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Abstract

In this paper, we propose a nonrigid image registration
method using a Markov Random Field (MRF) energy model
with higher-order smoothness priors and a dense local de-
scriptor. The image registration is designed as finding an
optimal labeling of the MRF energy model where the la-
bel corresponds to a discrete displacement vector. The pro-
posed MRF energy model uses matching scores of dense
local descriptors between images as a data cost. In this
model, spatial relationships are constructed between nodes
using higher-order smoothness priors. As the local de-
scriptor is invariant to scale and rotation and also robust
to changing appearances, this method can handle multi-
modal images involving scale and rotation transformations.
The higher-order smoothness priors can generate desired
smoother displacement vector fields and do not suffer from
fronto-parallel effects commonly occurred in first-order pri-
ors. The usage of higher-order priors in the energy model
enables this method to produce more accurate registration
results. In the experiments, we will show registration re-
sults using multi-modal Brain MRI Images and facial im-
ages with expression and light changes.

1. Introduction

Nonrigid image registration is the process of determin-
ing geometric transformation between two images which
are not related by simple transformations such as rigid or
affine. Over the last decade, many relevant works were pro-
posed [19] including feature-based [13, 8] and image-based
schemes [14, 3, 6]. The feature-based methods can easily
cover large displacements, however they do not work well
on the regions which have no features. On the other hand,
the image-based methods use the entire area of images and
work more accurately than feature-based methods. How-
ever, they become intractable to solve problems involving
large displacements. In addition, it is not easy to define

appropriate similarity measures for registering multi-modal
images.

Recently, some approaches utilizing both feature- and
image-based methods are introduced. Ou et al. [12] in-
tegrated a cost measure using Gabor filtering responses
(attributes) for each pixels to the first-order MRF energy
model. As full dimensional attributes have redundant in-
formation, they introduce a procedure for reducing the di-
mension of attributes by a learning-based method. Sotiras
et al. [16] proposed a unified energy model of feature- and
image-based schemes. They construct one graph for each
scheme and connect these two graphs by appropriately de-
signed edges. Liu et al. [9] used pixel-wise SIFT [10] de-
scriptors for a data cost to the MRF energy model with
first-order smoothness prior. They introduce a coarse-to-
fine matching scheme to cover large displacements. This
method is designed for robust matching across different ap-
pearances of scenes or objects.

Above mentioned methods model the deformation pat-
tern as a discrete label set where labels correspond to dis-
placements of control points (nodes) placed on the square
mesh. The energy is constructed using the standard pair-
wise MRF model as follows

E(x|θ) =
∑

s∈V
θs(xs) +

∑
(s,t)∈E

θst(xs, xt) (1)

where V is the set of nodes, E is the set of edges incorporat-
ing neighborhood information of nodes, and xs is the label
of s ∈ V . In this model, the data cost θs is computed us-
ing similarity measures between reference and input images
and the smoothness cost θst is computed using displace-
ment differences between s and t. For θst, the following
truncated pairwise spatial prior is conventionally used

θst(xs, xt) = λst min (∥d(xs)− d(xt)∥1, Tst) (2)

where λst is the regularization constant, d(xs) represents
the displacement vector corresponding to the label xs, and
Tst is a threshold for truncation. However, this pairwise po-
tentials (2) penalize the global transformations of the mesh,
such as rotation and scaling movements. Mesh nodes must
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be remained at initial position or translated all together to
get low energy.

Here, we propose a nonrigid image registration method
integrating the strengths of the feature-based scheme into an
MRF energy model with a higher-order smoothness prior.
We use the densely sampled SIFT descriptor [10] for com-
puting a data cost of the MRF energy model. Because
the SIFT descriptor is invariant to scale and rotation as
well as robust to appearance variation, the proposed method
can handle largely deformed multi-modal images. For a
smoothness cost, we use a mixed-order smoothness prior to
take advantages of first- and second-order smoothness pri-
ors. This smoothness priors can generate desired smoother
displacement vector fields and do not suffer from fronto-
parallel effects commonly occurred in first-order priors.
The usage of dense local descriptor and higher-order priors
in the energy model enables the method to produce more
accurate registration results.

2. MRF Energy Model for Registration
For an input image, we construct a set V which consists

of nodes placed on each pixel. Then we generate a fac-
tor graph [5] GF = (V,FP ,FH) where V , FP and FH

are the set of nodes, factors for pairwise potentials (corre-
sponding to E in (1)), factors for higher-order potentials,
respectively. For each s ∈ V , let xs be a label taking val-
ues in some discrete set L. A function d : L → R2 is
defined for mapping labels to 2-dimensional displacements
where each label xs corresponds to a displacement vec-
tor d(xs) =

(
dx(xs), dy(xs)

)
. In GF , an unary potential

θs(xs) is defined for each node s ∈ V , a pairwise poten-
tial θst(xs, xt) is defined for each factor (s, t) ∈ FP and
a higher-order potential θstu(xs, xt, xu) is defined for each
factor (s, t, u) ∈ FH.1

