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I recently submitted a paper to VLDB, and when I got the reviews back, I noticed that 

the review form now has a question referees are required to answer, about whether the 

experiments were well carried out, with choices like “believable” and “not believable.”  

The reviewers had a bit of trouble with that question, because my paper had no 

experiments; it was a paper about computational complexity of MapReduce algorithms.  

Two of the reviewers said the nonexistent experiments were not believable, which is 

wrong – you have to see something to disbelieve it. 

It appears the database community has now reached the point where experiments are 

no longer an option.   There was a time when experiments were not normal in a 

computer-science research paper.  There was even a term in the database community -

- a “Wisconsin-style paper” -- for a paper in which a proposed algorithm was 

implemented and experiments regarding its performance were described. Kudos to the 

faculty at Wisconsin for seeing the value of using experimentation as a way to 

demonstrate the worth of certain ideas.  However, now it appears the pendulum has 

swung way too far, to the point where experiments are considered the only way to 

validate ideas.  It is time to restore the balance, where experiments are used when 

appropriate, and ideas that require analysis rather than experiments are handled 

appropriately, rather than “justified” by inappropriate and meaningless experiments. 

Good ideas should stand on their own.  Look at the two database ideas that have won 

the Turing award: the relational model and 2-phase locking (I know Jim Gray won for 

many contributions, but this one is, I think, the centerpiece).  Neither paper was about 

experiments.  Should we have rejected a paper that said “let’s organize data into 

relations” because there was no experiment to prove that its queries were executable 

more efficiently?  Would we want to reject the 2PL paper because it did not measure 

experimentally the space required by locking tables? 

Please don’t mistake this essay as saying “no paper should have experiments.”   The 

need for experiments in many situations is clear.  Rather, let’s consider what harm the 

overemphasis on experiments brings.  First, experiments are conducted on particular 

data or under particular assumptions.  They rarely tell you what happens in other 

situations.  In contrast, when you do a formal analysis of the resources required by an 

algorithm, that analysis applies generally.  In a well done analysis, you are forced to 

introduce the relevant parameters (amount of main memory, maximum number of 



occurrences of a single value of a single attribute, e.g.) that characterize the true 

performance of the algorithm. 

For example, long ago we discovered algorithms to sort in O(n log n) time.  These 

algorithms were analyzed formally, using a realistic model of the main memory of a 

computer.  We didn’t have to run the algorithms and plot their running time to know 

they were better than the obvious O(n2) algorithms.  There was a place for 

experimentation, and some investigations looked at matters such as how many 

elements must there be before Quicksort really beats Bubblesort.  And of course when 

you ran out of main memory, the model no longer applied and you had an unpredicted 

increase in running time as you suddenly needed to move data to and from disk.  Yet 

the basic O(n log n) idea still applies even when you use secondary storage. 

But there is a more damaging effect of the seriousness with which we take 

experimental results.  It encourages the writing of papers that really shouldn’t be 

written, because they are so incremental and specialized that their use in practice is 

unlikely.  There are many areas of database research where the nature of the data can 

vary greatly, and performance of different algorithms will vary with the data. Think of 

multidimensional indexes, or clustering, or even join algorithms.  In research areas of 

this kind, it is very easy to find a special form of data and invent an algorithm that 

works well in this narrow special case.  You then run your experiments on data for 

which your algorithm is best suited and compare it with others, which – surprise 

surprise – do not work as well.  But were you to run your algorithm on the common 

cases, or random cases, you would do less well or not well at all.  It doesn’t matter; you 

can still publish yet another paper about yet another algorithm for doing this or that. 

Suppose we expected, as an alternative or supplement to experiments, a formal 

analysis of the performance of the algorithm(s) described in a research paper.  It would 

then be much harder to hide the fact that your algorithm works well only in some 

narrow special case.  You would need to give expressions for the performance of the 

algorithm in all cases, and this expression would be compared with the analogous 

expressions for other algorithms.  Because these expressions can’t represent the details 

of the code that would implement the algorithms involved, you get only a big-oh 

estimate of the running times.  But Big-oh analysis becomes progressively more 

relevant as the data size gets larger, and database research always focuses on the 

largest data anyway.  Returning to the sorting example, if you know one algorithm is 

O(n log n) and another is O(n2), you might not know which is really better for small n, 

but you know for certain that the first is better for matters a database researcher might 

be interested in. 



Another example of the way analysis of algorithms has been downgraded as an 

important part of computer science is a blog pointed out on Google+ by Moshe Vardi: 

http://feedproxy.google.com/~r/daniel-lemire/atom/~3/4bht7t0oFZc/   In this article, 

the author argues that one should never use a model that is not real running time on a 

real computer.  For example, this author would not accept the O(n log n) lower bound 

on sorting, because it is based on counting comparisons rather than machine 

instructions executed.  If you remember the details of sorting complexity, you know 

that the comparison model does not apply in some circumstances. 

For example, if you are sorting n integers and they are in the range 1 to n2, then you 

can sort in O(n) time.  Yet the sorting-by-comparisons model is still highly instructive 

and applies whenever you want a sorting algorithm that works on objects without some 

special structure like integers.  For another example, I’ve been working a lot recently on 

communication complexity for MapReduce algorithms.  It is generally accepted that for 

many problems communication cost is the bottleneck when MapReduce is used, 

although there are exceptions.  So I think we get some instructive results and 

algorithm-design principles out of this analysis, even if it is not conclusive for every 

possible MapReduce algorithm. 

It is time to recenter the pendulum.  So I propose that, as reviewers of submissions to 

conferences or journals, we should start by asking whether the value of the proposed 

ideas have been analyzed for the general case.  We should not accept experiments as a 

substitute for a more careful and general analysis, unless there really is no way to 

parameterize the input space suitably.  And we should not accept experiments on 

contrived, specialized data under almost any circumstances.  As authors, we should 

stop thinking of experiments as a substitute for analysis and deep understanding of why 

our algorithms work better than others that have been proposed.  A little self-

censorship might be a benefit to the community as well.  Not every algorithm that 

works in some narrow window has to be published.  And of course VLDB should make 

the question about experiments optional and include an equivalent question about 

whether the analysis of the algorithms is realistic. 
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