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Abstract

Recently, a family of global, non-submodular energy func-
tions has been proposed that is expressed as coupling edges
in a graph cut. This formulation provides a rich modelling
framework and also leads to efficient approximate inference
algorithms. So far, the results addressed binary random vari-
ables. Here, we extend these results to the multi-label case,
and combine edge coupling with move-making algorithms.

1. Introduction

Most energy functions and probabilistic models in com-
puter vision have relied on properties such as submodularity,
sparsity or low-order potentials to keep the energy mini-
mization or MAP (maximum a posteriori) inference problem
tractable. In particular, submodular pairwise potentials lead
to the successful graph cut methods [1, 9] that are efficient
and exact. Indeed, as a result, higher-order potentials are
often eventually expressed as pairwise submodular energy
functions with additional variables, and optimized using
graph cuts. Despite their flexibility, however, the expressive-
ness of such graph-representable energies is limited if one
restricts the number of additional nodes and edges. Thus,
recent research has aimed to identify practically manage-
able higher-order potentials [3, 7, 6, 10] or non-submodular
energies [8], and efficient optimization methods for those.

In [5], we define a family of non-submodular, global
energies that makes use of a different type of structure. It still
uses a graph structure, and exploits submodularity indirectly.
The crucial idea is that graph cut based energy functions
can be significantly enhanced if the cost of a cut is not the
sum of the edge weights, but a richer function that allows
interactions between edges. In short, edges in a “structure
graph” are coupled by a submodular function, and we call
the resulting problem minimum cooperative cut:

Definition 1 (Minimum Cooperative Cut). Given a graph
G = (V, E) and a non-decreasing submodular function f :
2E → R+ defined on subsets of edges E , find an (s, t)-cut
Γ ⊆ E having minimum cost f(Γ).

A set function f : 2E → R is submodular if it satisfies di-
minishing marginal costs: for anyA ⊆ B ⊆ E \{e}, it holds
that f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B). Marginal
costs are defined as ρe(A) = f(A ∪ {e}) − f(A). The
standard cost function, a sum of edge weights, has constant
marginal costs and is thus a modular function. The function
is nondecreasing if A ⊆ B implies that f(A) ≤ f(B).

We build on the well-known equivalence between binary
labelings and graph cuts that we briefly sketch here. We aim
to infer the value of n random variables that take values in a
discrete label space L. In particular, we seek the MAP label-
ing for the posterior distribution p(x|z) ∝ exp(−E(x; z)),
given an observation z. For binary labels and an energy
E restricted to pairwise submodular potentials, E(x) =∑n
i=1 ψi(xi) +

∑
(i,j)∈N ψij(xi, xj), energy minimization

is equivalent to minimum cut. Construct a weighted graph
G = (V, E) that has a node vi for each xi, and two extra
terminal nodes s and t, connected to each vi by edges in
Et ⊂ E . The remaining edges, En, connect the vi. A mini-
mal1 (s, t)-cut Γ ⊆ E includes either edge (vi, t), assigning
vi to s, or edge (s, vi), and thus induces a binary label-
ing. Equivalently, each labeling x induces a cut Γ(x). Let
Xs(x) = {vi ∈ V|xi = 1} ∪ {s}. Then the cut is Γ(x) =
Γ(Xs(x)) = {e = (u, v) ∈ E|u ∈ Xs(x), v /∈ Xs(x)}.
The graph G represents energy E if

E(x) + const

=
∑

e∈Γ(x)∩Et

w(e) +
∑

e∈Γ(x)∩En

w(e) = w(Γ(x)). (1)

We keep the weights on the terminal edges Et that express
the unary potentials ψi and replace the second sum by a
cooperative cut (see also [5]):

Ef (x) =
∑

e∈Γ(x)∩Et

w(e) + f(Γ(x) ∩ En). (2)

In the sequel, we will implicitly assume that f only operates
on En, and not explicitly write the restriction. The energy
Ef is no longer submodular, and it is often global. In fact,

1A cut C is minimal if no proper subset B ⊂ C is a cut. A minimum
cut is usually also a minimal cut.
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minimum cooperative cut is NP-hard [4], but the graph and
edge submodularity provide enough structure to allow for
approximation algorithms [4, 5]. This has been used, e.g.,
for image segmentation with global boundary features. We
will now extend this binary energy to multiple labels.

