Mining
of
Massive
Datasets

Anand Rajaraman
Kosmix, Inc.

Jeffrey D. Ullman
Stanford Univ.

Copyright (© 2010, 2011 Anand Rajaraman and Jeffrey D. Ullman

ii

Preface

This book evolved from material developed over several years by Anand Raja-
raman and Jeff Ullman for a one-quarter course at Stanford. The course
CS345A, titled “Web Mining,” was designed as an advanced graduate course,
although it has become accessible and interesting to advanced undergraduates.

What the Book Is About

At the highest level of description, this book is about data mining. However,
it focuses on data mining of very large amounts of data, that is, data so large
it does not fit in main memory. Because of the emphasis on size, many of our
examples are about the Web or data derived from the Web. Further, the book
takes an algorithmic point of view: data mining is about applying algorithms
to data, rather than using data to “train” a machine-learning engine of some
sort. The principal topics covered are:

1. Distributed file systems and map-reduce as a tool for creating parallel
algorithms that succeed on very large amounts of data.

2. Similarity search, including the key techniques of minhashing and locality-
sensitive hashing.

3. Data-stream processing and specialized algorithms for dealing with data
that arrives so fast it must be processed immediately or lost.

4. The technology of search engines, including Google’s PageRank, link-spam
detection, and the hubs-and-authorities approach.

5. Frequent-itemset mining, including association rules, market-baskets, the
A-Priori Algorithm and its improvements.

6. Algorithms for clustering very large, high-dimensional datasets.

7. Two key problems for Web applications: managing advertising and rec-
ommendation systems.

iii

iv PREFACE

Prerequisites

CS345A, although its number indicates an advanced graduate course, has been
found accessible by advanced undergraduates and beginning masters students.
In the future, it is likely that the course will be given a mezzanine-level number.
The prerequisites for CS345A are:

1. The first course in database systems, covering application programming
in SQL and other database-related languages such as XQuery.

2. A sophomore-level course in data structures, algorithms, and discrete
math.

3. A sophomore-level course in software systems, software engineering, and
programming languages.

Exercises

The book contains extensive exercises, with some for almost every section. We
indicate harder exercises or parts of exercises with an exclamation point. The
hardest exercises have a double exclamation point.

Support on the Web

You can find materials from past offerings of CS345A at:
http://infolab.stanford.edu/ ullman/mining/mining.html

There, you will find slides, homework assignments, project requirements, and
in some cases, exams.

Acknowledgements

Cover art is by Scott Ullman. We would like to thank Foto Afrati and Arun
Marathe for critical readings of the draft of this manuscript. Errors were also re-
ported by Apoorv Agarwal, Susan Biancani, Leland Chen, Shrey Gupta, Xie Ke,
Haewoon Kwak, Ellis Lau, Ethan Lozano, Justin Meyer, Brad Penoff, Philips
Kokoh Prasetyo, Angad Singh, Sandeep Sripada, Dennis Sidharta, Mark Storus,
Roshan Sumbaly, Tim Triche Jr., and Robert West. The remaining errors are
ours, of course.

A.R.

J.D. U.

Palo Alto, CA
June, 2011

Contents

1 Data Mining 1
1.1 What is Data Mining? 1
1.1.1 Statistical Modeling 1
1.1.2 Machine Learning 2
1.1.3 Computational Approaches to Modeling 2
1.1.4 Summarization L. 3

1.1.5 Feature Extraction 4

1.2 Statistical Limits on Data Mining 4
1.2.1 Total Information Awareness 5

1.2.2 Bonferroni’s Principle 5
1.2.3 An Example of Bonferroni’s Principle 6
1.2.4 Exercises for Section 1.2 L. 7

1.3 Things Useful to Know 7
1.3.1 Importance of Words in Documents 7

1.3.2 Hash Functions 9
133 Indexes 10
1.3.4 Secondary Storageo 11

1.3.5 The Base of Natural Logarithms 12
1.3.6 PowerLaws 13
1.3.7 Exercises for Section 1.3 15

1.4 Outline of the Book 15
1.5 Summary of Chapter 1 17
1.6 References for Chapter 1. 17
2 Large-Scale File Systems and Map-Reduce 19
2.1 Distributed File Systems oL 20
2.1.1 Physical Organization of Compute Nodes 20
2.1.2 Large-Scale File-System Organization 21

2.2 Map-Reduce 22
221 TheMap Tasks 23
2.2.2 Grouping and Aggregation 24
2.2.3 The Reduce Tasks 24
224 Combiners.o 25

CONTENTS

2.2.5 Details of Map-Reduce Execution
2.2.6 Coping With Node Failures
2.3 Algorithms Using Map-Reduce
2.3.1 Matrix-Vector Multiplication by Map-Reduce
2.3.2 If the Vector v Cannot Fit in Main Memory
2.3.3 Relational-Algebra Operations
2.3.4 Computing Selections by Map-Reduce
2.3.5 Computing Projections by Map-Reduce
2.3.6 Union, Intersection, and Difference by Map-Reduce
2.3.7 Computing Natural Join by Map-Reduce
2.3.8 Generalizing the Join Algorithm
2.3.9 Grouping and Aggregation by Map-Reduce
2.3.10 Matrix Multiplication,
2.3.11 Matrix Multiplication with One Map-Reduce Step
2.3.12 Exercises for Section 2.3
2.4 Extensions to Map-Reduce
24.1 Workflow Systems 0oL
2.4.2 Recursive Extensions to Map-Reduce
24.3 Pregel
2.4.4 Exercises for Section 2.4
2.5 Efficiency of Cluster-Computing Algorithms
2.5.1 The Communication-Cost Model for Cluster
Computing
2.5.2 Elapsed Communication Cost
2.5.3 Multiway Joins oo
2.5.4 Exercises for Section 2.5o
2.6 Summary of Chapter 2
2.7 References for Chapter 2.,

Finding Similar Items

3.1 Applications of Near-Neighbor Search
3.1.1 Jaccard Similarity of Sets 0.
3.1.2 Similarity of Documents
3.1.3 Collaborative Filtering as a Similar-Sets Problem
3.1.4 Exercises for Section 3.1

3.2 Shingling of Documents
3.2.1 k-Shingles Lo
3.2.2 Choosing the Shingle Size
3.2.3 Hashing Shingles L.
3.2.4 Shingles Built from Words
3.2.5 Exercises for Section 3.2 L.

3.3 Similarity-Preserving Summaries of Sets
3.3.1 Matrix Representation of Sets
3.3.2 Minhashing oo o
3.3.3 Minhashing and Jaccard Similarity

CONTENTS vii

3.4

3.5

3.6

3.7

3.8

3.9

3.3.4 Minhash Signatures 65
3.3.5 Computing Minhash Signatures 65
3.3.6 Exercises for Section 3.3 L. 67
Locality-Sensitive Hashing for Documents 69
3.4.1 LSH for Minhash Signatures 69
3.4.2 Analysis of the Banding Technique 71
3.4.3 Combining the Techniques 72
3.4.4 Exercises for Section 3.4 73
Distance Measures 0. 74
3.5.1 Definition of a Distance Measure 74
3.5.2 Euclidean Distances 74
3.5.3 Jaccard Distance 75
3.5.4 Cosine Distance 76
3.5.5 Edit Distance L oL 77
3.5.6 Hamming Distance 78
3.5.7 Exercises for Section 3.5, 79
The Theory of Locality-Sensitive Functions 80
3.6.1 Locality-Sensitive Functions 81
3.6.2 Locality-Sensitive Families for Jaccard Distance 82
3.6.3 Amplifying a Locality-Sensitive Family 83
3.6.4 Exercises for Section 3.6 85
LSH Families for Other Distance Measures. 86
3.7.1 LSH Families for Hamming Distance 86
3.7.2 Random Hyperplanes and the Cosine Distance 86
3.73 Sketches 88
3.7.4 LSH Families for Euclidean Distance 89
3.7.5 More LSH Families for Fuclidean Spaces 90
3.7.6 Exercises for Section 3.7 90
Applications of Locality-Sensitive Hashing 91
3.8.1 Entity Resolution 92
3.8.2 An Entity-Resolution Example 92
3.8.3 Validating Record Matches 93
3.8.4 Matching Fingerprints 94
3.8.5 A LSH Family for Fingerprint Matching 95
3.8.6 Similar News Articles 97
3.8.7 Exercises for Section 3.8 L. 98
Methods for High Degrees of Similarity 99
3.9.1 Finding Identical Items 99
3.9.2 Representing Sets as Strings 100
3.9.3 Length-Based Filtering 100
394 Prefix Indexing oL 101
3.9.5 Using Position Information 102
3.9.6 Using Position and Length in Indexes 104
3.9.7 Exercises for Section 3.9 L. 106

3.10 Summary of Chapter 3 107

viii CONTENTS
3.11 References for Chapter 3 110
4 Mining Data Streams 113
4.1 The Stream Data Model 113
4.1.1 A Data-Stream-Management System 114
4.1.2 Examples of Stream Sources. 115
4.1.3 Stream Querieso 116
4.1.4 Issues in Stream Processing 117
4.2 Sampling Data in a Stream 118
4.2.1 A Motivating Example 0oL 118
4.2.2 Obtaining a Representative Sample 119
4.2.3 The General Sampling Problem 119
4.2.4 Varying the Sample Size 120
4.2.5 Exercises for Section 4.2 oL 120
4.3 Filtering Streams L 121
4.3.1 A Motivating Example L. 121
4.3.2 The Bloom Filter 122
4.3.3 Analysis of Bloom Filtering 122
4.3.4 Exercises for Section 4.3 oL 123
4.4 Counting Distinct Elements in a Stream 124
4.4.1 The Count-Distinct Problem 124
4.4.2 The Flajolet-Martin Algorithm 125
4.4.3 Combining Estimates 126
4.4.4 Space Requirements 126
4.4.5 Exercises for Section 4.4 127
4.5 Estimating Moments oL 127
4.5.1 Definition of Moments 127
4.5.2 The Alon-Matias-Szegedy Algorithm for Second
Moments 128
4.5.3 Why the Alon-Matias-Szegedy Algorithm Works 129
4.5.4 Higher-Order Moments 130
4.5.5 Dealing With Infinite Streams 130
4.5.6 Exercises for Section 4.5 oL 131
4.6 Counting Ones in a Window 132
4.6.1 The Cost of Exact Counts 133
4.6.2 The Datar-Gionis-Indyk-Motwani Algorithm 133
4.6.3 Storage Requirements for the DGIM Algorithm 135
4.6.4 Query Answering in the DGIM Algorithm 135
4.6.5 Maintaining the DGIM Conditions 136
4.6.6 Reducing the Error. 137
4.6.7 Extensions to the Counting of Ones 138
4.6.8 Exercises for Section 4.6 L. 139
4.7 Decaying Windows Lo 139
4.7.1 The Problem of Most-Common Elements 139

4.7.2 Definition of the Decaying Window 140

CONTENTS

4.7.3 Finding the Most Popular Elements
4.8 Summary of Chapter 4 oL
4.9 References for Chapter 4

5 Link Analysis
5.1 PageRank
5.1.1 Early Search Engines and Term Spam
5.1.2 Definition of PageRank
5.1.3 Structure of the Web
5.1.4 Avoiding Dead Ends
5.1.5 Spider Traps and Taxation
5.1.6 Using PageRank in a Search Engine
5.1.7 Exercises for Section 5.1
5.2 Efficient Computation of PageRank
5.2.1 Representing Transition Matrices
5.2.2 PageRank Iteration Using Map-Reduce
5.2.3 Use of Combiners to Consolidate the Result Vector
5.2.4 Representing Blocks of the Transition Matrix
5.2.5 Other Efficient Approaches to PageRank Iteration
5.2.6 Exercises for Section 5.2
5.3 Topic-Sensitive PageRank o0
5.3.1 Motivation for Topic-Sensitive Page Rank
5.3.2 Biased Random Walks
5.3.3 Using Topic-Sensitive PageRank
5.3.4 Inferring Topics from Words
5.3.5 Exercises for Section 5.3 oL
54 Link Spam
5.4.1 Architecture of a Spam Farm
5.4.2 Analysis of a Spam Farm
5.4.3 Combating Link Spam
544 TrustRank oo oo
54.5 Spam Masso
5.4.6 Exercises for Section 5.4
5.5 Hubs and Authorities
5.5.1 The Intuition Behind HITS
5.5.2 Formalizing Hubbiness and Authority
5.5.3 Exercises for Section 5.5o
5.6 Summary of Chapter 5
5.7 References for Chapter 5.

6 Frequent Itemsets
6.1 The Market-Basket Model
6.1.1 Definition of Frequent Itemsets
6.1.2 Applications of Frequent Itemsets
6.1.3 Association Rules.

ix

CONTENTS

6.1.4 Finding Association Rules with High Confidence 189
6.1.5 Exercises for Section 6.1 189
6.2 Market Baskets and the A-Priori Algorithm 190
6.2.1 Representation of Market-Basket Data 191
6.2.2 Use of Main Memory for Itemset Counting 192
6.2.3 Monotonicity of Itemsets 194
6.2.4 Tyranny of Counting Pairs 194
6.2.5 The A-Priori Algorithm 195
6.2.6 A-Priori for All Frequent Itemsets 197
6.2.7 Exercises for Section 6.2 L. 198
6.3 Handling Larger Datasets in Main Memory 200
6.3.1 The Algorithm of Park, Chen, and Yu 200
6.3.2 The Multistage Algorithm 202
6.3.3 The Multihash Algorithm 204
6.3.4 Exercises for Section 6.3 L. 206
6.4 Limited-Pass Algorithms 208
6.4.1 The Simple, Randomized Algorithm 208
6.4.2 Avoiding Errors in Sampling Algorithms 209
6.4.3 The Algorithm of Savasere, Omiecinski, and
Navathe 210
6.4.4 The SON Algorithm and Map-Reduce 210
6.4.5 Toivonen’s Algorithm 211
6.4.6 Why Toivonen’s Algorithm Works 213
6.4.7 Exercises for Section 6.4, 213
6.5 Counting Frequent Items in a Stream 214
6.5.1 Sampling Methods for Streams 214
6.5.2 Frequent Itemsets in Decaying Windows 215
6.5.3 Hybrid Methods 216
6.5.4 Exercises for Section 6.5 217
6.6 Summary of Chapter 6 217
6.7 References for Chapter 6, 220
Clustering 221
7.1 Introduction to Clustering Techniques 221
7.1.1 Points, Spaces, and Distances 221
7.1.2 Clustering Strategies, 223
7.1.3 The Curse of Dimensionality 224
7.1.4 Exercises for Section 7.1 225
7.2 Hierarchical Clustering 225
7.2.1 Hierarchical Clustering in a Euclidean Space 226
7.2.2 Efficiency of Hierarchical Clustering 228
7.2.3 Alternative Rules for Controlling Hierarchical
Clustering 229
7.2.4 Hierarchical Clustering in Non-Euclidean Spaces 232

7.2.5 Exercises for Section 7.2 233

CONTENTS xi

7.3 K-means Algorithms 234
7.3.1 K-Means Basics. 235
7.3.2 Initializing Clusters for K-Means 235
7.3.3 Picking the Right Valueofk 236
7.3.4 The Algorithm of Bradley, Fayyad, and Reina 237
7.3.5 Processing Data in the BFR Algorithm 239
7.3.6 Exercises for Section 7.3 242

7.4 The CURE Algorithm 242
7.4.1 Imitializationin CURE 243
7.4.2 Completion of the CURE Algorithm 244
7.4.3 Exercises for Section 7.4 245

7.5 Clustering in Non-Euclidean Spaces 246
7.5.1 Representing Clusters in the GRGPF Algorithm 246
7.5.2 Initializing the Cluster Tree 247
7.5.3 Adding Points in the GRGPF Algorithm 248
7.5.4 Splitting and Merging Clusters 249
7.5.5 Exercises for Section 7.5 250

7.6 Clustering for Streams and Parallelism 250
7.6.1 The Stream-Computing Model 251
7.6.2 A Stream-Clustering Algorithm 251
7.6.3 Initializing Bucketso oL 252
7.6.4 Merging Buckets L 0oL 252
7.6.5 Answering Queries 255
7.6.6 Clustering in a Parallel Environment 255
7.6.7 Exercises for Section 7.6 256

7.7 Summary of Chapter 7. 256

7.8 References for Chapter 7. 260

8 Advertising on the Web 261

8.1 Issues in On-Line Advertising 261
8.1.1 Advertising Opportunities 261
8.1.2 Direct Placement of Ads 262
8.1.3 Issues for Display Ads 263

8.2 On-Line Algorithms 264
8.2.1 On-Line and Off-Line Algorithms 264
8.2.2 Greedy Algorithms 265
8.2.3 The Competitive Ratio 266
8.2.4 Exercises for Section 8.2 oL 266

8.3 The Matching Problem 267
8.3.1 Matches and Perfect Matches 267
8.3.2 The Greedy Algorithm for Maximal Matching 268
8.3.3 Competitive Ratio for Greedy Matching 269
8.3.4 Exercises for Section 8.3 oL 270

8.4 The Adwords Problem 270

8.4.1 History of Search Advertising 271

xii

8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
8.4.7
8.4.8
8.4.9

CONTENTS

Definition of the Adwords Problem
The Greedy Approach to the Adwords Problem
The Balance Algorithm
A Lower Bound on Competitive Ratio for Balance
The Balance Algorithm with Many Bidders
The Generalized Balance Algorithm
Final Observations About the Adwords Problem
Exercises for Section 8.4 L.

