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Topics

This lecture
Many-walkers model
Tricks for speeding convergence
Topic-Specific Page Rank

Random walk interpretation

At time 0, pick a page on the web 
uniformly at random to start the walk
Suppose at time t, we are at page j
At time t+1

With probability β, pick a page uniformly at 
random from O(j) and walk to it
With probability 1-β, pick a page on the web 
uniformly at random and teleport into it

Page rank of page p = “steady state”
probability that at any given time, the 
random walker is at page p

Many random walkers

Alternative, equivalent model
Imagine a large number M of 
independent, identical random walkers 
(MÀN)

At any point in time, let M(p) be the 
number of random walkers at page p
The page rank of p is the fraction of 
random walkers that are expected to be 
at page p i.e., E[M(p)]/M.

Speeding up convergence

Exploit locality of links
Pages tend to link most often to other pages within 
the same host or domain

Partition pages into clusters
host, domain, …

Compute local page rank for each cluster
can be done in parallel

Compute page rank on graph of clusters
Initial rank of a page is the product of its 
local rank and the rank of its cluster

Use as starting vector for normal page rank 
computation
2-3x speedup
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Other tricks

Adaptive methods
Extrapolation
Typically, small speedups

~20-30%

Problems with page rank

Measures generic popularity of a page
Biased against topic-specific authorities
Ambiguous queries e.g., jaguar
This lecture

Uses a single measure of importance
Other models e.g., hubs-and-authorities
Next lecture

Susceptible to Link spam
Artificial link topographies created in order 
to boost page rank
Next lecture

Topic-Specific Page Rank

Instead of generic popularity, can we measure 
popularity within a topic?

E.g., computer science, health

Bias the random walk
When the random walker teleports, he picks a page 
from a set S of web pages
S contains only pages that are relevant to the topic
E.g., Open Directory (DMOZ) pages for a given topic 
(www.dmoz.org)

For each teleport set S, we get a different rank 
vector rS

Matrix formulation
Aij = βMij + (1-β)/|S| if i ∈ S

Aij = βMij otherwise
Show that A is stochastic
We have weighted all pages in the 
teleport set S equally

Could also assign different weights to them 

Example

1
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Suppose S = {1}, β = 0.8

Node Iteration
0 1 2… stable

1 1.0 0.2 0.52 0.294
2 0 0.4 0.08 0.118
3 0 0.4 0.08 0.327
4 0 0 0.32 0.261

Note how we initialize the page rank vector differently from the
unbiased page rank case. 
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How well does TSPR work?

Experimental results [Haveliwala 2000]
Picked 16 topics

Teleport sets determined using DMOZ
E.g., arts, business, sports,…

“Blind study” using volunteers
35 test queries
Results ranked using Page Rank and TSPR of 
most closely related topic 
E.g., bicycling using Sports ranking
In most cases volunteers preferred TSPR 
ranking
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Which topic ranking to use?

User can pick from a menu
Use Bayesian classification schemes to 
classify query into a topic
Can use the context of the query

E.g., query is launched from a web page 
talking about a known topic
History of queries e.g., “basketball” followed 
by “jordan”

User context e.g., user’s My Yahoo 
settings, bookmarks, …

Evaporation model

Alternative, equivalent interpretation of page 
rank

Instead of random teleport

Assume random surfers “evaporate” from each 
page at rate (1-β) per time step

those surfers vanish from the system

New random surfers enter the system at the 
teleport set pages

Total of (1-β)M at each step

System reaches stable state 
evaporation at each time step = number of new 
surfers at each time step

Evaporation-based computation

1

2 3

4

Suppose S = {1}, β = 0.8

Note how we initialize the page rank vector differently in this model
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0.8 0.8
Node Iteration

0 1 2… stable
1 0.2 0.2 0.264 0.294
2 0 0.08 0.08 0.118
3 0 0.08 0.08 0.327
4 0 0 0.064 0.261

Scaling with topics and users

Suppose we wanted to cover 1000’s of 
topics

Need to compute 1000’s of different rank 
vectors
Need to store and retrieve them efficiently 
at query time
For good performance vectors must fit in 
memory

Even harder when we consider 
personalization

Each user has their own teleport vector
One page rank vector per user!

Tricks

Determine a set of basis vectors so that 
any rank vector is a linear combination 
of basis vectors
Encode basis vectors compactly as 
partial vectors and a hubs skeleton
At runtime perform a small amount of 
computation to derive desired rank 
vector elements 

Linearity Theorem 

Let S be a teleport set and rS be the 
corresponding rank vector
For page i∈S, let ri be the rank vector 

corresponding to the teleport set {i}
ri is a vector with N entries

rS = (1/|S|) ∑i∈S ri

Why is linearity important?
Instead of 2N biased page rank vectors we 
need to store N vectors
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Linearity example 

1 2

3 4 5

Let us compute r{1,2} for β = 0.8

1 2

3 4 5

0.4

0.4

0.8
0.8 0.4

0.4

0.8

0.1 0.1

Node Iteration
0 1 2… stable

1 0.1 0.1 0.164 0.300
2 0.1 0.14 0.172 0.323
3 0 0.04 0.04 0.120
4 0 0.04 0.056 0.130
5 0 0.04 0.056 0.130

Linearity example

0.407

0.239

0.163

0.096

0.096

0.192
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0.077
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0.323
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0.130