2.1. Higher­Order Smoothness Prior
In [2], deformation energy of the mesh is usually defined

as a sum of squared second derivatives of its nodes. This
deformation energy describes the natural representation of
inherent deformedness of the mesh which depends only on
the relative locations of mesh nodes. Following the analy-
sis on [6], we add second-order smoothness priors into our
energy model. To apply second-order smoothness priors,
the ternary potential θstu(xs, xt, xu) is constructed on ev-
ery collinear three nodes s, t and u as follows

θstu(xs, xt, xu) = λstu min (∥d(xs)− 2d(xt) + d(xu)∥1, Tstu) .
(3)

In contrast to [6], we retain original first-order smooth-
ness priors as following recent research [7] on higher-order
smoothness priors: mixing different orders of smoothness

1When a factor a connects nodes s and t and a factor b connects nodes
s, t and u, we use (s, t) ∈ FP or (s, t, u) ∈ FH to represent a ∈ FP or
b ∈ FH when we do not need to use factor representations explicitly.

priors produces better results. We can control regulariza-
tion parameters λst, λstu relatively to emphasis the effects
of each prior.

By applying higher-order smoothness priors, the final
MRF energy model is described as follows:

E(x|θ) =
∑

s∈V
θs(xs) +

∑
(s,t)∈FP

θst(xs, xt)

+
∑

(s,t,u)∈FH
θstu(xs, xt, xu) (4)

where FP and FH is defined on a set of 4-neighborhood
nodes and a set of collinear three nodes, respectively.

2.2. Dense Local Descriptor
The unary term θs(xs) of (4) which measures the cost

when a node s has a label xs is defined as

θs(xs) = f(sx, sy, sx + dx(xs), sy + dy(xs)) . (5)

The cost is calculated by a dissimilarity measure f us-
ing two local image information centered on (sx, sy) in a
source image and (sx+dx(xs), sy+dy(xs)) in a target im-
age, respectively. For computing f , we apply L1 distance
measure on the SIFT descriptor [10] space. Among vari-
ous local descriptors, we choose the SIFT descriptor, based
on a recent study [9] which showed promising results. We
extract SIFT descriptor on each pixel using following pro-
cedure. Firstly, we find the maximum gradient orientation
using a gradient vector histogram constructed in the 16×16
window centered at each pixel location. Then we make gra-
dient histogram having 4×4 grid rotated to the maximum
of orientation, each bin has 4×4 window. The gradient ori-
entation is quantized to 8 histogram bins and radially de-
creasing Gaussian weighting is applied to each correspond-
ing bin [10]. Finally a 128-dimensional descriptor (grid size
× histogram bin number) is constructed after L2-norm nor-
malization.

3. Optimization Strategy
Optimizing the proposed energy model (4) directly is

time-consuming when a large search space L should be
applied to cover large displacements. To reduce compu-
tational burden, we apply a decomposed scheme with a
coarse-to-fine scheme.

3.1. Decomposed Scheme
Based on the scheme introduced in [15], we generate a

new graph GD by making two layers of nodes Vx and Vy

corresponding to x and y displacements from the original
nodes V . This is only applicable when potentials for spatial
priors are summation of a potential for each dimensional
displacement. Using the upper bound approximation, we
decouple smoothness priors (2) and (3) as follows

θst(xs, xt) ≤ θxst(x
x
s , x

x
t ) + θyst(x

y
s , x

y
t ) , (6)

θstu(xs, xt, xu) ≤ θxstu(x
x
s , x

x
t , x

x
u) + θystu(x

y
s , x

y
t , x

y
u) (7)
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where
θist(x

i
s, x

i
t) = λst min(|di(xs)− di(xt)|, Tst) ,

θistu(x
i
s, x

i
t, x

i
u) = λstu min(|di(xs)− 2di(xt) + di(xu)|, Tstu)

for all i ∈ x, y. In the graph GD, factor sets include Fx
P ,

Fx
H and Fy

P , Fy
H for intra-layer interaction potentials and

Fxy
P for inter-layer interaction potentials defined as

θxyst (x
x
s , x

y
t ) = f(sx, ty, sx + dx(xs), ty + dy(xt)) . (8)

Then, the MRF energy on GD is defined as follows

E(x|θ) =
∑

(s,t)∈FD
P

θst(xs, xt) +
∑

(s,t,u)∈FD
H

θstu(xs, xt, xu)

(9)
where FD

P = Fx
P ∪ Fy

P ∪ Fxy
P and FD

H = Fx
H ∪ Fy

H.

3.2. Coarse­to­Fine Scheme

To cover large displacements efficiently, we compute
multi-level displacement in a coarse-to-fine manner [14].
For a pyramidal dense descriptor representation, we smooth
and downsample SIFT descriptors of finer level to generate
SIFT descriptors of the coarser level instead of extracting
SIFT descriptor on the image of lower resolution [9]. The
displacements are computed on each level with propagated
displacement offset which is scaled from the coarser levels.
To achieve a sub-pixel accuracy, we perform the sub-pixel
refinement on the finest level after final level computation.