8.5 Adwords Implementation

8.5.1
8.5.2
8.5.3

Matching Bids and Search Queries
More Complex Matching Problems
A Matching Algorithm for Documents and Bids

8.6 Summary of Chapter 8
8.7 References for Chapter 8,

9 Recommendation Systems
9.1 A Model for Recommendation Systems

9.1.1
9.1.2
9.1.3
9.14

The Utility Matrix
The Long Tail
Applications of Recommendation Systems
Populating the Utility Matrix

9.2 Content-Based Recommendations

9.2.1
9.2.2
9.2.3
9.24
9.2.5
9.2.6
9.2.7
9.2.8

Item Profiles
Discovering Features of Documents
Obtaining Item Features From Tags
Representing Item Profiles
User Profiles
Recommending Items to Users Based on Content
Classification Algorithms
Exercises for Section 9.2 L.

9.3 Collaborative Filtering

9.3.1
9.3.2
9.3.3
9.34

Measuring Similarity oL
The Duality of Similarity
Clustering Users and Items
Exercises for Section 9.3 L.

9.4 Dimensionality Reduction

9.4.1
9.4.2
9.4.3
9.4.4
9.4.5
9.4.6

UV-Decomposition
Root-Mean-Square Error
Incremental Computation of a UV-Decomposition .

Optimizing an Arbitrary Element
Building a Complete UV-Decomposition Algorithm
Exercises for Section 9.4 L.

9.5 The NetFlix Challenge
9.6 Summary of Chapter 9 L L.
9.7 References for Chapter 9

Chapter 1

Data Mining

In this intoductory chapter we begin with the essence of data mining and a dis-
cussion of how data mining is treated by the various disciplines that contribute
to this field. We cover “Bonferroni’s Principle,” which is really a warning about
overusing the ability to mine data. This chapter is also the place where we
summarize a few useful ideas that are not data mining but are useful in un-
derstanding some important data-mining concepts. These include the TF.IDF
measure of word importance, behavior of hash functions and indexes, and iden-
tities involving e, the base of natural logarithms. Finally, we give an outline of
the topics covered in the balance of the book.

1.1 What is Data Mining?

The most commonly accepted definition of “data mining” is the discovery of
“models” for data. A “model,” however, can be one of several things. We
mention below the most important directions in modeling.

1.1.1 Statistical Modeling

Statisticians were the first to use the term “data mining.” Originally, “data
mining” or “data dredging” was a derogatory term referring to attempts to
extract information that was not supported by the data. Section 1.2 illustrates
the sort of errors one can make by trying to extract what really isn’t in the data.
Today, “data mining” has taken on a positive meaning. Now, statisticians view
data mining as the construction of a statistical model, that is, an underlying
distribution from which the visible data is drawn.

Example 1.1: Suppose our data is a set of numbers. This data is much
simpler than data that would be data-mined, but it will serve as an example. A
statistician might decide that the data comes from a Gaussian distribution and
use a formula to compute the most likely parameters of this Gaussian. The mean

2 CHAPTER 1. DATA MINING

and standard deviation of this Gaussian distribution completely characterize the
distribution and would become the model of the data. O

1.1.2 Machine Learning

There are some who regard data mining as synonymous with machine learning.
There is no question that some data mining appropriately uses algorithms from
machine learning. Machine-learning practitioners use the data as a training set,
to train an algorithm of one of the many types used by machine-learning prac-
titioners, such as Bayes nets, support-vector machines, decision trees, hidden
Markov models, and many others.

There are situations where using data in this way makes sense. The typical
case where machine learning is a good approach is when we have little idea of
what we are looking for in the data. For example, it is rather unclear what
it is about movies that makes certain movie-goers like or dislike it. Thus,
in answering the “Netflix challenge” to devise an algorithm that predicts the
ratings of movies by users, based on a sample of their responses, machine-
learning algorithms have proved quite successful. We shall discuss a simple
form of this type of algorithm in Section 9.4.

On the other hand, machine learning has not proved successful in situations
where we can describe the goals of the mining more directly. An interesting
case in point is the attempt by WhizBang! Labs! to use machine learning to
locate people’s resumes on the Web. It was not able to do better than algorithms
designed by hand to look for some of the obvious words and phrases that appear
in the typical resume. Since everyone who has looked at or written a resume has
a pretty good idea of what resumes contain, there was no mystery about what
makes a Web page a resume. Thus, there was no advantage to machine-learning
over the direct design of an algorithm to discover resumes.

1.1.3 Computational Approaches to Modeling

More recently, computer scientists have looked at data mining as an algorithmic
problem. In this case, the model of the data is simply the answer to a complex
query about it. For instance, given the set of numbers of Example 1.1, we might
compute their average and standard deviation. Note that these values might
not be the parameters of the Gaussian that best fits the data, although they
will almost certainly be very close if the size of the data is large.

There are many different approaches to modeling data. We have already
mentioned the possibility of constructing a statistical process whereby the data
could have been generated. Most other approaches to modeling can be described
as either

1. Summarizing the data succinctly and approximately, or

I This startup attempted to use machine learning to mine large-scale data, and hired many
of the top machine-learning people to do so. Unfortunately, it was not able to survive.

1.1. WHAT IS DATA MINING? 3

2. Extracting the most prominent features of the data and ignoring the rest.

We shall explore these two approaches in the following sections.

1.1.4 Summarization

One of the most interesting forms of summarization is the PageRank idea, which
made Google successful and which we shall cover in Chapter 5. In this form
of Web mining, the entire complex structure of the Web is summarized by a
single number for each page. This number, the “PageRank” of the page, is
(oversimplifying somewhat) the probability that a random walker on the graph
would be at that page at any given time. The remarkable property this ranking
has is that it reflects very well the “importance” of the page — the degree to
which typical searchers would like that page returned as an answer to their
search query.

Another important form of summary — clustering — will be covered in Chap-
ter 7. Here, data is viewed as points in a multidimensional space. Points
that are “close” in this space are assigned to the same cluster. The clusters
themselves are summarized, perhaps by giving the centroid of the cluster and
the average distance from the centroid of points in the cluster. These cluster
summaries become the summary of the entire data set.

Example 1.2: A famous instance of clustering to solve a problem took place
long ago in London, and it was done entirely without computers.? The physician
John Snow, dealing with a Cholera outbreak plotted the cases on a map of the
city. A small illustration suggesting the process is shown in Fig. 1.1.

0

o

O ok
0 o ° O

00 00 0508 Soo o

OO0 O @0 00 O
O
© 80)\ O
O OO O
% © Oo CS>o
o| |0) 80)
OO 090 O 0 Op OO0 00
O O O O
OO o O OO% 00 O
O OO
O O 0
o O o) O
e} O

Figure 1.1: Plotting cholera cases on a map of London

2See http://en.wikipedia.org/wiki/1854_Broad_Street_cholera_outbreak.

4 CHAPTER 1. DATA MINING

The cases clustered around some of the intersections of roads. These inter-
sections were the locations of wells that had become contaminated; people who
lived nearest these wells got sick, while people who lived nearer to wells that
had not been contaminated did not get sick. Without the ability to cluster the
data, the cause of Cholera would not have been discovered. O

1.1.5 Feature Extraction

The typical feature-based model looks for the most extreme examples of a phe-
nomenon and represents the data by these examples. If you are familiar with
Bayes nets, a branch of machine learning and a topic we do not cover in this
book, you know how a complex relationship between objects is represented by
finding the strongest statistical dependencies among these objects and using
only those in representing all statistical connections. Some of the important
kinds of feature extraction from large-scale data that we shall study are:

1. Frequent Itemsets. This model makes sense for data that consists of “bas-
kets” of small sets of items, as in the market-basket problem that we shall
discuss in Chapter 6. We look for small sets of items that appear together
in many baskets, and these “frequent itemsets” are the characterization of
the data that we seek. The orignal application of this sort of mining was
true market baskets: the sets of items, such as hamburger and ketchup,
that people tend to buy together when checking out at the cash register
of a store or super market.

2. Similar Items. Often, your data looks like a collection of sets, and the
objective is to find pairs of sets that have a relatively large fraction of
their elements in common. An example is treating customers at an on-
line store like Amazon as the set of items they have bought. In order
for Amazon to recommend something else they might like, Amazon can
look for “similar” customers and recommend something many of these
customers have bought. This process is called “collaborative filtering.”
If customers were single-minded, that is, they bought only one kind of
thing, then clustering customers might work. However, since customers
tend to have interests in many different things, it is more useful to find,
for each customer, a small number of other customers who are similar
in their tastes, and represent the data by these connections. We discuss
similarity in Chapter 3.

1.2 Statistical Limits on Data Mining

A common sort of data-mining problem involves discovering unusual events
hidden within massive amounts of data. This section is a discussion of the
problem, including “Bonferroni’s Principle,” a warning against overzealous use
of data mining.

1.2. STATISTICAL LIMITS ON DATA MINING 5

1.2.1 Total Information Awareness

In 2002, the Bush administration put forward a plan to mine all the data it could
find, including credit-card receipts, hotel records, travel data, and many other
kinds of information in order to track terrorist activity. This idea naturally
caused great concern among privacy advocates, and the project, called TIA,
or Total Information Awareness, was eventually killed by Congress, although
it is unclear whether the project in fact exists under another name. It is not
the purpose of this book to discuss the difficult issue of the privacy-security
tradeoff. However, the prospect of TIA or a system like it does raise technical
questions about its feasibility and the realism of its assumptions.

The concern raised by many is that if you look at so much data, and you try
to find within it activities that look like terrorist behavior, are you not going to
find many innocent activities — or even illicit activities that are not terrorism —
that will result in visits from the police and maybe worse than just a visit? The
answer is that it all depends on how narrowly you define the activities that you
look for. Statisticians have seen this problem in many guises and have a theory,
which we introduce in the next section.

1.2.2 Bonferroni’s Principle

Suppose you have a certain amount of data, and you look for events of a cer-
tain type within that data. You can expect events of this type to occur, even if
the data is completely random, and the number of occurrences of these events
will grow as the size of the data grows. These occurrences are “bogus,” in the
sense that they have no cause other than that random data will always have
some number of unusual features that look significant but aren’t. A theorem
of statistics, known as the Bonferroni correction gives a statistically sound way
to avoid most of these bogus positive responses to a search through the data.
Without going into the statistical details, we offer an informal version, Bon-
ferroni’s principle, that helps us avoid treating random occurrences as if they
were real. Calculate the expected number of occurrences of the events you are
looking for, on the assumption that data is random. If this number is signifi-
cantly larger than the number of real instances you hope to find, then you must
expect almost anything you find to be bogus, i.e., a statistical artifact rather
than evidence of what you are looking for. This observation is the informal
statement of Bonferroni’s principle.

In a situation like searching for terrorists, where we expect that there are
few terrorists operating at any one time, Bonferroni’s principle says that we
may only detect terrorists by looking for events that are so rare that they are
unlikely to occur in random data. We shall give an extended example in the
next section.

6 CHAPTER 1. DATA MINING

1.2.3 An Example of Bonferroni’s Principle

Suppose there are believed to be some “evil-doers” out there, and we want
to detect them. Suppose further that we have reason to believe that periodi-
cally, evil-doers gather at a hotel to plot their evil. Let us make the following
assumptions about the size of the problem:

1. There are one billion people who might be evil-doers.
2. Everyone goes to a hotel one day in 100.

3. A hotel holds 100 people. Hence, there are 100,000 hotels — enough to
hold the 1% of a billion people who visit a hotel on any given day.

4. We shall examine hotel records for 1000 days.

To find evil-doers in this data, we shall look for people who, on two different
days, were both at the same hotel. Suppose, however, that there really are no
evil-doers. That is, everyone behaves at random, deciding with probability 0.01
to visit a hotel on any given day, and if so, choosing one of the 10° hotels at
random. Would we find any pairs of people who appear to be evil-doers?

We can do a simple approximate calculation as follows. The probability of
any two people both deciding to visit a hotel on any given day is .0001. The
chance that they will visit the same hotel is this probability divided by 102,
the number of hotels. Thus, the chance that they will visit the same hotel on
one given day is 1072, The chance that they will visit the same hotel on two
different given days is the square of this number, 1078, Note that the hotels
can be different on the two days.

Now, we must consider how many events will indicate evil-doing. An “event”
in this sense is a pair of people and a pair of days, such that the two people
were at the same hotel on each of the two days. To simplify the arithmetic, note
that for large n, (5) is about n?/2. We shall use this approximation in what

follows. Thus, the number of pairs of people is (129) = 5 x 10*". The number
of pairs of days is (10200) = 5 x 10°. The expected number of events that look
like evil-doing is the product of the number of pairs of people, the number of
pairs of days, and the probability that any one pair of people and pair of days
is an instance of the behavior we are looking for. That number is

5x 107 x 5 x 10° x 10™'® = 250, 000

That is, there will be a quarter of a million pairs of people who look like evil-
doers, even though they are not.

Now, suppose there really are 10 pairs of evil-doers out there. The police
will need to investigate a quarter of a million other pairs in order to find the real
evil-doers. In addition to the intrusion on the lives of half a million innocent
people, the work involved is sufficiently great that this approach to finding
evil-doers is probably not feasible.

o=

1.3. THINGS USEFUL TO KNOW 7

1.2.4 Exercises for Section 1.2

Exercise 1.2.1: Using the information from Section 1.2.3, what would be the
number of suspected pairs if the following changes were made to the data (and
all other numbers remained as they were in that section)?

(a) The number of days of observation was raised to 2000.

(b) The number of people observed was raised to 2 billion (and there were
therefore 200,000 hotels).

(¢) We only reported a pair as suspect if they were at the same hotel at the
same time on three different days.

Exercise 1.2.2: Suppose we have information about the supermarket pur-
chases of 100 million people. Each person goes to the supermarket 100 times
in a year and buys 10 of the 1000 items that the supermarket sells. We believe
that a pair of terrorists will buy exactly the same set of 10 items (perhaps the
ingredients for a bomb?) at some time during the year. If we search for pairs of
people who have bought the same set of items, would we expect that any such
people found were truly terrorists??

1.3 Things Useful to Know

In this section, we offer brief introductions to subjects that you may or may
not have seen in your study of other courses. Each will be useful in the study
of data mining. They include:

1. The TF.IDF measure of word importance.

2. Hash functions and their use.

3. Secondary storage (disk) and its effect on running time of algorithms.
4. The base e of natural logarithms and identities involving that constant.

5. Power laws.

1.3.1 Importance of Words in Documents

In several applications of data mining, we shall be faced with the problem of
categorizing documents (sequences of words) by their topic. Typically, topics
are identified by finding the special words that characterize documents about
that topic. For instance, articles about baseball would tend to have many
occurrences of words like “ball,” “bat,” “pitch,”, “run,” and so on. Once we

3That is, assume our hypothesis that terrorists will surely buy a set of 10 items in common
at some time during the year. We don’t want to address the matter of whether or not terrorists
would necessarily do so.

8 CHAPTER 1. DATA MINING

have classified documents to determine they are about baseball, it is not hard
to notice that words such as these appear unusually frequently. However, until
we have made the classification, it is not possible to identify these words as
characteristic.

Thus, classification often starts by looking at documents, and finding the
significant words in those documents. Our first guess might be that the words
appearing most frequently in a document are the most significant. However,
that intuition is exactly opposite of the truth. The most frequent words will
most surely be the common words such as “the” or “and,” which help build
ideas but do not carry any significance themselves. In fact, the several hundred
most common words in English (called stop words) are often removed from
documents before any attempt to classify them.

In fact, the indicators of the topic are relatively rare words. However, not
all rare words are equally useful as indicators. There are certain words, for
example “notwithstanding” or “albeit,” that appear rarely in a collection of
documents, yet do not tell us anything useful. On the other hand, a word like
“chukker” is probably equally rare, but tips us off that the document is about
the sport of polo. The difference between rare words that tell us something and
those that do not has to do with the concentration of the useful words in just a
few documents. That is, the presence of a word like “albeit” in a document does
not make it terribly more likely that it will appear multiple times. However,
if an article mentions “chukker” once, it is likely to tell us what happened in
the “first chukker,” then the “second chukker,” and so on. That is, the word is
likely to be repeated if it appears at all.

The formal measure of how concentrated into relatively few documents are
the occurrences of a given word is called TF.IDF (Term Frequency times In-
verse Document Frequency). It is normally computed as follows. Suppose we
have a collection of N documents. Define f;; to be the frequency (number of
occurrences) of term (word) ¢ in document j. Then, define the term frequency
TF;; to be:

fij

TF;; = ————
7 maxy frj

That is, the term frequency of term 7 in document j is f;; normalized by dividing
it by the maximum number of occurrences of any term (perhaps excluding stop
words) in the same document. Thus, the most frequent term in document j
gets a TF of 1, and other terms get fractions as their term frequency for this
document.

The IDF for a term is defined as follows. Suppose term i appears in n;
of the N documents in the collection. Then IDF; = logy(N/n;). The TF.IDF
score for term ¢ in document j is then defined to be TF;; x IDF;. The terms
with the highest TF.IDF score are often the terms that best characterize the
topic of the document.

Example 1.3: Suppose our repository consists of 220 = 1,048,576 documents.
Suppose word w appears in 2! = 1024 of these documents. Then IDF, =

1.3. THINGS USEFUL TO KNOW 9

log,(220/219) = log 2(219) = 10. Consider a document j in which w appears 20
times, and that is the maximum number of times in which any word appears
(perhaps after eliminating stop words). Then TF,,; = 1, and the TF.IDF score
for w in document j is 10.

Suppose that in document k, word w appears once, while the maximum
number of occurrences of any word in this document is 20. Then TF,,, = 1/20,
and the TF.IDF score for w in document k is 1/2. O

1.3.2 Hash Functions

The reader has probably heard of hash tables, and perhaps used them in Java
classes or similar packages. The hash functions that make hash tables feasible
are also essential components in a number of data-mining algorithms, where
the hash table takes an unfamiliar form. We shall review the basics here.