2. Multi-label cooperative cut models
In the binary case, the cost of the cut is computed on the

directed edges from Xs (label 1) to the nodes Xt connected
to t (label 0). In the case of more than two labels, there
are several possible generalizations. We mention two, M1
and M2. Given x, denote by Xk(x) = {vi ∈ V|xi = k}
the set of nodes with label k, for each k ∈ L. We assume
that we are given a structure graph G = (V, E) whose nodes
correspond to the variables xi. In the sequel, the functions f
and {fk}k are all submodular. We also assume all ψi to be
nonnegative (otherwise they can be shifted by a constant).

M1 We treat all labels alike. Here, G is an undirected graph,
and we view a labeling as an undirected |L|-cut Γ(x) =
Γ(X1, . . . , X|L|) = {e = (vi, vj)|xi 6= xj}. Then the
energy is Ef (x) =

∑
i ψi(xi) + f(Γ(x)).

M2 We separate labels, i.e., the boundary for each label
is independent of the other labels’ boundaries. Let
the boundary of label k ∈ L in a directed graph G be
Γk(x) = Γ(Xk) = {e = (vi, vj)|xi = k, xj 6= k},
and define

Ef (x) =
∑
i

ψi(xi) +
∑
k∈L

fk(Γk(x)). (3)

The functions fk can be different from each other or
identical, depending on the application.

Here, we focus on M2, but analogous results hold for M1.
Note that M2 implicitly favors fewer labels: the joint cost
of edges coupled by one fk is lower than the sum of their
individual costs, and coupling is only possible for edges that
are in the boundary of the same label.

We can take two routes to optimize these energies. On the
one hand, we can derive an adaptive approximation as in [5],
which results in an approximate pairwise energy function
Eh and leads to an iterative algorithm. We show this approx-
imation in Section 3. Any algorithm for multi-label pairwise
MRFs applies to minimize Eh. Alternatively, we can build
on the cut formulation and move-making algorithms [2]. In
Section 4 we show that the best expansion move can be
found as a minimum cooperative cut. That means any ap-
proximation algorithm for cooperative cut finds a move with
an approximation guarantee. In Section 5, we show one
bound resulting from the expansion construction and the
approximation in Section 3. This workshop paper can only
summarize results; details and proofs are deferred to a full
version of the paper.

3. Adaptive upper bounds
From the submodular cost functions fk, we can derive

upper bounds for an iterative minimization just as described
in [5]. We use the same upper bounds:

Lemma 1. (Lemma 1 in [5]) For a submodular f : 2E →
R+ and an arbitrary C ⊆ E , define hf,C : 2E → R+ as

hf,C(A) , f(C)+
∑

e∈A\C

ρe(C)−
∑

e∈C\A

ρe(E \{e}). (4)

The function hf,C is a modular upper bound on f .

Importantly, if f is replaced by h, the min-cut problem
becomes a minimum cut with a sum-of-weights cost, and the
corresponding energy Eh a pairwise potential. For M2, we
derive an upper bound hk for each fk separately, and sum
up the appropriate edge weights afterwards. Given an initial
labeling x′, let Γ′k = Γ(Xk(x′)) be the boundary for label
k ∈ L. We use such boundaries as reference sets, and use
marginal costs ρke(A) = fk(A ∪ {e}) − fk(A). For a new
Γk = Γ(Xk(x)) (resulting from a changed labeling x), we
get the following bound:

fk(Γk) ≤ fk(Γ′k) +
∑

e∈Γk\Γ′
k

ρke(Γ′k)−
∑

e∈Γ′
k\Γk

ρke(E \ {e})

= fk(Γ′k)︸ ︷︷ ︸
const.

