O Compute page rank on graph of clusters

O Initial rank of a page is the product of its
local rank and the rank of its cluster

B Use as starting vector for normal page rank
computation

B 2-3x speedup
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Other tricks

Problems with page rank

O Adaptive methods
O Extrapolation

O Typically, small speedups
m ~20-30%

O Measures generic popularity of a page
B Biased against topic-specific authorities
B Ambiguous queries e.g., jaguar
B This lecture

[ Uses a single measure of importance
B Other models e.g., hubs-and-authorities
B Next lecture

O Susceptible to Link spam

B Artificial link topographies created in order
to boost page rank

B Next lecture

Topic-Specific Page Rank

Matrix formulation

O Instead of generic popularity, can we measure
popularity within a topic?
B E.g., computer science, health
O Bias the random walk
B When the random walker teleports, he picks a page
from a set S of web pages
B S contains only pages that are relevant to the topic
B E.g., Open Directory (DMOZ) pages for a given topic
(www.dmoz.org)
O For each teleport set S, we get a different rank
vector rg

O A; = BMy + (1-B)/|S] ifie S
O A; = pM; otherwise
O Show that A is stochastic

O We have weighted all pages in the
teleport set S equally
B Could also assign different weights to them

Example

How well does TSPR work?

Suppose S = {1}, = 0.8

Node | Iteration

0 1 2. stable
1 1.0 0.2 0.52 0.294
2 (o] 0.4 0.08 0.118
3 (o] 0.4 0.08 0.327
4 (0] 0] 0.32 0.261

Note how we initialize the page rank vector differently from the
unbiased page rank case.

O Experimental results [Haveliwala 2000]
O Picked 16 topics

B Teleport sets determined using DMOZ

B E.g., arts, business, sports,...
O “Blind study” using volunteers

B 35 test queries

B Results ranked using Page Rank and TSPR of
most closely related topic

B E.g., bicycling using Sports ranking
B In most cases volunteers preferred TSPR
ranking




Which topic ranking to use?

O User can pick from a menu

O Use Bayesian classification schemes to
classify query into a topic

O Can use the context of the query

B E.g., query is launched from a web page
talking about a known topic

B History of queries e.g., “basketball” followed
by “jordan”
O User context e.g., user's My Yahoo
settings, bookmarks, ...

Evaporation model

O Alternative, equivalent interpretation of page
rank
B |Instead of random teleport

O Assume random surfers “evaporate” from each
page at rate (1-B) per time step
B those surfers vanish from the system

O New random surfers enter the system at the
teleport set pages
H Total of (1-B)M at each step

O System reaches stable state

B evaporation at each time step = number of new
surfers at each time step

Evaporation-based computation

Suppose S = {1}, = 0.8

Node | Iteration

0 1 2. stable
1 0.2 0.2 0.264 0.294
2 0] 0.08 0.08 0.118
3 0] 0.08 0.08 0.327
4 0] (0] 0.064 0.261

Note how we initialize the page rank vector differently in this model

Scaling with topics and users

O Suppose we wanted to cover 1000’s of
topics
B Need to compute 1000’s of different rank
vectors
B Need to store and retrieve them efficiently
at query time
B For good performance vectors must fit in
memory
O Even harder when we consider
personalization
B Each user has their own teleport vector
B One page rank vector per user!

Tricks

O Determine a set of basis vectors so that
any rank vector is a linear combination
of basis vectors

O Encode basis vectors compactly as
partial vectors and a hubs skeleton

O At runtime perform a small amount of
computation to derive desired rank
vector elements

Linearity Theorem

O Let S be a teleport set and rg be the
corresponding rank vector

O For page i€S, let r; be the rank vector
corresponding to the teleport set {i}
B r; is a vector with N entries

O rg = (1/]S]) Zics T

O Why is linearity important?

B Instead of 2N biased page rank vectors we
need to store N vectors




Linearity example

Linearity example

FOR

Let us compute rg, ,, for p = 0.8
Node | Iteration
0 1 2. stable
1 01 0.1  0.164 0.300
2 0.1 014 0.172 0.323
3 0 0.04 0.04 0.120
4 0 0.04 0.056 0.130
5 0 0.04 0.056 0.130

(1 —@
0/ !\9

i1y r r, (ry+ry)/2
0.300 0.407 0.192 0.300
0.323 0.239 0.407 0.323
0.120 0.163 0.077 0.120
0.130 0.096 0.163 0.130
0.130 0.096 0.163 0.130

Intuition behind proof

Basis Vectors

O Let’s use the many-random-walkers
model with M random walkers

O Let us color a random walker with color i
if his most recent teleport was to page i