First, a hash function h takes a hash-key value as an argument and produces
a bucket number as a result. The bucket number is an integer, normally in the
range 0 to B — 1, where B is the number of buckets. Hash-keys can be of any
type. There is an intuitive property of hash functions that they “randomize”
hash-keys. To be precise, if hash-keys are drawn randomly from a reasonable
population of possible hash-keys, then h will send approximately equal numbers
of hash-keys to each of the B buckets. It would be impossible to do so if, for
example, the population of possible hash-keys were smaller than B. Such a
population would not be “reasonable.” However, there can be more subtle rea-
sons why a hash function fails to achieve an approximately uniform distribution
into buckets.

Example 1.4: Suppose hash-keys are positive integers. A common and simple
hash function is to pick h(xz) = & mod B, that is, the remainder when z is
divided by B. That choice works fine if our population of hash-keys is all
positive integers. 1/Bth of the integers will be assigned to each of the buckets.
However, suppose our population is the even integers, and B = 10. Then only
buckets 0, 2, 4, 6, and 8 can be the value of h(x), and the hash function is
distinctly nonrandom in its behavior. On the other hand, if we picked B = 11,
then we would find that 1/11th of the even integers get sent to each of the 11
buckets, so the hash function would work very well. O

The generalization of Example 1.4 is that when hash-keys are integers, chos-
ing B so it has any common factor with all (or even most of) the possible hash-
keys will result in nonrandom distribution into buckets. Thus, it is normally
preferred that we choose B to be a prime. That choice reduces the chance of
nonrandom behavior, although we still have to consider the possibility that all
hash-keys have B as a factor. Of course there are many other types of hash
functions not based on modular arithmetic. We shall not try to summarize
the options here, but some sources of information will be mentioned in the
bibliographic notes.

10 CHAPTER 1. DATA MINING

What if hash-keys are not integers? In a sense, all data types have values
that are composed of bits, and sequences of bits can always be interpreted as in-
tegers. However, there are some simple rules that enable us to convert common
types to integers. For example, if hash-keys are strings, convert each character
to its ASCII or Unicode equivalent, which can be interpreted as a small inte-
ger. Sum the integers before dividing by B. As long as B is smaller than the
typical sum of character codes for the population of strings, the distribution
into buckets will be relatively uniform. If B is larger, then we can partition the
characters of a string into groups of several characters each. Treat the concate-
nation of the codes for the characters of a group as a single integer. Sum the
integers associated with all the groups of a string, and divide by B as before.
For instance, if B is around a billion, or 230, then grouping characters four at
a time will give us 32-bit integers. The sum of several of these will distribute
fairly evenly into a billion buckets.

For more complex data types, we can extend the idea used for converting
strings to integers, recursively.

e For a type that is a record, each of whose components has its own type,
recursively convert the value of each component to an integer, using the
algorithm appropriate for the type of that component. Sum the integers
for the components, and convert the integer sum to buckets by dividing
by B.

e For a type that is an array, set, or bag of elements of some one type,
convert the values of the elements’ type to integers, sum the integers, and
divide by B.

1.3.3 Indexes

An indezx is a data structure that makes it efficient to retrieve objects given the
value of one or more elements of those objects. The most common situation
is one where the objects are records, and the index is on one of the fields
of that record. Given a value v for that field, the index lets us retrieve all
the records with value v in that field. For example, we could have a file of
(name, address, phone) triples, and an index on the phone field. Given a phone
number, the index allows us to find quickly the record or records with that
phone number.

There are many ways to implement indexes, and we shall not attempt to
survey the matter here. The bibliographic notes give suggestions for further
reading. However, a hash table is one simple way to build an index. The field
or fields on which the index is based form the hash-key for a hash function.
Records have the hash function applied to value of the hash-key, and the record
itself is placed in the bucket whose number is determined by the hash function.
The bucket could be a list of records in main-memory, or a disk block, for
example.

1.3. THINGS USEFUL TO KNOW 11

Then, given a hash-key value, we can hash it, find the bucket, and need to
search only that bucket to find the records with that value for the hash-key. If
we choose the number of buckets B to be comparable to the number of records
in the file, then there will be relatively few records in any bucket, and the search
of a bucket takes little time.

0 [Sally Jone§ Maple St 800—555—1?17?—»

h (800-555-1212)

D e T e G

Records with h(phone) = 17

B-1

Array of
bucket
headers

Figure 1.2: A hash table used as an index; phone numbers are hashed to buckets,
and the entire record is placed in the bucket whose number is the hash value of
the phone

Example 1.5: Figure 1.2 suggests what a main-memory index of records with
name, address, and phone fields might look like. Here, the index is on the phone
field, and buckets are linked lists. We show the phone 800-555-1212 hashed to
bucket number 17. There is an array of bucket headers, whose ith element is
the head of a linked list for the bucket numbered i. We show expanded one of
the elements of the linked list. It contains a record with name, address, and
phone fields. This record is in fact one with the phone number 800-555-1212.
Other records in that bucket may or may not have this phone number. We only
know that whatever phone number they have is a phone that hashes to 17. O

1.3.4 Secondary Storage

It is important, when dealing with large-scale data, that we have a good un-
derstanding of the difference in time taken to perform computations when the
data is initially on disk, as opposed to the time needed if the data is initially in
main memory. The physical characteristics of disks is another subject on which
we could say much, but shall say only a little and leave the interested reader to
follow the bibliographic notes.

Disks are organized into blocks, which are the minimum units that the oper-
ating system uses to move data between main memory and disk. For example,

12 CHAPTER 1. DATA MINING

the Windows operating system uses blocks of 64K bytes (i.e., 216 = 65,536 bytes
to be exact). It takes approximately ten milliseconds to access (move the disk
head to the track of the block and wait for the block to rotate under the head)
and read a disk block. That delay is at least five orders of magnitude (a factor
of 10°) slower than the time taken to read a word from main memory, so if all
we want to do is access a few bytes, there is an overwhelming benefit to having
data in main memory. In fact, if we want to do something simple to every byte
of a disk block, e.g., treat the block as a bucket of a hash table and search for
a particular value of the hash-key among all the records in that bucket, then
the time taken to move the block from disk to main memory will be far larger
than the time taken to do the computation.

By organizing our data so that related data is on a single cylinder (the
collection of blocks reachable at a fixed radius from the center of the disk, and
therefore accessible without moving the disk head), we can read all the blocks
on the cylinder into main memory in considerably less than 10 milliseconds
per block. You can assume that a disk cannot transfer data to main memory
at more than a hundred million bytes per second, no matter how that data is
organized. That is not a problem when your dataset is a megabyte. But a
dataset of a hundred gigabytes or a terabyte presents problems just accessing
it, let alone doing anything useful with it.

1.3.5 The Base of Natural Logarithms

The constant e = 2.7182818 - -- has a number of useful special properties. In
particular, e is the limit of (1 + %)x as x goes to infinity. The values of this
expression for x = 1,2, 3,4 are approximately 2,2.25,2.37,2.44, so you should
find it easy to believe that the limit of this series is around 2.72.

Some algebra lets us obtain approximations to many seemingly complex
expressions. Consider (14 a)?, where a is small. We can rewrite the expression
as (1+a)/9)(@®) Then substitute a = 1/z and 1/a = =, so we have (14 2)=(a®),

which is) o
(+2)7)

Since a is assumed small, x is large, so the subexpression (1 + %)T will be close
to the limiting value of e. We can thus approximate (1 + a)® as e®.

Similar identities hold when a is negative. That is, the limit as x goes to
infinity of (1 — 2)® is 1/e. It follows that the approximation (1 + a)? = e
holds even when a is a small negative number. Put another way, (1 — a)® is
approximately e~ when a is small and b is large.

Some other useful approximations follow from the Taylor expansion of e®.
That is, e* = Y oo x'/il, or e* = 14+ x4+ 2?/24+ 23/6 + 2*/24 + ---. When
x is large, the above series converges slowly, although it does converge because
n! grows faster than " for any constant x. However, when x is small, either
positive or negative, the series converges rapidly, and only a few terms are
necessary to get a good approximation.

1.3. THINGS USEFUL TO KNOW 13

Example 1.6: Let x = 1/2. Then

61/2_1+1+1+i+i+...
B 2 8 48 384

or approximately e/? = 1.64844.
Let x = —1. Then

1

11 1 1
el=1-1+4-—

1
5 622 120 720 5040 T

or approximately e~! = 0.36786. O

1.3.6 Power Laws

There are many phenomena that relate two variables by a power law, that is, a
linear relationship between the logarithms of the variables. Figure 1.3 suggests
such a relationship. If x is the horizontal axis and y is the vertical axis, then
the relationship is log;,y = 6 — 2log;, x.

10,000,000
1,000,000
100,000
10,000
1000 —

100 |

10 —

1 T T T T

1 10 100 1000 10,000

Figure 1.3: A power law with a slope of —2

Example 1.7: We might examine book sales at Amazon.com, and let x rep-
resent the rank of books by sales. Then y is the number of sales of the xth
best-selling book over some period. The implication of the graph of Fig. 1.3
would be that the best-selling book sold 1,000,000 copies, the 10th best-selling
book sold 10,000 copies, the 100th best-selling book sold 100 copies, and so on
for all ranks between these numbers and beyond. The implication that above

14 CHAPTER 1. DATA MINING

The Matthew Effect

Often, the existence of power laws with values of the exponent higher than
1 are explained by the Matthew effect. In the biblical Book of Matthew,
there is a verse about “the rich get richer.” Many phenomena exhibit this
behavior, where getting a high value of some property causes that very
property to increase. For example, if a Web page has many links in, then
people are more likely to find the page and may choose to link to it from
one of their pages as well. As another example, if a book is selling well
on Amazon, then it is likely to be advertised when customers go to the
Amazon site. Some of these people will choose to buy the book as well,
thus increasing the sales of this book.

rank 1000 the sales are a fraction of a book is too extreme, and we would in
fact expect the line to flatten out for ranks much higher than 1000. O

The general form of a power law relating x and y is logy = b+alogx. If we
raise the base of the logarithm (which doesn’t actually matter), say e, to the
values on both sides of this equation, we get y = ee®198® = ¢bz%. Since e? is
just “some constant,” let us replace it by constant c. Thus, a power law can be
written as y = cx® for some constants a and c.

Example 1.8: In Fig. 1.3 we see that when z = 1, y = 10%, and when = =
1000, y = 1. Making the first substitution, we see 10° = c¢. The second
substitution gives us 1 = ¢(1000)¢. Since we now know ¢ = 10°, the second
equation gives us 1 = 105(1000)¢, from which we see a = —2. That is, the law
expressed by Fig. 1.3 is y = 105272, or y = 105/22. O

We shall meet in this book many ways that power laws govern phenomena.
Here are some examples:

1. Node Degrees in the Web Graph: Order all pages by the number of in-
links to that page. Let x be the position of a page in this ordering, and
let y be the number of in-links to the zth page. Then y as a function of z
looks very much like Fig. 1.3. The exponent a is slightly larger than the
—2 shown there; it has been found closer to 2.1.

2. Sales of Products: Order products, say books at Amazon.com, by their
sales over the past year. Let y be the number of sales of the zth most pop-
ular book. Again, the function y(z) will look something like Fig. 1.3. we
shall discuss the consequences of this distribution of sales in Section 9.1.2,
where we take up the matter of the “long tail.”

3. Sizes of Web Sites: Count the number of pages at Web sites, and order
sites by the number of their pages. Let y be the number of pages at the
xth site. Again, the function y(z) follows a power law.

o=

1.4. OUTLINE OF THE BOOK 15

4. Zipf’s Law: This power law originally referred to the frequency of words
in a collection of documents. If you order words by frequency, and let y
be the number of times the xth word in the order appears, then you get
a power law, although with a much shallower slope than that of Fig. 1.3.
Zipf’s observation was that y = cz~'/2. Interestingly, a number of other
kinds of data follow this particular power law. For example, if we order
states in the US by population and let y be the population of the zth
most populous state, then x and y obey Zipf’s law approximately.

1.3.7 Exercises for Section 1.3

Exercise 1.3.1: Suppose there is a repository of ten million documents. What
(to the nearest integer) is the IDF for a word that appears in (a) 40 documents
(b) 10,000 documents?

Exercise 1.3.2: Suppose there is a repository of ten million documents, and
word w appears in 320 of them. In a particular document d, the maximum
number of occurrences of a word is 15. Approximately what is the TF.IDF
score for w if that word appears (a) once (b) five times?

Exercise 1.3.3: Suppose hash-keys are drawn from the population of all non-
negative integers that are multiples of some constant ¢, and hash function hA(x)
is mod 15. For what values of ¢ will A be a suitable hash function, i.e., a
large random choice of hash-keys will be divided roughly equally into buckets?

Exercise 1.3.4: In terms of e, give approximations to
(a) (1.01)%% (b) (1.05)199 (¢) (0.9)4°

Exercise 1.3.5: Use the Taylor expansion of e* to compute, to three decimal
places: (a) e'/19 (b) e~ /10 (¢) €.

1.4 Outline of the Book

This section gives brief summaries of the remaining chapters of the book.

Chapter 2 is not about data mining per se. Rather, it introduces us to the
map-reduce methodology for exploiting parallelism in computing clouds (racks
of interconnected processors). There is reason to believe that cloud computing,
and map-reduce in particular, will become the normal way to compute when
analysis of very large amounts of data is involved. A pervasive issue in later
chapters will be the exploitation of the map-reduce methodology to implement
the algorithms we cover.

Chapter 3 is about finding similar items. Our starting point is that items
can be represented by sets of elements, and similar sets are those that have a
large fraction of their elements in common. The key techniques of minhashing
and locality-sensitive hashing are explained. These techniques have numerous

16 CHAPTER 1. DATA MINING

applications and often give surprisingly efficient solutions to problems that ap-
pear impossible for massive data sets.

In Chapter 4, we consider data in the form of a stream. The difference
between a stream and a database is that the data in a stream is lost if you do
not do something about it immediately. Important examples of streams are the
streams of search queries at a search engine or clicks at a popular Web site. In
this chapter, we see several of the surprising applications of hashing that make
management of stream data feasible.

Chapter 5 is devoted to a single application: the computation of PageRank.
This computation is the idea that made Google stand out from other search
engines, and it is still an essential part of how search engines know what pages
the user is likely to want to see. Extensions of PageRank are also essential in the
fight against spam (euphemistically called “search engine optimization”), and
we shall examine the latest extensions of the idea for the purpose of combating
spam.

Then, Chapter 6 introduces the market-basket model of data, and its canon-
ical problems of association rules and finding frequent itemsets. In the market-
basket model, data consists of a large collection of baskets, each of which con-
tains a small set of items. We give a sequence of algorithms capable of finding
all frequent pairs of items, that is pairs of items that appear together in many
baskets. Another sequence of algorithms are useful for finding most of the
frequent itemsets larger than pairs, with high efficiency.

Chapter 7 examines the problem of clustering. We assume a set of items
with a distance measure defining how close or far one item is from another.
The goal is to examine a large amount of data and partition it into subsets
(clusters), each cluster consisting of items that are all close to one another, yet
far from items in the other clusters.

Chapter 8 is devoted to on-line advertising and the computational problems
it engenders. We introduce the notion of an on-line algorithm — one where a
good response must be given immediately, rather than waiting until we have
seen the entire dataset. The idea of competitive ratio is another important
concept covered in this chapter; it is the ratio of the guaranteed performance of
an on-line algorithm compared with the performance of the optimal algorithm
that is allowed to see all the data before making any decisions. These ideas are
used to give good algorithms that match bids by advertisers for the right to
display their ad in response to a query against the search queries arriving at a
search engine.

Finally, Chapter 9 is devoted to recommendation systems. Many Web ap-
plications involve advising users on what they might like. The Netflix challenge
is one example, where it is desired to predict what movies a user would like, or
Amazon’s problem of pitching a product to a customer based on information
about what they might be interested in buying. There are two basic approaches
to recommendation. We can characterize items by features, e.g., the stars of
a movie, and recommend items with the same features as those the user is
known to like. Or, we can look at what other users with preferences similar

1.5. SUMMARY OF CHAPTER 1 17

to that of the user in question, and see what they liked (a technique known as
collaborative filtering).

1.5 Summary of Chapter 1

O Data Mining: This term refers to the process of extracting useful models
of data. Sometimes, a model can be a summary of the data, or it can be
the set of most extreme features of the data.

O Bonferroni’s Principle: If we are willing to view as an interesting feature
of data something of which many can be expected to exist in random data,
then we cannot rely on such features being significant. This observation
limits our ability to mine data for features that are not sufficiently rare
in practice.

O TF.IDF: The measure called TF.IDF lets us identify words in a collection
of documents that are useful for determining the topic of each document.
A word has high TF.IDF score in a document if it appears in relatively few
documents, but appears in this one, and when it appears in a document
it tends to appear many times.

O Hash Functions: A hash function maps hash-keys of some data type to
integer bucket numbers. A good hash function distributes the possible
hash-key values approximately evenly among buckets. Any data type can
be the domain of a hash function.

O Indexes: An index is a data structure that allows us to store and retrieve
data records efficiently, given the value in one or more of the fields of the
record. Hashing is one way to build an index.

O Storage on Disk: When data must be stored on disk (secondary memory),
it takes very much more time to access a desired data item than if the same
data were stored in main memory. When data is large, it is important
that algorithms strive to keep needed data in main memory.