+
∑

e∈Γk\Γ′
k

ρke(Γ′k)︸ ︷︷ ︸
ck(e)

−
∑
e∈Γ′

k

ρke(E \ {e})

︸ ︷︷ ︸
const.

+
∑

e∈Γ′
k∩Γk

ρke(E \ {e})︸ ︷︷ ︸
ck(e)

= hk(Γk).

The bound essentially consists of edge weights ck(e) =
ρke(E \ {e}) for e ∈ Γ′k, and ck(e) = ρke(Γ′k) for e /∈ Γ′k.
The complete approximation of Ef is

Eh(x) =
∑

i
ψi(xi) +

∑
k
hk(Γk(x)). (5)

The energy Eh consists of constants, unary terms and asym-
metric pairwise potentials of the form

ψij(xi, xj) =

{
0 if xi = xj ,

ck((vi, vj)) + c`((vj , vi)) if xi = k, xj = `

For optimization, we point out that ck(e) ≥ 0 for any e ∈ En
when the fk in question are monotone non-decreasing.

4. Cooperative α-expansions
Before we use the upper bound, we consider expansion

moves for the non-pairwise cooperative energies Ef . Move-
making algorithms [2] have become popular tools to extend
graph cut-based optimization from binary to multiple labels.



In the sequel, we will focus on α-expansions, but αβ-swap
moves are equally possible. Given a current labeling x′, an
expansion move with respect to a label α allows to switch
any label x′i 6= α to α, but any variable x′j = α remains
fixed. That means, if x is the labeling after the move, then
Xα(x′) ⊆ Xα(x). For certain energies, the expansion move
that leads to the minimum possible energy (within the range
of allowed moves) can be determined exactly by a graph
cut [2]. Usual conditions are that the potentials are at most
pairwise (or rephrased as pairwise), and that they are metric
[2]. The energies Ef obviously do not satisfy those con-
straints, so we construct an auxiliary graph different from
[2], and replace minimum cuts by minimum cooperative
cuts. Since sums of weights are submodular as well, the
construction also holds for asymmetric pairwise potentials if
ψij(xi, xj) ≥ 0 and ψij(xi, xj) = 0 for xi = xj .

We next show that the best expansion move corresponds
to a minimum cooperative cut.

Lemma 2. Computing the best α-expansion move with re-
spect to the energy Ef (in M2) and any given labeling x′ is
a minimum cooperative cut.

To constructively prove Lemma 2, we construct a directed
graph G̃α = (Ṽ, Ẽ) and show two claims. The Lemma then
follows as a corollary.

Claim 1. A minimal cut in G̃α corresponds to a labeling
that is within one α-expansion of the current labeling x′.

Claim 2. The cost of any such cut is equal to the energy of
the associated labeling.

The nodes ṽi ∈ Ṽ in G̃α are in one-to-one correspondence
with nodes vi ∈ V in the given G, and G̃α has two terminal
nodes s̃, t̃ that are connected to each ṽi. Formally, a property
similar to Properties 4.2, 5.2 in [2] holds for G̃α.

Property 1. For a minimal cut Γ̃ in G̃α, the following holds:

1. if (s, vi), (s, vj) ∈ Γ̃, then (vi, vj), (vj , vi) /∈ Γ̃;

2. if (vi, t), (vj , t) ∈ Γ̃, then (vi, vj), (vj , vi) /∈ Γ̃;

3. if (s, vi), (vj , t) ∈ Γ̃, then Ẽ ∩ {(vj , vi)} ⊆ Γ̃,
(vi, vj) /∈ Γ̃;

4. for each vi, either (s, vi) ∈ Γ̃ or (vi, t) ∈ Γ̃.

Only one terminal edge is cut because the cut Γ̃ is min-
imal. If the marginal costs remain strictly positive, then
every minimum cut is also minimal. Otherwise, we add tiny
additional weights to all edges.

The last point of Property 1 justifies the following labeling
corresponding to a given cut Γ̃:

xi =

{
α if (ṽi, t) ∈ Γ̃
x′i if (s, ṽi) ∈ Γ̃.

