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‘Partridge in a Pear Tree', brewed by ‘The Bruery’

Dark brown with a light tan head, minimal lace and low re-
tention. Excellent aroma of dark fruit, plum, raisin and red
grape with light vanilla, oak, caramel and toffee. Medium
thick body with low carbonation. Flavor has strong brown
sugar and molasses from the start over bready yeast and a
dark fruit and plum finish. Minimal alcohol presence. Actu-
ally, this is a nice quad.

Feel: 45 Look: 4 Smell: 4.5 Taste: 4 Overall: 4
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Tasks

1. Learn language models for each aspect [RR09]
2. Summarize reviews and review corpora [BE10, GEM09, TM08]

3. Recover ‘missing’ ratings from users reviews
[GDFH10, LOCT11]



DATASET ASPECTS #REVIEWS
Beer (beeradvocate) feel, look, smell, taste, overall 1,586,259
Beer (ratebeer) feel, look, smell, taste, overall 2,924,127
Pubs (beeradvocate) food, price, quality, selection, service, vibe 18,350
Toys & Games (amazon) durability, educational, fun, overall 373,974
Audio Books (audible) author, narrator, overall 10,989
CitySearch [GEMO09] food, ambiance, price, staff 652

» 1,000 labeled sentences per dataset (labeled by me)
» 10,000 labeled beer sentences (labeled by oDesk)



Model

Preference and Attribute Learning from Labeled Groundtruth and
Explicit Ratings.
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PALE LAGER



The Pale Lager Model

P(aspect(s) = k | sentence s, rating v)

eXp Z { ka + ¢kvk w }
wes ~~~ N d

aspect weights  sentiment weights

Learning proceeds by choosing the aspect labels, and the model
parameters that maximize the likelihood of the corpus.



The Pale Lager Model

: Clear copper colored brew, medium cream colored head.
: Floral hop nose, caramel malt.

: Grapefruit tones.
: Very tasty hops run the show with this brew.
5 Thin to medium mouth.

: Not a bad choice if you're looking for a nice hop treat.

: Caramel malt front dominated by a nice floral hop backround.
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Results

Segmentation task, accuracy (higher is better)
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