00 Power Laws: Many phenomena obey a law that can be expressed as
y = cz® for some power a, often around —2. Such phenomena include the
sales of the xth most popular book, or the number of in-links to the xth
most popular page.

1.6 References for Chapter 1

[7] is a clear introduction to the basics of data mining. [2] covers data mining
principally from the point of view of machine learning and statistics.

For construction of hash functions and hash tables, see [4]. Details of the
TF.IDF measure and other matters regarding document processing can be

18 CHAPTER 1. DATA MINING

found in [5]. See [3] for more on managing indexes, hash tables, and data
on disk.

Power laws pertaining to the Web were explored by [1]. The Matthew effect
was first observed in [6].

1. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R.
Stata, A. Tomkins, and J. Weiner, “Graph structure in the web,” Com-
puter Networks 33:1-6, pp. 309-320, 2000.

2. M.M. Gaber, Scientific Data Mining and Knowledge Discovery — Prin-
ciples and Foundations, Springer, New York, 2010.

3. H. Garcia-Molina, J.D. Ullman, and J. Widom, Database Systems: The
Complete Book Second Edition, Prentice-Hall, Upper Saddle River, NJ,
2009.

4. D.E. Knuth, The Art of Computer Programming Vol. 3 (Sorting and
Searching), Second Edition, Addison-Wesley, Upper Saddle River, NJ,
1998.

5. C.P. Manning, P. Raghavan, and H. Schiitze, Introduction to Information
Retrieval, Cambridge Univ. Press, 2008.

6. R.K. Merton, “The Matthew effect in science,” Science 159:3810, pp. 56—
63, Jan. 5, 1968.

7. P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining,
Addison-Wesley, Upper Saddle River, NJ, 2005.

Chapter 2

Large-Scale File Systems
and Map-Reduce

Modern Internet applications have created a need to manage immense amounts
of data quickly. In many of these applications, the data is extremely regular,
and there is ample opportunity to exploit parallelism. Important examples are:

1. The ranking of Web pages by importance, which involves an iterated
matrix-vector multiplication where the dimension is in the tens of billions,
and

2. Searches in “friends” networks at social-networking sites, which involve
graphs with hundreds of millions of nodes and many billions of edges.

To deal with applications such as these, a new software stack has developed. It
begins with a new form of file system, which features much larger units than
the disk blocks in a conventional operating system and also provides replication
of data to protect against the frequent media failures that occur when data is
distributed over thousands of disks.

On top of these file systems, we find higher-level programming systems de-
veloping. Central to many of these is a programming system called map-reduce.
Implementations of map-reduce enable many of the most common calculations
on large-scale data to be performed on large collections of computers, efficiently
and in a way that is tolerant of hardware failures during the computation.

Map-reduce systems are evolving and extending rapidly. We include in this
chapter a discussion of generalizations of map-reduce, first to acyclic workflows
and then to recursive algorithms. We conclude with a discussion of commu-
nication cost and what it tells us about the most efficient algorithms in this
modern computing environment.

19

20 CHAPTER 2. LARGE-SCALE FILE SYSTEMS AND MAP-REDUCE

2.1 Distributed File Systems

Most computing is done on a single processor, with its main memory, cache, and
local disk (a compute node). In the past, applications that called for parallel
processing, such as large scientific calculations, were done on special-purpose
parallel computers with many processors and specialized hardware. However,
the prevalence of large-scale Web services has caused more and more computing
to be done on installations with thousands of compute nodes operating more
or less independently. In these installations, the compute nodes are commodity
hardware, which greatly reduces the cost compared with special-purpose parallel
machines.

These new computing facilities have given rise to a new generation of pro-
gramming systems. These systems take advantage of the power of parallelism
and at the same time avoid the reliability problems that arise when the comput-
ing hardware consists of thousands of independent components, any of which
could fail at any time. In this section, we discuss both the characteristics of
these computing installations and the specialized file systems that have been
developed to take advantage of them.

2.1.1 Physical Organization of Compute Nodes

The new parallel-computing architecture, sometimes called cluster computing,
is organized as follows. Compute nodes are stored on racks, perhaps 864
on a rack. The nodes on a single rack are connected by a network, typically
gigabit Ethernet. There can be many racks of compute nodes, and racks are
connected by another level of network or a switch. The bandwidth of inter-rack
communication is somewhat greater than the intrarack Ethernet, but given the
number of pairs of nodes that might need to communicate between racks, this
bandwidth may be essential. Figure 2.1 suggests the architecture of a large-
scale computing system. However, there may be many more racks and many
more compute nodes per rack.

It is a fact of life that components fail, and the more components, such as
compute nodes and interconnection networks, a system has, the more frequently
something in the system will not be working at any given time. For systems
such as Fig. 2.1, the principal failure modes are the loss of a single node (e.g.,
the disk at that node crashes) and the loss of an entire rack (e.g., the network
connecting its nodes to each other and to the outside world fails).

Some important calculations take minutes or even hours on thousands of
compute nodes. If we had to abort and restart the computation every time
one component failed, then the computation might never complete successfully.
The solution to this problem takes two forms:

1. Files must be stored redundantly. If we did not duplicate the file at several
compute nodes, then if one node failed, all its files would be unavailable
until the node is replaced. If we did not back up the files at all, and the

2.1. DISTRIBUTED FILE SYSTEMS 21

Switch

Racks of compute nodes

Figure 2.1: Compute nodes are organized into racks, and racks are intercon-
nected by a switch

disk crashes, the files would be lost forever. We discuss file management
in Section 2.1.2.

2. Computations must be divided into tasks, such that if any one task fails
to execute to completion, it can be restarted without affecting other tasks.
This strategy is followed by the map-reduce programming system that we
introduce in Section 2.2.

2.1.2 Large-Scale File-System Organization

To exploit cluster computing, files must look and behave somewhat differently
from the conventional file systems found on single computers. This new file
system, often called a distributed file system or DFS (although this term has
had other meanings in the past), is typically used as follows.

e Files can be enormous, possibly a terabyte in size. If you have only small
files, there is no point using a DFS for them.

e Files are rarely updated. Rather, they are read as data for some calcula-
tion, and possibly additional data is appended to files from time to time.
For example, an airline reservation system would not be suitable for a
DFS, even if the data were very large, because the data is changed so
frequently.

Files are divided into chunks, which are typically 64 megabytes in size.
Chunks are replicated, perhaps three times, at three different compute nodes.
Moreover, the nodes holding copies of one chunk should be located on different

22 CHAPTER 2. LARGE-SCALE FILE SYSTEMS AND MAP-REDUCE

DFS Implementations

There are several distributed file systems of the type we have described
that are used in practice. Among these:

1. The Google File System (GFS), the original of the class.

2. Hadoop Distributed File System (HDFS), an open-source DFS used
with Hadoop, an implementation of map-reduce (see Section 2.2)
and distributed by the Apache Software Foundation.

3. CloudStore, an open-source DFS originally developed by Kosmix.

racks, so we don’t lose all copies due to a rack failure. Normally, both the chunk
size and the degree of replication can be decided by the user.

To find the chunks of a file, there is another small file called the master node
or name node for that file. The master node is itself replicated, and a directory
for the file system as a whole knows where to find its copies. The directory itself
can be replicated, and all participants using the DFS know where the directory
copies are.

2.2 Map-Reduce

Map-reduce is a style of computing that has been implemented several times.
You can use an implementation of map-reduce to manage many large-scale
computations in a way that is tolerant of hardware faults. All you need to
write are two functions, called Map and Reduce, while the system manages the
parallel execution, coordination of tasks that execute Map or Reduce, and also
deals with the possibility that one of these tasks will fail to execute. In brief, a
map-reduce computation executes as follows:

1. Some number of Map tasks each are given one or more chunks from a
distributed file system. These Map tasks turn the chunk into a sequence
of key-value pairs. The way key-value pairs are produced from the input
data is determined by the code written by the user for the Map function.

2. The key-value pairs from each Map task are collected by a master con-
troller and sorted by key. The keys are divided among all the Reduce
tasks, so all key-value pairs with the same key wind up at the same Re-
duce task.

3. The Reduce tasks work on one key at a time, and combine all the val-
ues associated with that key in some way. The manner of combination

2.2. MAP-REDUCE 23

of values is determined by the code written by the user for the Reduce
function.

Figure 2.2 suggests this computation.

Keys with all
Key-value their values
pairs (K [v,w,..])

Input . (k,v)

chunks \

Combinec
output

/|

Map Group
tasks by keys

Reduce
tasks

Figure 2.2: Schematic of a map-reduce computation

2.2.1 The Map Tasks

We view input files for a Map task as consisting of elements, which can be
any type: a tuple or a document, for example. A chunk is a collection of
elements, and no element is stored across two chunks. Technically, all inputs
to Map tasks and outputs from Reduce tasks are of the key-value-pair form,
but normally the keys of input elements are not relevant and we shall tend to
ignore them. Insisting on this form for inputs and outputs is motivated by the
desire to allow composition of several map-reduce processes.

A Map function is written to convert input elements to key-value pairs. The
types of keys and values are each arbitrary. Further, keys are not “keys” in the
usual sense; they do not have to be unique. Rather a Map task can produce
several key-value pairs with the same key, even from the same element.

Example 2.1: We shall illustrate a map-reduce computation with what has
become the standard example application: counting the number of occurrences
for each word in a collection of documents. In this example, the input file is a
repository of documents, and each document is an element. The Map function
for this example uses keys that are of type String (the words) and values that

24 CHAPTER 2. LARGE-SCALE FILE SYSTEMS AND MAP-REDUCE

are integers. The Map task reads a document and breaks it into its sequence
of words w1, ws, ..., w,. It then emits a sequence of key-value pairs where the
value is always 1. That is, the output of the Map task for this document is the
sequence of key-value pairs:

(w1,1), (we,1),..., (wn,1)

Note that a single Map task will typically process many documents — all
the documents in one or more chunks. Thus, its output will be more than the
sequence for the one document suggested above. Note also that if a word w
appears m times among all the documents assigned to that process, then there
will be m key-value pairs (w, 1) among its output. An option, which we discuss
in Section 2.2.4, is to combine these m pairs into a single pair (w, m), but we
can only do that because, as we shall see, the Reduce tasks apply an associative
and commutative operation, addition, to the values. O

2.2.2 Grouping and Aggregation

Grouping and aggregation is done the same way, regardless of what Map and
Reduce tasks do. The master controller process knows how many Reduce tasks
there will be, say r such tasks. The user typically tells the map-reduce system
what 7 should be. Then the master controller normally picks a hash function
that applies to keys and produces a bucket number from 0 to » — 1. Each key
that is output by a Map task is hashed and its key-value pair is put in one of
r local files. Each file is destined for one of the Reduce tasks.!

After all the Map tasks have completed successfully, the master controller
merges the file from each Map task that are destined for a particular Reduce
task and feeds the merged file to that process as a sequence of key-list-of-value
pairs. That is, for each key k, the input to the Reduce task that handles key
k is a pair of the form (k, [v1,va,...,v,]), where (k,v1), (k,v2),...,(k,v,) are
all the key-value pairs with key k& coming from all the Map tasks.

2.2.3 The Reduce Tasks

The Reduce function is written to take pairs consisting of a key and its list
of associated values and combine those values in some way. The output of a
Reduce task is a sequence of key-value pairs consisting of each input key k that
the Reduce task received, paired with the combined value constructed from the
list of values that the Reduce task received along with key k. The outputs from
all the Reduce tasks are merged into a single file.

Example 2.2: Let us continue with the word-count example of Example 2.1.
The Reduce function simply adds up all the values. Thus, the output of the

LOptionally, users can specify their own hash function or other method for assigning keys
to Reduce tasks. However, whatever algorithm is used, each key is assigned to one and only
one Reduce task.

2.2. MAP-REDUCE 25

Implementations of Map-Reduce

The original implementation of map-reduce was as an internal and propri-
etary system at Google. It was called simply “Map-Reduce.” There is an
open-source implementation called Hadoop. It can be downloaded, along
with the HDFS distributed file system, from the Apache Foundation.

Reduce tasks is a sequence of (w,m) pairs, where w is a word that appears
at least once among all the input documents and m is the total number of
occurrences of w among all those documents. O

2.2.4 Combiners

It is common for the Reduce function to be associative and commutative. That
is, the values to be combined can be combined in any order, with the same
result. The addition performed in Example 2.2 is an example of an associative
and commutative operation. It doesn’t matter how we group a list of numbers
V1,03, ...,Un; the sum will be the same.

When the Reduce function is associative and commutative, it is possible to
push some of what Reduce does to the Map tasks. For example, instead of the
Map tasks in Example 2.1 producing many pairs (w,1), (w,1),..., we could
apply the Reduce function within the Map task, before the output of the Map
tasks is subject to grouping and aggregation. These key-value pairs would thus
be replaced by one pair with key w and value equal to the sum of all the 1’s in
all those pairs. That is, the pairs with key w generated by a single Map task
would be combined into a pair (w,m), where m is the number of times that w
appears among the documents handled by this Map task. Note that it is still
necessary to do grouping and aggregation and to pass the result to the Reduce
tasks, since there will typically be one key-value pair with key w coming from
each of the Map tasks.

2.2.5 Details of Map-Reduce Execution

Let us now consider in more detail how a program using map-reduce is executed.
Figure 2.3 offers an outline of how processes, tasks, and files interact. Taking
advantage of a library provided by a map-reduce system such as Hadoop, the
user program forks a Master controller process and some number of Worker
processes at different compute nodes. Normally, a Worker handles either Map
tasks (a Map worker) or Reduce tasks (a Reduce worker), but not both.

The Master has many responsibilities. One is to create some number of
Map tasks and some number of Reduce tasks, these numbers being selected
by the user program. These tasks will be assigned to Worker processes by the
Master. It is reasonable to create one Map task for every chunk of the input

26 CHAPTER 2. LARGE-SCALE FILE SYSTEMS AND MAP-REDUCE

User
Program
/7 N\

’
’ \

N
|
y ifork '«
N

’ . l\.’;lls&gn assign~_ N
A ap Reduce™~ '\

(worker)
Input \.—, /

Data Output

Intermediate File
Files

Figure 2.3: Overview of the execution of a map-reduce program

file(s), but we may wish to create fewer Reduce tasks. The reason for limiting
the number of Reduce tasks is that it is necessary for each Map task to create
an intermediate file for each Reduce task, and if there are too many Reduce
tasks the number of intermediate files explodes.

The Master keeps track of the status of each Map and Reduce task (idle,
executing at a particular Worker, or completed). A Worker process reports to
the Master when it finishes a task, and a new task is scheduled by the Master
for that Worker process.

Each Map task is assigned one or more chunks of the input file(s) and
executes on it the code written by the user. The Map task creates a file for
each Reduce task on the local disk of the Worker that executes the Map task.
The Master is informed of the location and sizes of each of these files, and the
Reduce task for which each is destined. When a Reduce task is assigned by the
Master to a Worker process, that task is given all the files that form its input.
The Reduce task executes code written by the user and writes its output to a
file that is part of the surrounding distributed file system.

2.2.6 Coping With Node Failures

The worst thing that can happen is that the compute node at which the Master
is executing fails. In this case, the entire map-reduce job must be restarted.
But only this one node can bring the entire process down; other failures will be

2.3. ALGORITHMS USING MAP-REDUCE 27

managed by the Master, and the map-reduce job will complete eventually.

Suppose the compute node at which a Map worker resides fails. This fail-
ure will be detected by the Master, because it periodically pings the Worker
processes. All the Map tasks that were assigned to this Worker will have to
be redone, even if they had completed. The reason for redoing completed Map
tasks is that their output destined for the Reduce tasks resides at that compute
node, and is now unavailable to the Reduce tasks. The Master sets the status
of each of these Map tasks to idle and will schedule them on a Worker when
one becomes available. The Master must also inform each Reduce task that the
location of its input from that Map task has changed.

Dealing with a failure at the node of a Reduce worker is simpler. The Master
simply sets the status of its currently executing Reduce tasks to idle. These
will be rescheduled on another reduce worker later.

2.3 Algorithms Using Map-Reduce

Map-reduce is not a solution to every problem, not even every problem that
profitably can use many compute nodes operating in parallel. As we mentioned
in Section 2.1.2, the entire distributed-file-system milieu makes sense only when
files are very large and are rarely updated in place. Thus, we would not expect
to use either a DFS or an implementation of map-reduce for managing on-
line retail sales, even though a large on-line retailer such as Amazon.com uses
thousands of compute nodes when processing requests over the Web. The reason
is that the principal operations on Amazon data involve responding to searches
for products, recording sales, and so on, processes that involve relatively little
calculation and that change the database.? On the other hand, Amazon might
use map-reduce to perform certain analytic queries on large amounts of data,
such as finding for each user those users whose buying patterns were most
similar.

The original purpose for which the Google implementation of map-reduce
was created was to execute very large matrix-vector multiplications as are
needed in the calculation of PageRank (See Chapter 5). We shall see that
matrix-vector and matrix-matrix calculations fit nicely into the map-reduce
style of computing. Another important class of operations that can use map-
reduce effectively are the relational-algebra operations. We shall examine the
map-reduce execution of these operations as well.

2.3.1 Matrix-Vector Multiplication by Map-Reduce

Suppose we have an n X n matrix M, whose element in row ¢ and column j will
be denoted m;;. Suppose we also have a vector v of length n, whose jth element
is v;. Then the matrix-vector product is the vector x of length n, whose ith

2Remember that even looking at a product you don’t buy causes Amazon to remember
that you looked at it.