(6)

ψj(x
′
j)

ψj(α)ψi(α)

ψi(x
′
i)

s

t

vi vj
e

(a) G

eα

ek

s̃

t̃

ṽi ṽj

(b) x′i = x′j = k

s̃

t̃

ṽi ṽj

ek

eα

(c) x′i = k, x′j = `

Figure 1. (a) Edge e in G; (b),(c) corresponding edges in eGα for
k, ` 6= α. Colors indicate Sα and Sk.

We construct G̃α to possess terminal edges that carry the ψi:
(s̃, ṽi) with weight ψi(x′i) and (ṽi, t) with weight ψi(xi =
α). If x′i = α, then edge (s̃, ṽi) has weight ∞, so that
vi ∈ Xs̃ (xi = α) is ensured. Then Labeling (6) is obviously
within one α-expansion of x′; this proves Claim 1.

For Claim 2, we need to detail the structure of G̃α. The
construction of the remaining edges Ẽc in G̃α is somewhat
complicated because a directed cut only includes the edges
between the s̃-part (label α) and t̃-part (label k 6= α), but we
must keep track of the cost of all boundaries, not only Γα(x).
Thus, the cost of these other edges must be transferred ap-
propriately. This is achieved by mapping edges in Ẽc to En
in G as π(ẽ) ∈ En (as opposed to distributing weights as in
the sum-of-weights case). In addition, the edges Ẽc make
G̃α a multi-graph, and are partitioned into (S1, . . . , S|L|),
Sk ⊆ Ẽc. The cost of a set of edges Γ̃ ⊆ Ẽc is defined by
a submodular function f̃ that uses the fk on the mappings
π(Γ̃) of edges in Γ̃. The Sk determine which fk is used.

f̃(Γ̃) =
∑
k∈L

fk(π(Γ̃ ∩ Sk)). (7)

For any e = (vi, vj) ∈ En in G, there are the following
cases to construct edges in G̃α. The resulting edges form Ẽc,
and we indicate ẽ ∈ Sk by a superscript k on π(ẽ).

x′i = α, x′j = k : e can at most be in Γα(x); introduce an
edge ẽ = (ṽi, ṽj) ∈ Sα, with π(ẽ) = eα;

x′i = k, x′j = α : this direction is never cut in G̃α, so intro-
duce ẽ = (ṽj , ṽi) ∈ Sk, with π(ẽ) = ek;

x′i = k, x′j = ` : e is in Γk(x) if xi = x′i = k, and other-
wise possibly in Γα(x); introduce ẽ = (ṽi, ṽj) ∈ Sα
with π(ẽ) = eα, and an edge ẽ′ = (s̃, ṽi) ∈ Sk with
π(ẽ′) = ek;

x′i = k, x′j = k : e is currently in no boundary; introduce an
edge ẽ = (ṽi, ṽj) ∈ Sα, with π(ẽ) = eα, and an edge
ẽ′ = (ṽj , ṽi) ∈ Sk, with π(ẽ′) = ek;

x′i = α, x′j = α : labels are fixed, so we introduce no edges.

Figure 1 shows examples, and Table 1 lists all edges
between two given nodes in the resulting G̃α.



x′i x′j π(ẽ) of (ṽi, ṽj) in eGα wh
α k (vi, vj)

α for ẽ ∈ Sα, ρα(vi,vj)(E \ (vi, vj))

(vj , vi)
k for ẽ ∈ Sk +ρk(vj ,vi)

(E \ (vj , vi))

k ` (vi, vj)
α for ẽ ∈ Sα ρα(vi,vj)(Γ

′
α)

k k (vi, vj)
α for ẽ ∈ Sα, ρα(vi,vj)(Γ

′
α)

(vj , vi)
k for ẽ ∈ Sk +ρk(vj ,vi)

(Γ′k)

terminal edges in eGα
edges x′i π(ẽ) wh
(s̃, ṽi) α ∅ ∞
(s̃, ṽi) k Ti ψi(k) +

P
e∈Ni,k

ρke(E \ e)
(ṽi, t̃) x′i ∈ L ∅ ψi(α)

Table 1. Mappings π(ẽ) of edges ẽ in eGα (if x′j = α, then there are
no edges (ṽi, ṽj)). If (vi, vj) or (vi, vj) /∈ E , then replace it by ∅
in the table. The weights correspond to the adaptive upper bounds
with respect to x′ after collapsing parallel edges and summing their
approximate costs ck. Here, Ni,k = {e = (vi, vj) ∈ E|x′i =
k, x′j 6= k, α} and Ti =

S
e∈Ni,k

{ ek }.

