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Framework for Inference and Learning

Strategy: define a common representation and interface via
which components communicate

« Representation: Factor graph - potentials define energy

~E(y)= > 0+ > 6,00y + Y 4.(y,)
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Low order (standard) High order (challenging)

« Inference: Message-passing, e.g., max-product BP
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Learning: Loss-Augmented MAP

 Scaled margin constraint

E(y)-E(y")=zloss(y,y")

Y wayp (v x)2 Y wy (y:x)+loss(y,y")
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Fixed MAP objective  loss

To find margin violations

argmax| » wy (y.:X,)+loss(y ,y")
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Expressive models incorporate
high-order constraints

Problem: map input x to output vector y, where
elements of y are inter-dependent

Can ignore dependencies and build unary model:
independent influence of x on each element of y

Or can assume some structure ony, such as simple
pairwise dependencies (e.g., local smoothness)

Yet these often insufficient to capture constraints
- many are naturally expressed as higher order

Example: image labeling



Image Labeling: Local Information is Weak

Ground  Unary
Truth Only



Add Pair-wise Terms:
Smoother, but no magic

Pairwise CRF

Unary

Ground
Truth Only  Pairwise



Summary of Contributions

Aim: more expressive high-order models (clique-size > 2)

Previous work on HOPs
»Pattern potentials (Rother/Kohli/Torr; Komodakis/Paragios)

»Cardinality potentials: (Potetz; Gupta/Sarawagi);
b-of-N (Huang/Jebara; Givoni/Frey)
»Connectivity (Nowozin/Lampert)

»Label co-occurrence (Ladicky et al)

Our chief contributions:
> Extend vocabulary, unifying framework for HOPs
» Introduce idea of incorporating high-order potentials
into loss function for learning
> Novel applications: extend range of problems on which
MAP inference/learning useful



Cardinality Potentials

d(¥)=F( )

y; €y

Assume: binary y; potential defined over all variables

Potential: arbitrary function value based on number
of on variables



Cardinality Potentials: lllustration
d(y)=F(, 5)
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Variable to factor messages: values represent how much
that variable wants to be on

Factor to variable message: must consider all combination
of values for other variables in clique?

Key insight: conditioned on sufficient statistic of y, joint
problem splits into two easy pieces
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Cardinality Potentials

d(¥)=F( )
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Applications:
— b-of-N constraints - paper matching
— Segmentation: approximate number of pixels per label

— also can specify in image-dependent way - Danny's
poster



Order-based: 1D Convex Sets
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High Order Potentials
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Tarlow, Givoni, Zemel. AISTATS, 2010.



Joint Depth-Object Class Labeling

If we know where and what the objects are in a scene we
can better estimate their depth

Knowing the depth in a scene can also aid our semantic
understanding

Some success in estimating depth given image labels
(Gould et al)

Joint inference - easier to reason about occlusion




Potentials Based on Visual Cues

Aim: infer depth & labels from static single images
Represent y: position+depth voxels, w/multi-class labels
Several visual cues, each with corresponding potential:

« Object-specific class, depth unaries
Standard pairwise smoothness
Object-object occlusion reqgularities
Object-specific size-depth counts
Object-specific convexity constraints

v 10 building « 10
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High-Order Loss Augmented MAP

 Finding margin violations is tfractable if loss is
decomposable (e.g., sum of per-pixel losses)

arg max[z wi . (y.;X)+loss(y, y(”) )}
y C

« High-order losses not as simple
» But..we can apply same mechanisms used in HOPsl!
» Same structured factors apply to losses




Learning with High Order Losses

Introducing HOPs into learning >
High-Order Losses (HOLSs)

Motivation:
1. Tailor to target loss: often non-decomposable

2. May facilitate fast test-time inference:
keep potentials in model low-order; utilize high-
order information only during learning



HOL 1: PASCAL segmentation challenge

Loss function used to evaluate entries is:

lintersection|/|union|
« Intersection: True Positives (Green) [Hits]
« Union: Hits + False Positives (Blue) + Misses (Red)

« Effect: not all pixels weighted equally; not all images equal;
score of all ground is zero



HOL 1: Pascal loss

Define Pascal loss: quotient of counts

Key: like a cardinality potential - factorizes once condition
on humber on (but now in two sets) > recognizing
structure type provides hint of algorithm strategy



Pascal VOC Aeroplanes

Images

Pixel Labels

e

« 110 images (55 train, 55 test)
« At least 100 pixels per side
» 13.6% foreground pixels



HOL 1: Models & Losses
* Model

— 84 unary features per pixel (color and texture)

— 13 pairwise features over 4 neighbors

» Constant
» Berkeley PB boundary detector-based

* Losses
— 0-1 Loss (constant margin)
— Pixel-wise accuracy Loss
— HOL 1: Pascal Loss: |intersection|/|union]

» Efficiency: loss-augmented MAP takes <1
minute for 150x100 pixel image; factors:
unary+pairwise model + Pascal loss



Test Accuracy

— bvaluate || o 1 Acc.  PASCAL Acc.
Train
0-1 Loss 82.1% 28.6
Pixel Loss 91.2% 47.5
PASCAL Loss 88.5% 51.6
(a) Unary only model
— DBvaluate || o 1 Acc.  PASCAL Acc.
Train
0-1 Loss 79.0% 28.8
Pixel Loss 92.7 % 54.1
PASCAL Loss 90.0% 58.4