28 CHAPTER 2. LARGE-SCALE FILE SYSTEMS AND MAP-REDUCE

element z; is given by
n
xXr; = E mijvj
Jj=1

If n = 100, we do not want to use a DF'S or map-reduce for this calculation.
But this sort of calculation is at the heart of the ranking of Web pages that goes
on at search engines, and there, n is in the tens of billions.? Let us first assume
that n is large, but not so large that vector v cannot fit in main memory, and
be part of the input to every Map task. It is useful to observe at this time that
there is nothing in the definition of map-reduce that forbids providing the same
input to more than one Map task.

The matrix M and the vector v each will be stored in a file of the DFS. We
assume that the row-column coordinates of each matrix element will be discov-
erable, either from its position in the file, or because it is stored with explicit
coordinates, as a triple (4, j, m;;). We also assume the position of element v; in
the vector v will be discoverable in the analogous way.

The Map Function: Each Map task will take the entire vector v and a chunk
of the matrix M. From each matrix element m;; it produces the key-value pair
(¢,mi;v;). Thus, all terms of the sum that make up the component x; of the
matrix-vector product will get the same key.

The Reduce Function: A Reduce task has simply to sum all the values as-
sociated with a given key i. The result will be a pair (7, ;).

2.3.2 If the Vector v Cannot Fit in Main Memory

However, it is possible that the vector v is so large that it will not fit in its
entirety in main memory. We don’t have to fit it in main memory at a compute
node, but if we do not then there will be a very large number of disk accesses
as we move pieces of the vector into main memory to multiply components by
elements of the matrix. Thus, as an alternative, we can divide the matrix into
vertical stripes of equal width and divide the vector into an equal number of
horizontal stripes, of the same height. Our goal is to use enough stripes so that
the portion of the vector in one stripe can fit conveniently into main memory at
a compute node. Figure 2.4 suggests what the partition looks like if the matrix
and vector are each divided into five stripes.

The ith stripe of the matrix multiplies only components from the ith stripe
of the vector. Thus, we can divide the matrix into one file for each stripe, and
do the same for the vector. Each Map task is assigned a chunk from one of
the stripes of the matrix and gets the entire corresponding stripe of the vector.
The Map and Reduce tasks can then act exactly as was described above for the
case where Map tasks get the entire vector.

3The matrix is sparse, with on the average of 10 to 15 nonzero elements per row, since the
matrix represents the links in the Web, with m;; nonzero if and only if there is a link from
page j to page i. Note that there is no way we could store a dense matrix whose side was
1019, since it would have 1020 elements.

2.3. ALGORITHMS USING MAP-REDUCE 29

Matrix M Vector v

Figure 2.4: Division of a matrix and vector into five stripes

We shall take up matrix-vector multiplication using map-reduce again in
Section 5.2. There, because of the particular application (PageRank calcula-
tion), we have an additional constraint that the result vector should be par-
titioned in the same way as the input vector, so the output may become the
input for another iteration of the matrix-vector multiplication. We shall see
there that the best strategy involves partitioning the matrix M into square
blocks, rather than stripes.

2.3.3 Relational-Algebra Operations

There are a number of operations on large-scale data that are used in database
queries. In many traditional database applications, these queries involve re-
trieval of small amounts of data, even though the database itself may be large.
For example, a query may ask for the bank balance of one particular account.
Such queries are not useful applications of map-reduce.

However, there are many operations on data that can be described easily in
terms of the common database-query primitives, even if the queries themselves
are not executed within a database management system. Thus, a good start-
ing point for seeing applications of map-reduce is by considering the standard
operations on relations. We assume you are familiar with database systems,
the query language SQL, and the relational model, but to review, a relation is
a table with column headers called attributes. Rows of the relation are called
tuples. The set of attributes of a relation is called its schema. We often write
an expression like R(A1, Asa, ..., A,) to say that the relation name is R and its
attributes are Ay, Ao, ..., A,.

Example 2.3: In Fig. 2.5 we see part of the relation Links that describes the
structure of the Web. There are two attributes, From and To. A row, or tuple,
of the relation is a pair of URL’s, such that there is at least one link from
the first URL to the second. For instance, the first row of Fig. 2.5 is the pair

30 CHAPTER 2. LARGE-SCALE FILE SYSTEMS AND MAP-REDUCE

From | To

urll | url2

urll | url3
url2 | url3
url2 | urléd

Figure 2.5: Relation Links consists of the set of pairs of URL’s, such that the
first has one or more links to the second

(urll,url2) that says the Web page urll has a link to page url2. While we
have shown only four tuples, the real relation of the Web, or the portion of it
that would be stored by a typical search engine, has billions of tuples. O

A relation, however large, can be stored as a file in a distributed file system.
The elements of this file are the tuples of the relation.

There are several standard operations on relations, often referred to as re-
lational algebra, that are used to implement queries. The queries themselves
usually are written in SQL. The relational-algebra operations we shall discuss
are:

1. Selection: Apply a condition C to each tuple in the relation and produce
as output only those tuples that satisfy C'. The result of this selection is
denoted o¢(R).

2. Projection: For some subset S of the attributes of the relation, produce
from each tuple only the components for the attributes in S. The result
of this projection is denoted 7g(R).

3. Union, Intersection, and Difference: These well-known set operations
apply to the sets of tuples in two relations that have the same schema.
There are also bag (multiset) versions of the operations in SQL, with
somewhat unintuitive definitions, but we shall not go into the bag versions
of these operations here.

4. Natural Join: Given two relations, compare each pair of tuples, one from
each relation. If the tuples agree on all the attributes that are common
to the two schemas, then produce a tuple that has components for each
of the attributes in either schema and agrees with the two tuples on each
attribute. If the tuples disagree on one or more shared attributes, then
produce nothing from this pair of tuples. The natural join of relations R
and S is denoted R t<1.S. While we shall discuss executing only the nat-
ural join with map-reduce, all equijoins (joins where the tuple-agreement
condition involves equality of attributes from the two relations that do not
necessarily have the same name) can be executed in the same manner. We
shall give an illustration in Example 2.4.

2.3. ALGORITHMS USING MAP-REDUCE 31

5. Grouping and Aggregation:* Given a relation R, partition its tuples

according to their values in one set of attributes G, called the grouping
attributes. Then, for each group, aggregate the values in certain other at-
tributes. The normally permitted aggregations are SUM, COUNT, AVG,
MIN, and MAX, with the obvious meanings. Note that MIN and MAX
require that the aggregrated attributes have a type that can be compared,
e.g., numbers or strings, while SUM and AVG require that the type be
arithmetic. We denote a grouping-and-aggregation operation on a relation
R by vx(R), where X is a list of elements that are either

(a) A grouping attribute, or

(b) An expression 6(A), where 0 is one of the five aggregation opera-
tions such as SUM, and A is an attribute not among the grouping
attributes.

The result of this operation is one tuple for each group. That tuple has
a component for each of the grouping attributes, with the value common
to tuples of that group, and a component for each aggregation, with the
aggregated value for that group. We shall see an illustration in Exam-
ple 2.5.

Example 2.4: Let us try to find the paths of length two in the Web, using
the relation Links of Fig. 2.5. That is, we want to find the triples of URL’s
(u,v,w) such that there is a link from « to v and a link from v to w. We
essentially want to take the natural join of Links with itself, but we first need
to imagine that it is two relations, with different schemas, so we can describe the
desired connection as a natural join. Thus, imagine that there are two copies
of Links, namely L1(U1,U2) and L2(U2,U3). Now, if we compute L1 > L2,
we shall have exactly what we want. That is, for each tuple ¢1 of L1 (i.e.,
each tuple of Links) and each tuple ¢2 of L2 (another tuple of Links, possibly
even the same tuple), see if their U2 components are the same. Note that
these components are the second component of t1 and the first component of
t2. If these two components agree, then produce a tuple for the result, with
schema (U1,U2,U3). This tuple consists of the first component of ¢1, the
second component of ¢t1 (which must equal the first component of ¢2), and the
second component of 2.

We may not want the entire path of length two, but only want the pairs
(u, w) of URL’s such that there is at least one path from u to w of length two. If
so, we can project out the middle components by computing my1,r3(L1 > L2).
O

Example 2.5: Imagine that a social-networking site has a relation

4Some descriptions of relational algebra do not include these operations, and indeed they
were not part of the original definition of this algebra. However, these operations are so
important in SQL, that modern treatments of relational algebra include them.

32 CHAPTER 2. LARGE-SCALE FILE SYSTEMS AND MAP-REDUCE

Friends(User, Friend)

This relation has tuples that are pairs (a, b) such that b is a friend of a. The site
might want to develop statistics about the number of friends members have.
Their first step would be to compute a count of the number of friends of each
user. This operation can be done by grouping and aggregation, specifically

YUser,COUNT (Friend) (Friends)

This operation groups all the tuples by the value in their first component, so
there is one group for each user. Then, for each group the count of the number
of friends of that user is made.? The result will be one tuple for each group,
and a typical tuple would look like (Sally, 300), if user “Sally” has 300 friends.
O

2.3.4 Computing Selections by Map-Reduce

Selections really do not need the full power of map-reduce. They can be done
most conveniently in the map portion alone, although they could also be done
in the reduce portion alone. Here is a map-reduce implementation of selection
oc (R)

The Map Function: For each tuple ¢ in R, test if it satisfies C. If so, produce
the key-value pair (¢,t). That is, both the key and value are t.

The Reduce Function: The Reduce function is the identity. It simply passes
each key-value pair to the output.

Note that the output is not exactly a relation, because it has key-value pairs.
However, a relation can be obtained by using only the value components (or
only the key components) of the output.

2.3.5 Computing Projections by Map-Reduce

Projection is performed similarly to selection, because projection may cause
the same tuple to appear several times, the Reduce function must eliminate
duplicates. We may compute mg(R) as follows.

The Map Function: For each tuple ¢ in R, construct a tuple ¢’ by eliminating
from ¢ those components whose attributes are not in S. Output the key-value
pair (¢,t').

The Reduce Function: For each key ¢’ produced by any of the Map tasks,
there will be one or more key-value pairs (¢',¢'). The Reduce function turns
', [t',¢,...,t']) into (¢',1'), so it produces exactly one pair (t',t') for this key
.

5The COUNT operation applied to an attribute does not consider the values of that
attribute, so it is really counting the number of tuples in the group. In SQL, there is a
count-distinct operator that counts the number of different values, but we do not discuss this
operator here.

2.3. ALGORITHMS USING MAP-REDUCE 33

Observe that the Reduce operation is duplicate elimination. This operation
is associative and commutative, so a combiner associated with each Map task
can eliminate whatever duplicates are produced locally. However, the Reduce
tasks are still needed to eliminate two identical tuples coming from different
Map tasks.

2.3.6 Union, Intersection, and Difference by Map-Reduce

First, consider the union of two relations. Suppose relations R and S have the
same schema. Map tasks will be assigned chunks from either R or S; it doesn’t
matter which. The Map tasks don’t really do anything except pass their input
tuples as key-value pairs to the Reduce tasks. The latter need only eliminate
duplicates as for projection.

The Map Function: Turn each input tuple ¢ into a key-value pair (¢,t).

The Reduce Function: Associated with each key ¢ there will be either one or
two values. Produce output (¢,t) in either case.

To compute the intersection, we can use the same Map function. However,
the Reduce function must produce a tuple only if both relations have the tuple.
If the key ¢ has two values [t,t] associated with it, then the Reduce task for
t should produce (¢,t). However, if the value associated with key t is just [¢],
then one of R and S is missing ¢, so we don’t want to produce a tuple for the
intersection. We need to produce a value that indicates “no tuple,” such as the
SQL value NULL. When the result relation is constructed from the output, such
a tuple will be ignored.

The Map Function: Turn each tuple ¢ into a key-value pair (¢,).

The Reduce Function: If key ¢ has value list [t,], then produce (¢,t). Oth-
erwise, produce (¢, NULL).

The Difference R — S requires a bit more thought. The only way a tuple
t can appear in the output is if it is in R but not in S. The Map function
can pass tuples from R and S through, but must inform the Reduce function
whether the tuple came from R or S. We shall thus use the relation as the
value associated with the key ¢. Here is a specification for the two functions.

The Map Function: For a tuple ¢ in R, produce key-value pair (¢, R), and for
a tuple t in S, produce key-value pair (¢,5). Note that the intent is that the
value is the name of R or S, not the entire relation.

The Reduce Function: For each key ¢, do the following.

1. If the associated value list is [R], then produce (¢,t).

2. If the associated value list is anything else, which could only be [R, S],
[S, R], or [S], produce (¢, NULL).

34 CHAPTER 2. LARGE-SCALE FILE SYSTEMS AND MAP-REDUCE

2.3.7 Computing Natural Join by Map-Reduce

The idea behind implementing natural join via map-reduce can be seen if we
look at the specific case of joining R(A, B) with S(B,C). We must find tuples
that agree on their B components, that is the second component from tuples
of R and the first component of tuples of S. We shall use the B-value of tuples
from either relation as the key. The value will be the other component and the
name of the relation, so the Reduce function can know where each tuple came
from.

The Map Function: For each tuple (a,b) of R, produce the key-value pair
(b, (R, a)). For each tuple (b, c) of S, produce the key-value pair (b, (S, c))
The Reduce Function: Each key value b will be associated with a list of pairs
that are either of the form (R, a) or (S, ¢). Construct all pairs consisting of one
with first component R and the other with first component S, say (R, a) and
(S, ¢). The output for key bis (b, [(a1,b,c1), (az,b,c2),...]), that is, b associated
with the list of tuples that can be formed from an R-tuple and an S-tuple with
a common b value.

There are a few observations we should make about this join algorithm.
First, the relation that is the result of the join is recovered by taking all the
tuples that appear on the lists for any key. Second, map-reduce implementations
such as Hadoop pass values to the Reduce tasks sorted by key. If so, then
identifying all the tuples from both relations that have key b is easy. If another
implementation were not to provide key-value pairs sorted by key, then the
Reduce function could still manage its task efficiently by hashing key-value
pairs locally by key. If enough buckets were used, most buckets would have
only one key. Finally, if there are n tuples of R with B-value b and m tuples
from S with B-value b, then there are mn tuples with middle component b in
the result. In the extreme case, all tuples from R and S have the same b-value,
and we are really taking a Cartesian product. However, it is quite common for
the number of tuples with shared B-values to be small, and in that case, the
time complexity of the Reduce function is closer to linear in the relation sizes
than to quadratic.

2.3.8 Generalizing the Join Algorithm

The same algorithm works if the relations have more than two attributes. You
can think of A as representing all those attributes in the schema of R but not
S. B represents the attributes in both schemas, and C represents attributes
only in the schema of S. The key for a tuple of R or S is the list of values in all
the attributes that are in the schemas of both R and S. The value for a tuple
of R is the name R and the values of all the attributes of R but not .S, and the
value for a tuple of S is the name S and the values of the attributes of S but
not R.

The Reduce function looks at all the key-value pairs with a given key and
combines those values from R with those values of S in all possible ways. From

2.3. ALGORITHMS USING MAP-REDUCE 35

each pairing, the tuple produced has the values from R, the key values, and the
values from S.

2.3.9 Grouping and Aggregation by Map-Reduce

As with the join, we shall discuss the minimal example of grouping and aggrega-
tion, where there is one grouping attribute and one aggregation. Let R(A, B, C)
be a relation to which we apply the operator v4 ¢(5)(R). Map will perform the
grouping, while Reduce does the aggregation.

The Map Function: For each tuple (a, b, ¢) produce the key-value pair (a, b).

The Reduce Function: Each key a represents a group. Apply the aggregation
operator 6 to the list [b1,ba,...,b,] of B-values associated with key a. The
output is the pair (a,z), where z is the result of applying 6 to the list. For
example, if 0 is SUM, then & = by + by + - - - + by, and if 0 is MAX, then x is
the largest of by, ba, ..., by,.

If there are several grouping attributes, then the key is the list of the values
of a tuple for all these attributes. If there is more than one aggregation, then
the Reduce function applies each of them to the list of values associated with
a given key and produces a tuple consisting of the key, including components
for all grouping attributes if there is more than one, followed by the results of
each of the aggregations.

2.3.10 Matrix Multiplication

If M is a matrix with element m;; in row ¢ and column j, and N is a matrix
with element n;; in row j and column k, then the product P = MN is the
matrix P with element p;; in row ¢ and column k, where

DPir = E MmNk
J

It is required that the number of columns of M equals the number of rows of
N, so the sum over j makes sense.

We can think of a matrix as a relation with three attributes: the row number,
the column number, and the value in that row and column. Thus, we could
view matrix M as arelation M (I, J, V'), with tuples (3, j, m;;) and we could view
matrix N as a relation N (J, K, W), with tuples (j, k, n;z). As large matrices are
often sparse (mostly 0’s), and since we can omit the tuples for matrix elements
that are 0, this relational representation is often a very good one for a large
matrix. However, it is possible that ¢, j, and k are implicit in the position of a
matrix element in the file that represents it, rather than written explicitly with
the element itself. In that case, the Map function will have to be designed to
construct the I, J, and K components of tuples from the position of the data.

The product M N is almost a natural join followed by grouping and ag-
gregation. That is, the natural join of M(I,J,V) and N(J, K, W), having

36 CHAPTER 2. LARGE-SCALE FILE SYSTEMS AND MAP-REDUCE

only attribute J in common, would produce tuples (i, j, k, v, w) from each tuple
(i,4,v) in M and tuple (4, k,w) in N. This five-component tuple represents the
pair of matrix elements (m;;,n;;). What we want instead is the product of
these elements, that is, the four-component tuple (i, j, k,v X w), because that
represents the product m;;n; ;. Once we have this relation as the result of one
map-reduce operation, we can perform grouping and aggregation, with I and
K as the grouping attributes and the sum of V' x W as the aggregation. That
is, we can implement matrix multiplication as the cascade of two map-reduce
operations, as follows. First:

The Map Function: Send each matrix element m;; to the key value pair
(ja (Ma ia ng))

Send each matrix element n;; to the key value pair (j, (N, k, njk))

The Reduce Function: For each key j, examine its list of associated values.
For each value that comes from M, say (M, 1, mij)), and each value that comes
from N, say (IV, k, njk)), produce the tuple (¢, k, m;jn;,). Note that the output
of the Reduce function is a key j paired with the list of all the tuples of this
form that we get from j.