1 2

3 4 5

0.300

0.323

0.120

0.130

0.130

r{1,2} r1 r2 (r1+r2)/2

Intuition behind proof

Let’s use the many-random-walkers 
model with M random walkers
Let us color a random walker with color i
if his most recent teleport was to page i
At time t, we expect M/|S| of the 
random walkers to be colored i
At any page j, we would therefore 
expect to find (M/|S|)ri(j) random 
walkers colored i
So total number of random walkers at 
page j = (M/|S|)∑i∈Sri(j)

Basis Vectors

Suppose T = union of all teleport sets of 
interest

Call it the teleport universe

We can compute the rank vector corresponding 
to any teleport set S⊆T as a linear combination 
of the vectors ri for i∈T 

We call these vectors the basis vectors for T
We can also compute rank vectors where we 
assign different weights to teleport pages

Decomposition

Still too many basis vectors
E.g., |T| might be in the thousands
N|T| values

Decompose basis vectors into partial 
vectors and hubs skeleton

Tours

Consider a random walker with teleport set {i}
Suppose walker is currently at node j 

The random walker’s tour is the sequence of 
nodes on the walker’s path since the last 
teleport

E.g., i,a,b,c,a,j
Nodes can repeat in tours – why?

Interior nodes of the tour = {a,b,c}
Start node = {i}, end node = {j}

A page can be both start node and interior node, etc
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Tour splitting

Consider random walker with teleport 
set {i}, biased rank vector ri

ri(j) = probability random walker 
reaches j by following some tour with 
start node i and end node j
Consider node k 

Can have k = j but not k = i

i

k

j

Tour splitting

Let ri
k(j) be the probability that random surfer 

reaches page j through a tour that includes
page k as an interior or end node.
Let ri

~k(j) be the probability that random surfer 
reaches page j through a tour that does not
include k as an interior or end node.

ri(j) = ri
k(j) + ri

~k(j)

i

k

j

Example
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Let us compute r1
~2 for β = 0.8

Node Iteration
0 1 2… stable

1 0.2 0.2 0.264 0.294
2 0 0 0 0
3 0 0.08 0.08 0.118
4 0 0 0 0
5 0 0 0 0

Note that
many entries are 
zeros
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Example

1 2

3 4 5
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0.2

Let us compute r2
~2 for β = 0.8

Node Iteration
0 1 2… stable

1 0 0 0.064 0.094
2 0.2 0.2 0.2 0.2
3 0 0 0 0.038
4 0 0.08 0.08 0.08
5 0 0.08 0.08 0.08

Rank composition

Notice:
r1

2(3) = r1(3) – r1
~2(3)

= 0.163 - 0.118 = 0.045
r1(2) * r2

~2(3) = 0.239 * 0.038
= 0.009
= 0.2 * 0.045
= (1-β)*r1

2(3)
r1

2(3) = r1(2) r2
~2(3)/ (1-β)

Rank composition

i jk

ri(k) rk
~k(j)

ri
k(j) = ri(k)rk

~k(j)/(1-β)
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Hubs

Instead of a single page k, we can use a 
set H of “hub” pages

Define ri
~H(j) as set of tours from i to j that 

do not include any node from H as interior 
nodes or end node

Hubs example

1 2

3 4 5

0.4

0.4

0.8

0.8 0.4
0.4

0.8

0.2

H = {1,2}
β = 0.8

r2
~H

Node Iteration
0 1 stable

1 0 0 0
2 0.2 0.2 0.2
3 0 0 0
4 0 0.08 0.08
5 0 0.08 0.08

r1
~H

Node Iteration
0 1 stable

1 0.2 0 0.2
2 0 0 0
3 0 0.08 0.08
4 0 0 0
5 0 0 0

0.2

Rank composition with hubs

i j
wi(h) rh

~H(j)

H

h

ri(j) = ri
~H(j) + ri

H(j)

ri
H(j) = ∑h∈Hwi(h)rh

~H(j)/(1-β)

wi(h) = ri(h) if i = h

wi(h) = ri(h) - (1-β) if i = h

ri
~H(j)

Hubs rule example

r2(3) = r2
~H(3) + r2

H(3) = 0 + r2
H(3)

= [r2(1)r1
~H(3)]/0.2+[(r2(2)-0.2)r2

~H(3)]/0.2
= [0.192*0.08]/0.2+[(0.407-0.2)*0]/0.2
= 0.077

1 2

3 4 5

H = {1,2}
β = 0.8

H

Hubs

Start with H = T, the teleport universe
Add nodes to H such that given any pair 
of nodes i and j, there is a high 
probability that H separates i and j

i.e., ri
~H(j) is zero for most i,j pairs

Observation: high page rank nodes are 
good separators and hence good hub 
nodes

Hubs skeleton

To compute ri(j) we need:
ri

~H(j) for all i∈H, j∈V
called the partial vector
Sparse

ri(h) for all h∈H
called the hubs skeleton

i j
ri(h) rh

~H(j)

ri
~H(j)

H
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Storage reduction

Say |T| = 1000, |H|=2000, N = 1 billion
Store all basis vectors

1000*1 billion = 1 trillion nonzero values

Use partial vectors and hubs skeleton
Suppose each partial vector has N/200 nonzero 
entries
Partial vectors = 2000*N/200 = 10 billion nonzero 
values
Hubs skeleton = 2000*2000 = 4 million values
Total = approx 10 billion nonzero values

Approximately 100x compression