O At time t, we expect M/|S| of the
random walkers to be colored i

O At any page j, we would therefore
expect to find (M/|S])r;(j) random
walkers colored i

O So total number of random walkers at
page j = (M/|S])Zicsri()

O Suppose T = union of all teleport sets of
interest
B Call it the teleport universe

O We can compute the rank vector corresponding
to any teleport set SCT as a linear combination

of the vectors r; for ieT
O We call these vectors the basis vectors for T

O We can also compute rank vectors where we
assign different weights to teleport pages

Decomposition

Tours

O still too many basis vectors
® E.g., |T| might be in the thousands
H N|T| values

O Decompose basis vectors into partial
vectors and hubs skeleton

O Consider a random walker with teleport set {i}
B Suppose walker is currently at node j

O The random walker’s tour is the sequence of
nodes on the walker’s path since the last
teleport
® E.g.,i,ab,c,a,j
B Nodes can repeat in tours — why?

O Interior nodes of the tour = {a,b,c}

O Start node = {i}, end node = {j}
B A page can be both start node and interior node, etc




Tour splitting

O Consider random walker with teleport

set {i}, biased rank vector r;

O r,(j) = probability random walker
reaches j by following some tour with

start node i and end node j
O Consider node k
H Can havekk=j but notk =i

Tour splitting

O Let r(j) be the probability that random surfer
reaches page j through a tour that includes

page k as an interior or end node.

O Let r;7%(j) be the probability that random surfer
reaches page j through a tour that does not

include k as an interior or end node.
O rG) = rkG) + r*G)

k

Example

Let us compute r,~2 for § = 0.8

Node | Iteration

o] 1 2. stable
1 0.2 0.2 0.264 0.294
2 0 0 0 0
3 o] 0.08 0.08 0.118
4 0] (o] 0] (0]
5 0] (0] 0] (0]

Note that
many entries are
zeros

Example

Let us compute r,~2 for p = 0.8

Node | Iteration

o] 1 2. stable
1 (0] (0] 0.064 0.094
2 0.2 0.2 0.2 0.2
3 0 0 0 0.038
4 0] 0.08 0.08 0.08
5 (0] 0.08 0.08 0.08

Rank composition

O Notice:
B r2(3) =r,(3)—r,72(3)
= 0.163 - 0.118 = 0.045
B r,(2) * r,72(3) = 0.239 * 0.038
= 0.009
= 0.2 * 0.045
= (1-B)*r,2(3)
B r2(3) =ry(2) r,72(3)/ (1-)

Rank composition

r(k) nk@)
O————=Q >
i Kk ]

Q) = i@/ (A-p)




Hubs

Hubs example

O Instead of a single page k, we can use a
set H of “hub” pages
B Define r;"(j) as set of tours from i to j that
do not include any node from H as interior
nodes or end node

Rank composition with hubs

r@) = Q@) + @)
rHa) = Zneqwi(h)r, "G/ (1-p)

w,(h) = r(h) ifi £ h
w(h) = r(h) - @-p) ifi = h

H={1,2}
B=0.8
r,~H r,~H
Node | Iteration Node | Iteration
0 1 stable 0 1 stable
1 0] (0] 0] 1 0.2 0] 0.2
2 0.2 0.2 0.2 2 (0] 0] (0]
3 0 0 0 3 0 0.08 0.08
4 o] 0.08 0.08 4 0 (o} 0
5 (0] 0.08 0.08 5 (0] 0] [o]
Hubs rule example
H H={1,2}
p=0.8

r(3) = r,M(3) + rH(3) = 0 + r,A(3)
= [r(D)r;7H(3)1/0.2+[(r,(2)-0.2)r,7#(3)]/0.2
= [0.192*0.08]/0.2+[(0.407-0.2)*0]/0.2
= 0.077

Hubs

Hubs skeleton

O Start with H = T, the teleport universe

O Add nodes to H such that given any pair
of nodes i and j, there is a high
probability that H separates i and j
B j.e., r;M(j) is zero for most i,j pairs

O Observation: high page rank nodes are
good separators and hence good hub
nodes

O To compute r;(j) we need:
B r7H(j) for all icH, jeV

O called the partial vector

O Sparse
® r;(h) for all heH

O called the hubs skeleton




Storage reduction

O Say |T] = 1000, |[H|=2000, N = 1 billion
O Store all basis vectors

B 1000*1 billion = 1 trillion nonzero values
O Use partial vectors and hubs skeleton

B Suppose each partial vector has N/200 nonzero
entries

B Partial vectors = 2000*N/200 = 10 billion nonzero
values

B Hubs skeleton = 2000*2000 = 4 million values
B Total = approx 10 billion nonzero values
O Approximately 100x compression