Now, we perform a grouping and aggregation by another map-reduce operation.

The Map Function: The elements to which this Map function is applied are
the pairs that are output from the previous Reduce function. These pairs are
of the form

(jv [(ilv k1, v1)7 (iQ’ ka, UQ)’ RS (ip’ kp’ Up)]

where each v, is the product of elements m;_; and nji,. From this element we
produce p key-value pairs:

((il, kl),’Ul), ((ig, kg), UQ), ey ((Zp, kp),’Up)

The Reduce Function: For each key (i, k), produce the sum of the list of
values associated with this key. The result is a pair ((z, k),v), where v is the
value of the element in row 7 and column k of the matrix P = M N.

2.3.11 Matrix Multiplication with One Map-Reduce Step

There often is more than one way to use map-reduce to solve a problem. You
may wish to use only a single map-reduce pass to perform matrix multiplication
P = MN. It is possible to do so if we put more work into the two functions.
Start by using the Map function to create the sets of matrix elements that are
needed to compute each element of the answer P. Notice that an element of
M or N contributes to many elements of the result, so one input element will
be turned into many key-value pairs. The keys will be pairs (i, k), where i is a
row of M and k is a column of N. Here is a synopsis of the Map and Reduce
functions.

o=

2.3. ALGORITHMS USING MAP-REDUCE 37

The Map Function: For each element m;; of M, produce a key-value pair
((i,k), (M,j,mij)) for k =1,2,..., up to the number of columns of N. Also,
for each element nj, of N, produce a key-value pair ((i,k), (N, 4, njk)) for
1=1,2,..., up to the number of rows of M.

The Reduce Function: Each key (i, k) will have an associated list with all
the values (M, j,m;;) and (N, j,n;x), for all possible values of j. The Reduce
function needs to connect the two values on the list that have the same value of
j, for each j. An easy way to do this step is to sort by j the values that begin
with M and sort by j the values that begin with N, in separate lists. The jth
values on each list must have their third components, m;; and n;, extracted
and multiplied. Then, these products are summed and the result is paired with
(i, k) in the output of the Reduce function.

You may notice that if a row of the matrix M or a column of the matrix N
is so large that it will not fit in main memory, then the Reduce tasks will be
forced to use an external sort to order the values associated with a given key
(i, k). However, in that case, the matrices themselves are so large, perhaps 10%°
elements, that it is unlikely we would attempt this calculation if the matrices
were dense. If they are sparse, then we would expect many fewer values to be
associated with any one key, and it would be feasible to do the sum of products
in main memory.

2.3.12 Exercises for Section 2.3

Exercise 2.3.1: Design map-reduce algorithms to take a very large file of
integers and produce as output:

(a) The largest integer.
(b

The average of all the integers.

(c) The same set of integers, but with each integer appearing only once.

)
)
)
(d) The count of the number of distinct integers in the input.

Exercise 2.3.2: Our formulation of matrix-vector multiplication assumed that
the matrix M was square. Generalize the algorithm to the case where M is an
r-by-c matrix for some number of rows r and columns c.

Exercise 2.3.3: In the form of relational algebra implemented in SQL, rela-
tions are not sets, but bags; that is, tuples are allowed to appear more than
once. There are extended definitions of union, intersection, and difference for
bags, which we shall define below. Write map-reduce algorithms for computing
the following operations on bags R and S:

(a) Bag Union, defined to be the bag of tuples in which tuple ¢ appears the
sum of the numbers of times it appears in R and S.

38 CHAPTER 2. LARGE-SCALE FILE SYSTEMS AND MAP-REDUCE

(b) Bag Intersection, defined to be the bag of tuples in which tuple ¢ appears
the minimum of the numbers of times it appears in R and S.

(¢) Bag Difference, defined to be the bag of tuples in which the number of
times a tuple ¢t appears is equal to the number of times it appears in R
minus the number of times it appears in S. A tuple that appears more
times in S than in R does not appear in the difference.

! Exercise 2.3.4: Selection can also be performed on bags. Give a map-reduce
implementation that produces the proper number of copies of each tuple ¢ that
passes the selection condition. That is, produce key-value pairs from which the
correct result of the selection can be obtained easily from the values.

Exercise 2.3.5: The relational-algebra operation R(A, B) < p<c S(C,D)
produces all tuples (a, b, ¢, d) such that tuple (a, b) is in relation R, tuple (¢, d) is
in S, and b < ¢. Give a map-reduce implementation of this operation, assuming
R and S are sets.

2.4 Extensions to Map-Reduce

Map-reduce has proved so influential that it has spawned a number of extensions
and modifications. These systems typically share a number of characteristics
with map-reduce systems:

1. They are built on a distributed file system.

2. They manage very large numbers of tasks that are instantiations of a
small number of user-written functions.

3. They incorporate a method for dealing with most of the failures that
occur during the execution of a large job, without having to restart that
job from the beginning.

In this section, we shall mention some of the interesting directions being ex-
plored. References to the details of the systems mentioned can be found in the
bibliographic notes for this chapter.

2.4.1 Workflow Systems

Two experimental systems called Clustera from the University of Wisconsin and
Hyracks from the University of California at Irvine extend map-reduce from the
simple two-step workflow (the Map function feeds the Reduce function) to any
collection of functions, with an acyclic graph representing workflow among the
functions. That is, there is an acyclic flow graph whose arcs a — b represent
the fact that function a’s output is input to function b. A suggestion of what a
workflow might look like is in Fig. 2.6. There, five functions, f through j, pass

2.4. EXTENSIONS TO MAP-REDUCE 39

data from left to right in specific ways, so the flow of data is acyclic and no task
needs to provide data out before its input is available. For instance, function h
takes ts input from a preexisting file of the distributed file system. Each of h’s
output elements is passed to at least one of the functions ¢ and j.

e

Figure 2.6: An example of a workflow that is more complex than Map feeding
Reduce

In analogy to Map and Reduce functions, each function of a workflow can
be executed by many tasks, each of which is assigned a portion of the input to
the function. A master controller is responsible for dividing the work among
the tasks that implement a function, usually by hashing the input elements to
decide on the proper task to receive an element. Thus, like Map tasks, each task
implementing a function f has an output file of data destined for each of the
tasks that implement the successor function(s) of f. These files are delivered
by the Master at the appropriate time — after the task has completed its work.

The functions of a workflow, and therefore the tasks, share with map-reduce
tasks the important property that they only deliver output after they complete.
As a result, if a task fails, it has not delivered output to any of its successors
in the flow graph. A master controller can therefore restart the failed task at
another compute node, without worrying that the output of the restarted task
will duplicate output that previously was passed to some other task.

Many applications of workflow systems such as Clustera or Hyracks are
cascades of map-reduce jobs. An example would be the join of three relations,
where one map-reduce job joins the first two relations, and a second map-reduce
job joins the third relation with the result of joining the first two relations. Both
jobs would use an algorithm like that of Section 2.3.7.

There is an advantage to implementing such cascades as a single workflow.
For example, the flow of data among tasks, and its replication, can be managed
by the master controller, without need to store the temporary file that is output
of one map-reduce job in the distributed file system. By locating tasks at
compute nodes that have a copy of their input, we can avoid much of the
communication that would be necessary if we stored the result of one map-
reduce job and then initiated a second map-reduce job (although Hadoop and
other map-reduce systems also try to locate Map tasks where a copy of their
input is already present).

40 CHAPTER 2. LARGE-SCALE FILE SYSTEMS AND MAP-REDUCE

2.4.2 Recursive Extensions to Map-Reduce

Many large-scale computations are really recursions. An important example is
PageRank, which is the subject of Chapter 5. That computation is, in sim-
ple terms, the computation of the fixedpoint of a matrix-vector multiplication.
It is computed under map-reduce systems by the iterated application of the
matrix-vector multiplication algorithm described in Section 2.3.1, or by a more
complex strategy that we shall introduce in Section 5.2. The iteration typi-
cally continues for an unknown number of steps, each step being a map-reduce
job, until the results of two consecutive iterations are sufficiently close that we
believe convergence has occurred.

The reason recursions are normally implemented by iterated map-reduce
jobs is that a true recursive task does not have the property necessary for
independent restart of failed tasks. It is impossible for a collection of mutually
recursive tasks, each of which has an output that is input to at least some of
the other tasks, to produce output only at the end of the task. If they all
followed that policy, no task would ever receive any input, and nothing could
be accomplished. As a result, some mechanism other than simple restart of
failed tasks must be implemented in a system that handles recursive workflows
(flow graphs that are not acyclic). We shall start by studying an example of a
recursion implemented as a workflow, and then discuss approaches to dealing
with task failures.

Example 2.6: Suppose we have a directed graph whose arcs are represented
by the relation F(X,Y’), meaning that there is an arc from node X to node Y.
We wish to compute the paths relation P(X,Y’), meaning that there is a path
of length 1 or more from node X to node Y. A simple recursive algorithm to
do so is:

1. Start with P(X,Y) = E(X,Y).
2. While changes to the relation P occur, add to P all tuples in
TXY (R(X, Z)= R(Z, Y))

That is, find pairs of nodes X and Y such that for some node Z there is
known to be a path from X to Z and also a path from Z to Y.

Figure 2.7 suggests how we could organize recursive tasks to perform this
computation. There are two kinds of tasks: Join tasks and Dup-elim tasks.
There are n Join tasks, for some n, and each corresponds to a bucket of a hash
function h. A path tuple P(a,b), when it is discovered, becomes input to two
Join tasks: those numbered h(a) and h(b). The job of the ith Join task, when
it receives input tuple P(a,b), is to find certain other tuples seen previously
(and stored locally by that task).

1. Store P(a,b) locally.

2.4. EXTENSIONS TO MAP-REDUCE 41

Join Dup-elim
task task
0 0
Join Dup-elim To join task h(c)
task task
1 1
P(c.d) if Dup-elim
g9(c.d) =] task
. i P(c,d) if never
P(a.p) if . Join seen before
h(@) =ior tzlisk
h(b) =i .

To join task h(d)

Figure 2.7: Implementation of transitive closure by a collection of recursive
tasks

2. If h(a) = i then look for tuples P(z,a) and produce output tuple P(x,b).

3. If h(b) = i then look for tuples P(b,y) and produce output tuple P(a,y).

Note that in rare cases, we have h(a) = h(b), so both (2) and (3) are executed.
But generally, only one of these needs to be executed for a given tuple.

There are also m Dup-elim tasks, and each corresponds to a bucket of a hash
function g that takes two arguments. If P(c,d) is an output of some Join task,
then it is sent to Dup-elim task j = g(c¢,d). On receiving this tuple, the jth
Dup-elim task checks that it had not received it before, since its job is duplicate
elimination. If previously received, the tuple is ignored. But if this tuple is new,
it is stored locally and sent to two Join tasks, those numbered h(c) and h(d).

Every Join task has m output files — one for each Dup-elim task — and every
Dup-elim task has n output files — one for each Join task. These files may be
distributed according to any of several strategies. Initially, the F(a,b) tuples
representing the arcs of the graph are distributed to the Dup-elim tasks, with
E(a,b) being sent as P(a,b) to Dup-elim task g(a,b). The Master can wait until
each Join task has processed its entire input for a round. Then, all output files

42 CHAPTER 2. LARGE-SCALE FILE SYSTEMS AND MAP-REDUCE

are distributed to the Dup-elim tasks, which create their own output. That
output is distributed to the Join tasks and becomes their input for the next
round. Alternatively, each task can wait until it has produced enough output
to justify transmitting its output files to their destination, even if the task has
not consumed all its input. O

In Example 2.6 it is not essential to have two kinds of tasks. Rather, Join
tasks could eliminate duplicates as they are received, since they must store their
previously received inputs anyway. However, this arrangement has an advantage
when we must recover from a task failure. If each task stores all the output
files it has ever created, and we place Join tasks on different racks from the
Dup-elim tasks, then we can deal with any single compute node or single rack
failure. That is, a Join task needing to be restarted can get all the previously
generated inputs that it needs from the Dup-elim tasks, and vice-versa.

In the particular case of computing transitive closure, it is not necessary to
prevent a restarted task from generating outputs that the original task gener-
ated previously. In the computation of the transitive closure, the rediscovery of
a path does not influence the eventual answer. However, many computations
cannot tolerate a situation where both the original and restarted versions of a
task pass the same output to another task. For example, if the final step of the
computation were an aggregation, say a count of the number of nodes reached
by each node in the graph, then we would get the wrong answer if we counted
a path twice. In such a case, the master controller can record what files each
task generated and passed to other tasks. It can then restart a failed task and
ignore those files when the restarted version produces them a second time.

2.4.3 Pregel

Another approach to managing failures when implementing recursive algorithms
on a computing cluster is represented by the Pregel system. This system views
its data as a graph. Each node of the graph corresponds roughly to a task
(although in practice many nodes of a large graph would be bundled into a
single task, as in the Join tasks of Example 2.6). FEach graph node generates
output messages that are destined for other nodes of the graph, and each graph
node processes the inputs it receives from other nodes.

Example 2.7: Suppose our data is a collection of weighted arcs of a graph,
and we want to find, for each node of the graph, the length of the shortest
path to each of the other nodes. Initially, each graph node a stores the set of
pairs (b,w) such that there is an arc from a to b of weight w. These facts are
initially sent to all other nodes, as triples (a,b,w).® When the node a receives
a triple (¢, d,w), it looks up its current distance to ¢; that is, it finds the pair
(c,v) stored locally, if there is one. It also finds the pair (d,u) if there is one.

6This algorithm uses much too much communication, but it will serve as a simple example
of the Pregel computation model.

o—

o—

2.5. EFFICIENCY OF CLUSTER-COMPUTING ALGORITHMS 43

If w+ v < u, then the pair (d,u) is replaced by (d,w + v), and if there was
no pair (d,u), then the pair (d,w + v) is stored at the node a. Also, the other
nodes are sent the message (a,d,w + v) in either of these two cases. O

Computations in Pregel are organized into supersteps. In one superstep, all
the messages that were received by any of the nodes at the previous superstep
(or initially, if it is the first superstep) are processed, and then all the messages
generated by those nodes are sent to their destination.

In case of a compute-node failure, there is no attempt to restart the failed
tasks at that compute node. Rather, Pregel checkpoints its entire computation
after some of the supersteps. A checkpoint consists of making a copy of the
entire state of each task, so it can be restarted from that point if necessary.
If any compute node fails, the entire job is restarted from the most recent
checkpoint.

Although this recovery strategy causes many tasks that have not failed to
redo their work, it is satisfactory in many situations. Recall that the reason
map-reduce systems support restart of only the failed tasks is that we want
assurance that the expected time to complete the entire job in the face of fail-
ures is not too much greater than the time to run the job with no failures.
Any failure-management system will have that property as long as the time
to recover from a failure is much less than the average time between failures.
Thus, it is only necessary that Pregel checkpoints its computation after a num-
ber of supersteps such that the probability of a failure during that number of
supersteps is low.

2.4.4 Exercises for Section 2.4

Exercise 2.4.1: Suppose a job consists of n tasks, each of which takes time ¢
seconds. Thus, if there are no failures, the sum over all compute nodes of the
time taken to execute tasks at that node is nt. Suppose also that the probability
of a task failing is p per job per second, and when a task fails, the overhead of
management of the restart is such that it adds 10¢ seconds to the total execution
time of the job. What is the total expected execution time of the job?

Exercise 2.4.2: Suppose a Pregel job has a probability p of a failure during
any superstep. Suppose also that the execution time (summed over all compute
nodes) of taking a checkpoint is ¢ times the time it takes to execute a superstep.
To minimize the expected execution time of the job, how many supersteps
should elapse between checkpoints?

2.5 Efficiency of Cluster-Computing Algorithms

In this section we shall introduce a model for measuring the quality of algorithms
implemented on a computing cluster of the type so far discussed in this chapter.
We assume the computation is described by an acyclic workflow, as discussed

44 CHAPTER 2. LARGE-SCALE FILE SYSTEMS AND MAP-REDUCE

in Section 2.4.1. We then argue that for many applications, the bottleneck
is moving data among tasks, such as transporting the outputs of Map tasks
to their proper Reduce tasks. As an example, we explore the computation of
multiway joins as single map-reduce jobs, and we see that in some situations,
this approach is more efficient than the straightforward cascade of 2-way joins.

2.5.1 The Communication-Cost Model for Cluster
Computing

Imagine that an algorithm is implemented by an acyclic network of tasks. These
could be Map tasks feeding Reduce tasks, as in a standard map-reduce algo-
rithm, or they could be several map-reduce jobs cascaded, or a more general
workflow structure, such as a collection of tasks each of which implements the
workflow of Fig. 2.6.” The communication cost of a task is the size of the input
to the task. This size can be measured in bytes. However, since we shall be
using relational database operations as examples, we shall often use the number
of tuples as a measure of size.