3.3. Discrete Optimization Method

To optimize the proposed energy model (4) or (9), TRW
message passing [18, 4] is applied. The TRW message pass-
ing provides the lower bound guaranteed not to decrease. A
recent comparative study shows the TRW gives the state-of-
the-art performances among the various discrete optimiza-
tion methods [17]. As the TRW theory is built on the pair-
wise MRF, we need to convert factor graphs representations
to pairwise interactions to use TRW. The detailed conver-
sion procedure is referred to [6]. As the proposed energy
model uses higher-order smoothness priors, converting to
the hierarchical gradient node graph [7] is possible.

4. Experiments
In this section, we show registration results using multi-

modal Brain MRI Images and facial images with expres-
sion and light changes. We compare the results with a
feature-based method [8] using sparse SIFT features and
SIFT flow [9] using dense SIFT descriptors with a first-
order MRF energy model. In experiments, λst = 2,
Tst = 20, λstu = 0.4 and Tstu = 20 are used. For label
widths, we use di ∈ {−10, . . . , 10} for the coarsest level,
di ∈ {−(n + 1), . . . , (n + 1)} for nth level (n = 1 for
the finest level) and di ∈ {−2.0,−1.8, . . . , 1.8, 2.0} for the
sub-pixel refinement where i ∈ {x, y}. All parameters are
empirically chosen.

Table 1. Registration Errors for Brain MRI Images (RMSE)
T1 - T1 T1 - T2

Method σ = 6 σ = 9 σ = 6 σ = 9
Feature-Based [8] 3.45 6.90 38.67 58.42

SIFT Flow [9] 1.56 3.69 3.40 5.06
Proposed 1.36 3.44 3.23 4.89

4.1. Brain MRI Images

We generate synthetically deformed data sets (10 images
for each σ) given T1 and T2 weighted brain MRI images
(Fig.1(a) and (b)), respectively. The deformed image is
generated by TPS [2] warping with control points perturbed
with random variation [−σ, σ]. More detailed procedure for
generating synthetic images are described in [6]. The reg-
istration is performed between T1 and warped T1 images
(uni-modal) and T1 and warped T2 images (multi-modal),
respectively. As intensity characteristics between T1 and
T2 images are not consistent, registrations between T1 and
T2 are more challenging problem. In Table 1, it is shown
root mean square error (RMSE) between the ground truth
and the registration result. One can see the performances of
the proposed method are better than those of other methods.
The feature-based method for registering T1 and T2 images
do not perform well as they are not converged to solutions
due to small numbers of right SIFT matchings. In Fig. 1,
we show some registration results when σ = 9. In the fig-
ure, the proposed method produces smoother displacements
with higher accuracy than other methods.

4.2. Facial Images

We test registration methods on some facial images from
the AR face database [11]. In Fig. 2, we show registra-
tion results between neutral faces with bright light (a) and
a smiling face with normal light (b). This is a challenging
example as there are mixed variations of facial expression
and appearance. While the proposed method (e) produces
smoother displacements than that of SIFT flow [9] (d), the
feature-based method [8] (c) is failed to generate detailed
displacements. The image differences for before and after
registration using the proposed method showed in (f) and
(g), respectively. One can see smiling faces are overlapped
well with neutral faces after registrations.

5. Conclusion
In this paper, we proposed a nonrigid registration method

using the MRF model which consists of a higher-order
smoothness prior and a dense local descriptor based data
cost. Using the SIFT descriptor [10] for a data cost, we can
register largely deformed images with appearance variation
more effectively. Moreover, the higher-order prior enables
us to generate smoother displacement fields with better ac-
curacy. In experiments, we showed the proposed method
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(a) Source (b) Target (c) Ground Truth (d) Feature-Based [8] (e) SIFT Flow [9] (f) Proposed (g) Initial (h) Final (i) Color Codes

Figure 1. Some results for brain MRI images. In (a), original T1 weighted scan image is shown, and in (b), warped T1 (upper) and T2
(lower) weighted scan images are shown. In the upper row, we show registration results between T1 and warped T1 images, and in the
lower row, results between T1 and warped T2 are shown. In (i), color coded displacements [1] which encode their direction and magnitude
as a color. In (c)-(f), displacement vectors are represented using color codes in (i). The final difference (h) is a combined image of (a) (red)
and warped (b) using the proposed method (green).

(a) Source (b) Target (c) Feature-Based [8] (d) SIFT Flow [9] (e) Proposed (f) Initial (g) Final

Figure 2. Results for facial images. In (c)-(e), displacement vectors are represented using color codes in Fig.1(h). The final difference (g)
is a combined image of (a) (red channel) and warped (b) (green channel) using the proposed method.

outperformed a feature-based method [8] and SIFT flow [9]
using brain MRI images and facial images.
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