Given this G̃α, we now show thatEf (x) = f̃(Γ̃(x)∩Ẽc)+∑
i ψi(xi). To do so, we prove that π(Γ̃(x) ∩ Sk) = Γk(x)

for all labels k ∈ L.
Let Γ̃ ⊆ Ẽ by a minimal (s, t)-cut in G̃α, and x the

corresponding labeling (6), and Γk(x) the boundary of label
k in G. Then Table 1 implies for k 6= α that

π(Γ̃ ∩ Sk)

=
( ⋃

(ṽi,ṽj)∈Sk

xi=α,xj 6=α

π(ṽi, ṽj)
)
∪
( ⋃

(s̃,ṽi)∈eΓ∩Sk

π(s̃, ṽi)
)

=
( ⋃

(vj ,vi)∈E:

x′
i=α,

xj=x′
j=k

(vj , vi)
)
∪
( ⋃

(vi,vj)∈E:
xi=α,

x′
i=xj=k

(vj , vi)
)

∪
( ⋃
xi=k

⋃
j:(vi,vj)∈E:
xj 6=k,α

(vi, vj)
)

=
(
Γk ∩ (Xk ×Xα)

)
∪
(

Γk ∩
⋃
6̀=k,α

(Xk ×X`)
)

= Γk(x).

Similarly, one can show that π(Γ̃ ∩ Sα) = Γα(x). In
consequence, f̃(Γ̃(x)) =

∑
k fk(Γk(x)). The expression

of the unary terms is analogous in G and G̃α, so indeed
Ef (x) = f̃(Γ̃(x) ∩ Ẽc) +

∑
i ψi(xi). This proves Claim 2.

5. Approximation factor
One simple way to solve the cut for the expansion moves

above is to approximate f̃ as in Section 3 — Table 1 shows
the resulting edge weights, if all parallel edges are collapsed
into one edge, and their weights ck summed up to wh. There
are many ways to then interleave expansion moves and adap-
tations of the upper bound. Here, we state an approximation

factor for computing an upper bound hf̃ ,C with respect to
one current set C = Γ′, and then running α-expansions until
convergence (alternating α as in [2]), while keeping the cost
hf̃ ,C fixed.

Lemma 3. Let x̂ be a local minimum reached via a sequence
of α-expansions (until convergence) with cost hf̃ ,C , and let
xC = argminx∈{0,1}n Ehf̃,C

(Γ(x)). Then

Ehf,C
(Γ(x̂)) ≤ (1 + γ)Ehf,C

(Γ(xC)),

where γ = maxẽ∈Ẽ,k,`∈L hk(e)/h`(e) ≤
maxe,k,` ρke(C)/ρ`e(E \{e}) ≤ maxe,k,` fk(e)/ρ`e(E \{e}).

The proof of the Lemma is technical and relies on the
same strategy as the proof of Theorem 6.1 in [2].

Next we derive a bound on the solution of an iterative
algorithm that starts with the α-expansion for hf̃ ,∅ (until
convergence), and then continues with α-expansions for
hf̃ ,C , where C is the best solution from the previous series
of expansions. Let x̂ be the best solution achieved this way,
and let x∗ be the global optimum for Ef .

Lemma 4. Let β be such that hf̃ ,∅(Γ(x∗)) ≤ βf(Γ(x∗)).
Then

Ef (x̂) ≤ β(1 + γ)Ef (x∗),

where γ is as in Lemma 3.

The factor β is discussed in [5]. The proof relies on
Lemma 3, the properties of h, and the optimality of x̂.
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