The communication cost of an algorithm is the sum of the communication
cost of all the tasks implementing that algorithm. We shall focus on the commu-
nication cost as the way to measure the efficiency of an algorithm. In particular,
we do not consider the amount of time it takes each task to execute when es-
timating the running time of an algorithm. While there are exceptions, where
execution time of tasks dominates, we justify the focus on communication cost
as follows.

e The algorithm executed by each task tends to be very simple, at most
linear in the size of its input.

e The typical interconnect speed for a computing cluster is one gigabit per
second. That may seem like a lot, but it is slow compared with the speed
at which a processor executes instructions. As a result, the compute node
can do a lot of work on a received input element in the time it takes to
deliver that element.

e Even if a task executes at a compute node that has a copy of the chunk(s)
on which the task operates, that chunk normally will be stored on disk,
and the time taken to move the data into main memory may exceed the
time needed to operate on the data once it is available in memory.

Assuming that communication cost is the dominant cost, we might still ask
why we count only input size, and not output size. The answer to this question
involves two points:

"Note that this figure represented functions, not tasks. As a network of tasks, there would
be, for example, many tasks implementing function f, each of which feeds data to each of the
tasks for function g and each of the tasks for function 7.

2.5. EFFICIENCY OF CLUSTER-COMPUTING ALGORITHMS 45

1. If the output of one task 7 is input to another task, then the size of 7’s
output will be accounted for when measuring the input size for the receiv-
ing task. Thus, there is no reason to count the size of any output except
for those tasks whose output forms the result of the entire algorithm.

2. In practice, the output of a job is rarely large compared with the input
or the intermediate data produced by the job. The reason is that massive
outputs cannot be used unless they are summarized or aggregated in some
way. For example, although we talked in Example 2.6 of computing the
entire transitive closure of a graph, in practice we would want something
much simpler, such as the count of the number of nodes reachable from
each node, or the set of nodes reachable from a single node.

Example 2.8: Let us evaluate the communication cost for the join algorithm
from Section 2.3.7. Suppose we are joining R(A, B) 1 S(B,C), and the sizes
of relations R and S are r and s, respectively. Each chunk of the files holding
R and S is fed to one Map task, so the sum of the communication costs for all
the Map tasks is » + s. Note that in a typical execution, the Map tasks will
each be executed at a compute node holding a copy of the chunk to which it
applies. Thus, no internode communication is needed for the Map tasks, but
they still must read their data from disk. Since all the Map tasks do is make a
simple transformation of each input tuple into a key-value pair, we expect that
the computation cost will be small compared with the communication cost,
regardless of whether the input is local to the task or must be transported to
its compute node.

The sum of the outputs of the Map tasks is roughly as large as their in-
puts. Each output key-value pair is sent to exactly one Reduce task, and it is
unlikely that this Reduce task will execute at the same compute node. There-
fore, communication from Map tasks to Reduce tasks is likely to be across the
interconnect of the cluster, rather than memory-to-disk. This communication
is O(r + s), so the communication cost of the join algorithm is O(r + s).

Observe that the Reduce tasks can use a hash join of the tuples received.
This process involves hashing each of the tuples received on their B-values,
using a different hash function from the one that divided the tuples among
Reduce tasks. The local hash join takes time that is linear in the number of
tuples received, and thus is also O(r + s). We do not count this execution
time in the communication-cost model, but it is comforting to know that the
computation cost is surely not the dominant factor for this algorithm.

The output size for the join can be either larger or smaller than r + s,
depending on how likely it is that a given R-tuple joins with a given S-tuple.
For example, if there are many different B-values, we would expect the output
to be small, while if there are few B-values, a large output is likely. However,
we shall rely on our supposition that if the output of the join is large, then
there is probably some aggregation being done to reduce the size of the output.
This aggregation typically can be executed by the Reduce tasks as they produce
their output. O

46 CHAPTER 2. LARGE-SCALE FILE SYSTEMS AND MAP-REDUCE

2.5.2 Elapsed Communication Cost

There is another measure of cost based on communication that is worth men-
tioning, although we shall not use in the developments of this section. The
elapsed communication cost is the maximum, over all paths through the acyclic
network, of the sum of the communication costs of the tasks along that path.
For example, in a map-reduce job, the elapsed communication cost is the sum
of the maximum input size for any Map task, plus the maximum input size for
any Reduce task.

Elapsed communication cost corresponds to the minimum wall-clock time
for the execution of a parallel algorithm. Using careless reasoning, one could
minimize total communication cost by assigning all the work to one task, and
thereby minimize total communication. However, the elapsed time of such an
algorithm would be quite high. The algorithms we suggest, or have suggested
so far, have the property that the work is divided fairly among the tasks, so the
elapsed communication cost would be approximately as small as it could be.

2.5.3 Multiway Joins

To see how analyzing the communication cost can help us choose an algorithm
in the cluster-computing environment, we shall examine carefully the case of a
multiway join. There is a general theory in which we:

1. Select certain attributes of the relations involved in a natural join to have
their values hashed to some number of buckets.

2. Select the number of buckets for each of these attributes, subject to the
constraint that the product of the numbers of buckets for each attribute
is k, the number of Reduce tasks that will be used.

3. Identify each of the k Reduce tasks with a vector of bucket numbers, one
for each of the hashed attributes.

4. Send tuples of each relation to all those Reduce tasks where it might
find tuples to join with. That is, the given tuple ¢ will have values for
some of the hashed attributes, so we can apply the hash function(s) to
those values to determine certain components of the vector identifying
the Reduce tasks. Other components of the vector are unknown, so ¢
must be sent to all the Reduce tasks having any value in these unknown
components.

Some examples of this general technique appear in the exercises.

Here, we shall look only at the join R(A, B) >1.5(B, C) < T(C, D). Suppose
that the relations R, S, and T have sizes r, s, and t, respectively, and for
simplicity, suppose that the probability is p that

1. An R-tuple and and S-tuple agree on B, and also the probability that

2.5. EFFICIENCY OF CLUSTER-COMPUTING ALGORITHMS 47

2. An S-tuple and a T-tuple agree on C.

If we join R and S first, using the map-reduce algorithm of Section 2.3.7,
then the communication cost is O(r + s), and the size of the intermediate join
R xS is prs. When we join this result with 7', the communication of this
second map-reduce job is O(t + prs). Thus, the entire communication cost of
the algorithm consisting of two 2-way joins is O(r + s + t + prs). If we instead
join S and T first, and then join R with the result, we get another algorithm
whose communication cost is O(r 4+ s + ¢ + pst).

A third way to take this join is to use a single map-reduce job that joins the
three relations at once. Suppose that we plan to use & Reduce tasks for this
job. Pick numbers b and c¢ representing the number of buckets into which we
shall hash B- and C-values, respectively. Let h be a hash function that sends
B-values into b buckets, and let g be another hash function that sends C-values
into ¢ buckets. We require that bc = k; that is, each Reduce task corresponds to
a pair of buckets, one for the B-value and one for the C-value. The Reduce task
corresponding to bucket pair (i,) is responsible for joining the tuples R(u,v),
S(v,w), and T(w, z) whenever h(v) =i and g(w) = j.

As a result, the Map tasks that send tuples of R, S, and T to the Reduce
tasks that need them must send R- and T-tuples to more than one Reduce task.
For an S-tuple S(v, w), we know the B- and C-values, so we can send this tuple
only to the Reduce task (h(v),g(w)). However, consider an R-tuple R(u,v).
We know it only needs to go to Reduce tasks (h(v), y), but we don’t know the
value of y. The value of C' could be anything as far as we know. Thus, we
must send R(u,v) to ¢ reduce tasks, since y could be any of the ¢ buckets for
C-values. Similarly, we must send the T-tuple T'(w, z) to each of the Reduce
tasks (z,g(w)) for any z. There are b such tasks.

g(T.C)=1
9(C) = h(S.B) =2 and g(S.C) = 1

0o |1 2 3
0 L
1 .
h(B) = y

2| 4|44 1 4

h(R.B) = 2

Figure 2.8: Sixteen Reduce tasks together perform a 3-way join

Example 2.9: Suppose that b = ¢ = 4, so k = 16. The sixteen Reduce tasks

48 CHAPTER 2. LARGE-SCALE FILE SYSTEMS AND MAP-REDUCE

Computation Cost of the 3-Way Join

Each of the Reduce tasks must join of parts of the three relations, and it
is reasonable to ask whether this join can be taken in time that is linear
in the size of the input to that Reduce task. While more complex joins
might not be computable in linear time, the join of our running example
can be executed at each Reduce process efficiently. First, create an index
on R.B, to organize the R-tuples received. Likewise, create an index on
T.C for the T-tuples. Then, consider each received S-tuple, S(v,w). Use
the index on R.B to find all R-tuples with R.B = v and use the index on
T.C to find all T-tuples with T.C' = w.

can be thought of as arranged in a rectangle, as suggested by Fig. 2.8. There,
we see a hypothetical S-tuple S(v,w) for which h(v) = 2 and g(w) = 1. This
tuple is sent by its Map task only to the Reduce task (2,1). We also see an
R-tuple R(u,v). Since h(v) = 2, this tuple is sent to all Reduce tasks (2,y), for
y = 1,2,3,4. Finally, we see a T-tuple T'(w,z). Since g(w) = 1, this tuple is
sent to all Reduce tasks (z,1) for z = 1,2,3,4. Notice that these three tuples
join, and they meet at exactly one Reduce task, the task numbered (2,1). O

Now, suppose that the sizes of R, S, and T are different; recall we use r,
s, and t, respectively, for those sizes. If we hash B-values to b buckets and
C-values to ¢ buckets, where bc = k, then the total communication cost for
moving the tuples to the proper Reduce task is the sum of:

1. s to move each tuple S(v, w) once to the Reduce task (h(v),g(w)).

2. cr to move each tuple R(u, v) to the ¢ Reduce tasks (h(v),y) for each of
the ¢ possible values of y.

3. bt to move each tuple T'(w,z) to the b Reduce tasks (z, g(w)) for each of
the b possible values of z.

There is also a cost r + s + ¢t to make each tuple of each relation be input to
one of the Map tasks. This cost is fixed, independent of b, ¢, and k.

We must select b and ¢, subject to the constraint bc = k, to minimize
s + cr + bt. We shall use the technique of Lagrangean multipliers to find the
place where the function s + cr + bt — A(bc — k) has its derivatives with respect
to b and c equal to 0. That is, we must solve the equations r — Ab = 0 and
t — Ac = 0. Since 7 = Ab and t = Ac¢, we may multiply corresponding sides of
these equations to get 7t = A\?be. Since be = k, we get rt = A2k, or A = \/rt/k.
Thus, the minimum communication cost is obtained when ¢ = t/\ = \/kt/r,

and b=r/\ = \/kr/t.

2.5. EFFICIENCY OF CLUSTER-COMPUTING ALGORITHMS 49

If we substitute these values into the formula s + cr + bt, we get s + 2vkrt.
That is the communication cost for the Reduce tasks, to which we must add
the cost s+ r 4+t for the communication cost of the Map tasks. The latter term
typically will be smaller than the first term by a factor O(\/E), so we can neglect
it in most situations, as long as the number of Reduce tasks is reasonably large.

Example 2.10: Let us see under what circumstances the 3-way join has lower
communication cost than the cascade of two 2-way joins. To make matters
simple, let us assume that R, S, and T are all the same relation R, which
represents the “friends” relation in a social network like Facebook. There are
roughly 300,000,000 subscribers on Facebook, with an average of 300 friends
each, so relation R has » = 9 x 10'° tuples. Suppose we want to compute
R <t R < R, perhaps as part of a calculation to find the number of friends
of friends of friends each subscriber has, or perhaps just the person with the
largest number of friends of friends of friends.® The cost of the 3-way join of R
with itself is 47 4+ 2rv/k; 3r represents the cost of the Map tasks, and r + 2v/kr2
is the cost of the Reduce tasks. Since we assume r = 9 x 109, this cost is
3.6 x 101! + 1.8 x 10''VE.

Now consider the communication cost of joining R with itself, and then
joining the result with R again. The Map and Reduce tasks for the first join
each have a cost of 2r, so the first join only costs 4r = 3.6 x 10'!. But the
size of R <1 R is large. We cannot say exactly how large, since friends tend to
fall into cliques, and therefore a person with 300 friends will have many fewer
than the maximum possible number of friends of friends, which is 90,000. Let
us estimate conservatively that the size of R > R is not 3007, but only 307,
or 2.7 x 10'2. The communication cost for the second join of (R < R) a1 R
is thus 5.4 x 10'2 + 1.8 x 10''. The total cost of the two joins is therefore
3.6 x 10" 4+ 5.4 x 1012 + 1.8 x 10" =5.94 x 10'2.

We must ask whether the cost of the 3-way join, which is

3.6 x 10" +1.8 x 10"k

is less than 5.94 x 10'2. That is so, provided 1.8 x 10"'vk < 5.58 x 10'2, or
Vk < 31. That is, the 3-way join will be preferable provided we use no more
than 312 = 961 Reduce tasks. O

2.5.4 Exercises for Section 2.5

Exercise 2.5.1: What is the communication cost of each of the following
algorithms, as a function of the size of the relations, matrices, or vectors to
which they are applied?

(a) The matrix-vector multiplication algorithm of Section 2.3.2.

8This person, or more generally, people with large extended circles of friends, are good
people to use to start a marketing campaign by giving them free samples.

50

Star Joins

A common structure for data mining of commercial data is the star join.
For example, a chain store like Walmart keeps a fact table whose tu-
ples each represent a single sale. This relation looks like F'(A1, Ao, ...),
where each attribute A; is a key representing one of the important com-
ponents of the sale, such as the purchaser, the item purchased, the store
branch, or the date. For each key attribute there is a dimension table
giving information about the participant. For instance, the dimension ta-
ble D(A1, B11, Bi2,...) might represent purchasers. A; is the purchaser
ID, the key for this relation. The Bj;’s might give the purchaser’s name,
address, phone, and so on. Typically, the fact table is much larger than
the dimension tables. For instance, there might be a fact table of a billion
tuples and ten dimension tables of a million tuples each.

Analysts mine this data by asking analytic queries that typically join
the fact table with several of the dimension tables (a “star join”) and then
aggregate the result into a useful form. For instance, an analyst might ask
“give me a table of sales of pants, broken down by region and color, for
each month of 2010.” Under the communication-cost model of this section,
joining the fact table and dimension tables by a multiway join is almost
certain to be more efficient than joining the relations in pairs. In fact, it
may make sense to store the fact table over however many compute nodes
are available, and replicate the dimension tables permanently in exactly
the same way as we would replicate them should we take the join of the
fact table and all the dimension tables. In this special case, only the
key attributes (the A’s above) are hashed to buckets, and the number of
buckets for each key attribute is inversely proportional to the size of its
dimension table.

(b) The union algorithm of Section 2.3.6.
(c) The aggregation algorithm of Section 2.3.9.

(d) The matrix-multiplication algorithm of Section 2.3.11.

CHAPTER 2. LARGE-SCALE FILE SYSTEMS AND MAP-REDUCE

! Exercise 2.5.2: Suppose relations R, S, and T have sizes r, s, and t, respec-

o=

tively, and we want to take the 3-way join R(A, B) < S(B,C) =<1 T(A, C), using

k Reduce tasks. We shall hash values of attributes A, B, and C to a, b, and
¢ buckets, respectively, where abc = k. Each Reduce task is associated with a

vector of buckets, one for each of the three hash functions. Find, as a function
of r, s, t, and k, the values of a, b, and ¢ that minimize the communication cost
of the algorithm.

Exercise 2.5.3: Suppose we take a star join of a fact table F(A1, Aa, ..., Ap)
with dimension tables D;(A;, B;) for i = 1,2,...,m. Let there be k Reduce

2.6. SUMMARY OF CHAPTER 2 51

tasks, each associated with a vector of buckets, one for each of the key attributes
Ay, As, ..., Ap. Suppose the number of buckets into which we hash A; is a;.
Naturally, aias - - - a,,, = k. Finally, suppose each dimension table D, has size
d;, and the size of the fact table is much larger than any of these sizes. Find
the values of the a;’s that minimize the cost of taking the star join as one
map-reduce operation.

2.6 Summary of Chapter 2

O

Cluster Computing: A common architecture for very large-scale applica-
tions is a cluster of compute nodes (processor chip, main memory, and
disk). Compute nodes are mounted in racks, and the nodes on a rack are
connected, typically by gigabit Ethernet. Racks are also connected by a
high-speed network or switch.

Distributed File Systems: An architecture for very large-scale file sys-
tems has developed recently. Files are composed of chunks of about 64
megabytes, and each chunk is replicated several times, on different com-
pute nodes or racks.

Map-Reduce: This programming system allows one to exploit parallelism
inherent in cluster computing, and manages the hardware failures that
can occur during a long computation on many nodes. Many Map tasks
and many Reduce tasks are managed by a Master process. Tasks on a
failed compute node are rerun by the Master.

The Map Function: This function is written by the user. It takes a
collection of input objects and turns each into zero or more key-value
pairs. Key values are not necessarily unique.

The Reduce Function: A map-reduce programming system sorts all the
key-value pairs produced by all the Map tasks, forms all the values asso-
ciated with a given key into a list and distributes key-list pairs to Reduce
tasks. Each reduce task combines the elements on each list, by applying
the function written by the user. The results produced by all the Reduce
tasks form the output of the map-reduce process.

Hadoop: This programming system is an open-source implementation of a
distributed file system (HDF'S, the Hadoop Distributed File System) and
map-reduce (Hadoop itself). It is available through the Apache Founda-
tion.

Managing Compute-Node Failures: Map-reduce systems support restart
of tasks that fail because their compute node, or the rack containing
that node, fail. Because Map and Reduce tasks deliver their output only
after they finish, it is possible to restart a failed task without concern for

52

CHAPTER 2. LARGE-SCALE FILE SYSTEMS AND MAP-REDUCE

possible repetition of the effects of that task. It is necessary to restart the
entire job only if the node at which the Master executes fails.