(b) Unary + pairwise model

SVM trained independently on pixels does similar to Pixel Loss



HOL 2: Learning with BBox Labels

« Same training and testing images; bounding boxes
rather than per-pixel labels

* Evaluate w.r.t. per-pixel labels - see if learning is
robust to weak label information

= .=

» HOL 2: Partial Full Bounding Box

— O loss when K% of pixels inside bounding box and
0% of pixels outside

— Penalize equally for false )aosi‘rives and #pixel
deviations from target K%



HOL 2: Experimental Results
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HOL 3: Local Border Convexity

Other form of weak labeling: rough inner-bound + outline
example: Strokes mark internal object skeleton; coarse
circular stroke around outer boundary

- assume monotonic labeling of any ray from interior passing
thru border (1m0O")

HOL 3: LBC - gray takes on any label, penalty of a for each
outward path that changes from background to foreground

Training data obtained by eroding labeled images



HOL 3: Results

— Bvaluate || 5. 1 Acc. PASCAL Acc.
Train

& Mod. Loss SVM 90.2% 36.4

P> LBC Loss 90.6 % 38.1

= Mod. Loss SVM 79.8% 0

O LBC Loss 80.2% 5.3

= Mod. Loss SVM 78.4% 15.6

S LBC Loss 76.8% 32.3

o0 Mod. Loss SVM 80.2% 0

o LBC Loss

82.4% 24.2




Wrap Up

« If we're spending so much time working on optimizing
objectives -- make sure they're the right objectives

— Developing toolbox for richer models and objectives with
high order models and high order loss functions

 High-order information in energy, or loss?

— Some HO constraints depend on ground truth: must go in
loss (e.g., translation-invariance, assigh zero loss to few

pixel shifts of object)

— Adding HO structure only to loss creates variational-like
scenario: model must learn to use restricted d.o.f. to

optimize loss

« Extensions:

— Multi-label

— HOLSs not just wrt outputs of one image, but across
multiple images (e.g., smoothness of patterns thru frames)



Learning CRFs

 Conditional Random Fields (CRF): model label y
conditionally given input x

P(yIx.0)=exp(~E(y.x;0))/ Y exp(~E(y'.x:0))
y'eY (x)
* TInclude various structures iny, like trees, chains,
2D grids, permutations

« Considerable work on developing potentials, energy
fcns, and approximate inference in CRFs, but little
on loss function

« Typically trained by ML - ignores task's loss

1. Can methods used by SSVMs to adapt training to
loss be utilized in CRFs?

2. Develop other loss-sensitive training objectives
that rely on probabilistic nature of CRFs?



Loss Functions for CRFs

« Standard CRF learning: shape energy (learn ©) to max.
conditional likelihood (MCL) of ground truthy,
conditioned on its corresponding x - ignores loss

gML(D;8)=_ E lng(ytIXt)=E(yt,Xt;0)+lOg( E eXP(_E(y,Xt§H))

(x,y)ED YEY (X)

« In well-specified case, with sufficient data, ignoring loss
probably not a problem - asymptotic consistency,
efficiency of ML

 Assume given loss (evaluate performance of CRF), aim of
learning: obtain low average .

ﬁ 2 0(y(x,))

(x;,y,)ED

« Hard to optimize: loss not smooth fcn of parameters,
loss not smooth fcn of prediction, prediction not smooth
fcn of parameters - indirectly optimize avg loss



New CRF Loss Functions

(1). Loss-augmented E™(y,x :0) = E(y,x.:60) - £.(¥)

1
¢, (D;0) = Y E"(y,.x,;0)+ log E exp(—E" (y,x,;0))

(x,,y,)eD yeY (x)

- high loss cases important, increase energy
- analog of margin scaling

- upper bound on avg loss

(2). Loss-scaled
E”(y,x,;0)= £, (DIE(Y,X,;0)- E(y,.x,;0)] = £,(y)

1
l,s(D;0) = DI EtLS (y,.X,;0)+ log E eXp(_EtLS (¥.x,:0))

(x,,y,)€ED yEY (X)

- only focus on high loss cases whose energy is low
- analog of slack scaling
- also upper bound on avg loss



More New CRF Loss Functions
(3). Expected-loss

(a)-— 3 B, [,m]- % S S Lmpyix)

IDI, “ep (X,.¥,)ED yEY (x)

- not an upper bound on avg loss, but approaches it as
learning puts all mass on MAP y(x,)

(4). KL . 1
fKL(D,e)_ﬁ(X%EDDKL[q( 1O pC1x,)]

—— L S S ayinpyix)-C

20 (X,,y,)ED y&EY (Xx)
- use loss to regularize CRF q(y12) =exp(=£,(»)/ 1)/ Z,

- think of loss as ranking all predictions

- if not putting all mass on p(y,|x,), use loss to decide how
to distribute excess mass on other configurations



Behavior of CRF Loss Functions
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Ranking Experiments: LETOR 4.0

Ranking problem: x = features of documents relevant to query:

y = permutation of the documents

Interesting: complex output space; multiple ground truths

Performance metric
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Final Wrap Up
» CRFs benefit from loss-sensitive training

» Tractable to incorporate variety of losses,
including slack-scaling

* Analog of KL for SSVMs?