Applications of Map-Reduce: While not all parallel algorithms are suitable
for implementation in the map-reduce framework, there are simple imple-
mentations of matrix-vector and matrix-matrix multiplication. Also, the
principal operators of relational algebra are easily implemented in map-
reduce.

Workflow Systems: Map-reduce has been generalized to systems that sup-
port any acyclic collection of functions, each of which can be instantiated
by any number of tasks, each responsible for executing that function on a
portion of the data. Clustera and Hyracks are examples of such systems.

Recursive Workflows: When implementing a recursive collection of func-
tions, it is not always possible to preserve the ability to restart any failed
task, because recursive tasks may have produced output that was con-
sumed by another task before the failure. A number of schemes for check-
pointing parts of the computation to allow restart of single tasks, or restart
all tasks from a recent point, have been proposed.

The Communication-Cost Model: Many applications of map-reduce or
similar systems do very simple things for each task. Then, the dominant
cost is usually the cost of transporting data from where it is created to
where it is used. In these cases, efficiency of an algorithm can be estimated
by calculating the sum of the sizes of the inputs to all the tasks.

Multiway Joins: It is sometimes more efficient to replicate tuples of the
relations involved in a join and have the join of three or more relations
computed as a single map-reduce job. The technique of Lagrangean mul-
tipliers can be used to optimize the degree of replication for each of the
participating relations.

Star Joins: Analytic queries often involve a very large fact table joined
with smaller dimension tables. These joins can always be done efficiently
by the multiway-join technique. An alternative is to distribute the fact
table and replicate the dimension tables permanently, using the same
strategy as would be used if we were taking the multiway join of the fact
table and every dimension table.

2.7 References for Chapter 2

GFS, the Google File System, was described in [10]. The paper on Google’s
map-reduce is [8]. Information about Hadoop and HDFS can be found at [11].
More detail on relations and relational algebra can be found in [16].

Clustera is covered in [9]. Hyracks (previously called Hyrax) is from [4].

The Dryad system [13] has similar capabilities, but requires user creation of

2.7. REFERENCES FOR CHAPTER 2 93

parallel tasks. That responsibility was automated through the introduction of
DryadLINQ [17]. For a discussion of cluster implementation of recursion, see
[1]. Pregel is from [14].

A different approach to recursion was taken in Haloop [5]. There, recursion
is seen as an iteration, with the output of one round being input to the next
round. Efficiency is obtained by managing the location of the intermediate data
and the tasks that implement each round.

The communication-cost model for algorithms comes from [2]. [3] discusses
optimal implementations of multiway joins using a map-reduce system.

There are a number of other systems built on a distributed file system and/or
map-reduce, which have not been covered here, but may be worth knowing
about. [6] describes BigTable, a Google implementation of an object store of
very large size. A somewhat different direction was taken at Yahoo! with Pnuts
[7]. The latter supports a limited form of transaction processing, for example.

PIG [15] is an implementation of relational algebra on top of Hadoop. Sim-
ilarly, Hive [12] implements a restricted form of SQL on top of Hadoop.

1. F.N. Afrati, V. Borkar, M. Carey, A. Polyzotis, and J.D. Ullman, “Clus-
ter computing, recursion, and Datalog,” to appear in Proc. Datalog 2.0
Workshop, Elsevier, 2011.

2. F.N. Afrati and J.D. Ullman, “A new computation model for cluster com-
puting,” http://ilpubs.stanford.edu:8090/953, Stanford Dept. of CS
Technical Report, 2009.

3. F.N. Afrati and J.D. Ullman, “Optimizing joins in a map-reduce environ-
ment,” Proc. Thirteenth Intl. Conf. on Extending Database Technology,
2010.

4. V. Borkar and M. Carey, “Hyrax: demonstrating a new foundation for
data-parallel computation,”

http://asterix.ics.uci.edu/pub/hyraxdemo.pdf

Univ. of California, Irvine, 2010.

5. Y. Bu, B. Howe, M. Balazinska, and M. Ernst, “HaLoop: efficient iter-
ative data processing on large clusters,” Proc. Intl. Conf. on Very Large
Databases, 2010.

6. F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R.E. Gruber, “Bigtable: a distributed storage
system for structured data,” ACM Transactions on Computer Systems
26:2, pp. 1-26, 2008.

7. B.F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohan-
non, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni, “Pnuts: Ya-
hoo!’s hosted data serving platform,” PVLDB 1:2, pp. 1277-1288, 2008.

o4

10.

11.
12.
13.

14.

15.

16.

17.

CHAPTER 2. LARGE-SCALE FILE SYSTEMS AND MAP-REDUCE

J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Comm. ACM 51:1, pp. 107-113, 2008.

D.J. DeWitt, E. Paulson, E. Robinson, J.F. Naughton, J. Royalty, S.
Shankar, and A. Krioukov, “Clustera: an integrated computation and
data management system,” PVLDB 1:1, pp. 28-41, 2008.

S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
19th ACM Symposium on Operating Systems Principles, 2003.

hadoop.apache.org, Apache Foundation.
hadoop.apache.org/hive, Apache Foundation.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. “Dryad: dis-
tributed data-parallel programs from sequential building blocks,” Proceed-
ings of the 2nd ACM SIGOPS/EuroSys European Conference on Com-
puter Systems, pp. 59-72, ACM, 2007.

G. Malewicz, M.N. Austern, A.J.C. Sik, J.C. Denhert, H. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
Proc. ACM SIGMOD Conference, 2010.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig latin:
a not-so-foreign language for data processing,” Proc. ACM SIGMOD Con-
ference, pp. 1099-1110, 2008.

J.D. Ullman and J. Widom, A First Course in Database Systems, Third
Edition, Prentice-Hall, Upper Saddle River, NJ, 2008.

Y. Yu, M. Isard, D. Fetterly, M. Budiu, I. Erlingsson, P.K. Gunda, and
J. Currey, “DryadLINQ: a system for general-purpose distributed data-
parallel computing using a high-level language,” OSDI, pp. 1-14, USENIX
Association, 2008.

Chapter 3

Finding Similar Items

A fundamental data-mining problem is to examine data for “similar” items. We
shall take up applications in Section 3.1, but an example would be looking at a
collection of Web pages and finding near-duplicate pages. These pages could be
plagiarisms, for example, or they could be mirrors that have almost the same
content but differ in information about the host and about other mirrors.

We begin by phrasing the problem of similarity as one of finding sets with
a relatively large intersection. We show how the problem of finding textually
similar documents can be turned into such a set problem by the technique known
as “shingling.” Then, we introduce a technique called “minhashing,” which
compresses large sets in such a way that we can still deduce the similarity of
the underlying sets from their compressed versions. Other techniques that work
when the required degree of similarity is very high are covered in Section 3.9.

Another important problem that arises when we search for similar items of
any kind is that there may be far too many pairs of items to test each pair for
their degree of similarity, even if computing the similarity of any one pair can be
made very easy. That concern motivates a technique called “locality-sensitive
hashing,” for focusing our search on pairs that are most likely to be similar.

Finally, we explore notions of “similarity” that are not expressible as inter-
section of sets. This study leads us to consider the theory of distance measures
in arbitrary spaces. It also motivates a general framework for locality-sensitive
hashing that applies for other definitions of “similarity.”

3.1 Applications of Near-Neighbor Search

We shall focus initially on a particular notion of “similarity”: the similarity of
sets by looking at the relative size of their intersection. This notion of similarity
is called “Jaccard similarity,” and will be introduced in Section 3.1.1. We then
examine some of the uses of finding similar sets. These include finding textually
similar documents and collaborative filtering by finding similar customers and
similar products. In order to turn the problem of textual similarity of documents

%)

o6 CHAPTER 3. FINDING SIMILAR ITEMS

into one of set intersection, we use a technique called “shingling,” which is
introduced in Section 3.2.

3.1.1 Jaccard Similarity of Sets

The Jaccard similarity of sets S and T is |S N T|/|S U T, that is, the ratio
of the size of the intersection of S and T to the size of their union. We shall
denote the Jaccard similarity of S and T by siM(S,T').

Example 3.1: In Fig. 3.1 we see two sets S and T'. There are three elements
in their intersection and a total of eight elements that appear in S or T" or both.
Thus, SIM(S,T) =3/8. O

T

Figure 3.1: Two sets with Jaccard similarity 3/8

3.1.2 Similarity of Documents

An important class of problems that Jaccard similarity addresses well is that
of finding textually similar documents in a large corpus such as the Web or a
collection of news articles. We should understand that the aspect of similarity
we are looking at here is character-level similarity, not “similar meaning,” which
requires us to examine the words in the documents and their uses. That problem
is also interesting but is addressed by other techniques, which we hinted at in
Section 1.3.1. However, textual similarity also has important uses. Many of
these involve finding duplicates or near duplicates. First, let us observe that
testing whether two documents are exact duplicates is easy; just compare the
two documents character-by-character, and if they ever differ then they are not
the same. However, in many applications, the documents are not identical, yet
they share large portions of their text. Here are some examples:

3.1. APPLICATIONS OF NEAR-NEIGHBOR SEARCH 57

Plagiarism

Finding plagiarized documents tests our ability to find textual similarity. The
plagiarizer may extract only some parts of a document for his own. He may alter
a few words and may alter the order in which sentences of the original appear.
Yet the resulting document may still contain 50% or more of the original. No
simple process of comparing documents character by character will detect a
sophisticated plagiarism.

Mirror Pages

It is common for important or popular Web sites to be duplicated at a number
of hosts, in order to share the load. The pages of these mirror sites will be
quite similar, but are rarely identical. For instance, they might each contain
information associated with their particular host, and they might each have
links to the other mirror sites but not to themselves. A related phenomenon
is the appropriation of pages from one class to another. These pages might
include class notes, assignments, and lecture slides. Similar pages might change
the name of the course, year, and make small changes from year to year. It
is important to be able to detect similar pages of these kinds, because search
engines produce better results if they avoid showing two pages that are nearly
identical within the first page of results.

Articles from the Same Source

It is common for one reporter to write a news article that gets distributed,
say through the Associated Press, to many newspapers, which then publish
the article on their Web sites. Each newspaper changes the article somewhat.
They may cut out paragraphs, or even add material of their own. They most
likely will surround the article by their own logo, ads, and links to other articles
at their site. However, the core of each newspaper’s page will be the original
article. News aggregators, such as Google News, try to find all versions of such
an article, in order to show only one, and that task requires finding when two
Web pages are textually similar, although not identical.!

3.1.3 Collaborative Filtering as a Similar-Sets Problem

Another class of applications where similarity of sets is very important is called
collaborative filtering, a process whereby we recommend to users items that were
liked by other users who have exhibited similar tastes. We shall investigate
collaborative filtering in detail in Section 9.3, but for the moment let us see
some common examples.

INews aggregation also involves finding articles that are about the same topic, even though
not textually similar. This problem too can yield to a similarity search, but it requires
techniques other than Jaccard similarity of sets.

o8 CHAPTER 3. FINDING SIMILAR ITEMS

On-Line Purchases

Amazon.com has millions of customers and sells millions of items. Its database
records which items have been bought by which customers. We can say two cus-
tomers are similar if their sets of purchased items have a high Jaccard similarity.
Likewise, two items that have sets of purchasers with high Jaccard similarity
will be deemed similar. Note that, while we might expect mirror sites to have
Jaccard similarity above 90%, it is unlikely that any two customers have Jac-
card similarity that high (unless they have purchased only one item). Even a
Jaccard similarity like 20% might be unusual enough to identify customers with
similar tastes. The same observation holds for items; Jaccard similarities need
not be very high to be significant.

Collaborative filtering requires several tools, in addition to finding similar
customers or items, as we discuss in Chapter 9. For example, two Amazon
customers who like science-fiction might each buy many science-fiction books,
but only a few of these will be in common. However, by combining similarity-
finding with clustering (Chapter 7), we might be able to discover that science-
fiction books are mutually similar and put them in one group. Then, we can
get a more powerful notion of customer-similarity by asking whether they made
purchases within many of the same groups.

Movie Ratings

NetFlix records which movies each of its customers rented, and also the ratings
assigned to those movies by the customers. We can see movies as similar if they
were rented or rated highly by many of the same customers, and see customers
as similar if they rented or rated highly many of the same movies. The same
observations that we made for Amazon above apply in this situation: similarities
need not be high to be significant, and clustering movies by genre will make
things easier.

In addition, the matter of ratings introduces a new element. Some options
are:

1. Ignore low-rated customer/movie pairs; that is, treat these events as if
the customer never rented the movie.

2. When comparing customers, imagine two set elements for each movie,
“liked” and “hated.” If a customer rated a movie highly, put the “liked”
for that movie in the customer’s set. If they gave a low rating to a movie,
put “hated” for that movie in their set. Then, we can look for high Jaccard
similarity among these sets. We can do a similar trick when comparing
movies.

3. If ratings are 1-to-5-stars, put a movie in a customer’s set n times if
they rated the movie n-stars. Then, use Jaccard similarity for bags when
measuring the similarity of customers. The Jaccard similarity for bags
B and C' is defined by counting an element n times in the intersection if

o—

3.2. SHINGLING OF DOCUMENTS 99

n is the minimum of the number of times the element appears in B and
C. In the union, we count the element the sum of the number of times it
appears in B and in C.

Example 3.2: The bag-similarity of bags {a, a,a,b} and {a,a,b,b,c} is 1/3.
The intersection counts a twice and b once, so its size is 3. The size of the union
of two bags is always the sum of the sizes of the two bags, or 9 in this case. O

3.1.4 Exercises for Section 3.1

Exercise 3.1.1: Compute the Jaccard similarities of each pair of the following
three sets: {1,2,3,4}, {2,3,5,7}, and {2,4,6}.

Exercise 3.1.2: Compute the Jaccard bag similarity of each pair of the fol-
lowing three bags: {1,1,1,2}, {1,1,2,2,3}, and {1,2,3,4}.

Exercise 3.1.3: Suppose we have a universal set U of n elements, and we
choose two subsets S and T at random, each with m of the n elements. What
is the expected value of the Jaccard similarity of S and T'7

3.2 Shingling of Documents

The most effective way to represent documents as sets, for the purpose of iden-
tifying lexically similar documents is to construct from the document the set
of short strings that appear within it. If we do so, then documents that share
pieces as short as sentences or even phrases will have many common elements
in their sets, even if those sentences appear in different orders in the two docu-
ments. In this section, we introduce the simplest and most common approach,
shingling, as well as an interesting variation.

3.2.1 k-Shingles

A document is a string of characters. Define a k-shingle for a document to be
any substring of length k£ found within the document. Then, we may associate
with each document the set of k-shingles that appear one or more times within
that document.

Example 3.3: Suppose our document D is the string abcdabd, and we pick
k = 2. Then the set of 2-shingles for D is {ab, bc, cd,da,bd}.

Note that the substring ab appears twice within D, but appears only once
as a shingle. A variation of shingling produces a bag, rather than a set, so each
shingle would appear in the result as many times as it appears in the document.
However, we shall not use bags of shingles here. O

There are several options regarding how white space (blank, tab, newline,
etc.) is treated. It probably makes sense to replace any sequence of one or more

60 CHAPTER 3. FINDING SIMILAR ITEMS

white-space characters by a single blank. That way, we distinguish shingles that
cover two or more words from those that do not.

Example 3.4: If we use kK = 9, but eliminate whitespace altogether, then we
would see some lexical similarity in the sentences “The plane was ready for
touch down”. and “The quarterback scored a touchdown”. However, if we
retain the blanks, then the first has shingles touch dow and ouch down, while
the second has touchdown. If we eliminated the blanks, then both would have
touchdown. 0O

3.2.2 Choosing the Shingle Size

We can pick k to be any constant we like. However, if we pick k£ too small, then
we would expect most sequences of k characters to appear in most documents.
If so, then we could have documents whose shingle-sets had high Jaccard simi-
larity, yet the documents had none of the same sentences or even phrases. As
an extreme example, if we use k = 1, most Web pages will have most of the
common characters and few other characters, so almost all Web pages will have
high similarity.

How large k should be depends on how long typical documents are and how
large the set of typical characters is. The important thing to remember is:

e k should be picked large enough that the probability of any given shingle
appearing in any given document is low.

Thus, if our corpus of documents is emails, picking k& = 5 should be fine.
To see why, suppose that only letters and a general white-space character ap-
pear in emails (although in practice, most of the printable ASCII characters
can be expected to appear occasionally). If so, then there would be 27° =
14,348,907 possible shingles. Since the typical email is much smaller than 14
million characters long, we would expect k = 5 to work well, and indeed it does.

However, the calculation is a bit more subtle. Surely, more than 27 charac-
ters appear in emails, However, all characters do not appear with equal proba-
bility. Common letters and blanks dominate, while ”z” and other letters that
have high point-value in Scrabble are rare. Thus, even short emails will have
many 5-shingles consisting of common letters, and the chances of unrelated
emails sharing these common shingles is greater than would be implied by the
calculation in the paragraph above. A good rule of thumb is to imagine that
there are only 20 characters and estimate the number of k-shingles as 20*. For
large documents, such as research articles, choice k = 9 is considered safe.

3.2.3 Hashing Shingles

Instead of using substrings directly as shingles, we can pick a hash function
that maps strings of length & to some number of buckets and treat the resulting
bucket number as the shingle. The set representing a document is then the

3.2. SHINGLING OF DOCUMENTS 61

set of integers that are bucket numbers of one or more k-shingles that appear
in the document. For instance, we could construct the set of 9-shingles for a
document and then map each of those 9-shingles to a bucket number in the
range 0 to 232 — 1. Thus, each shingle is represented by four bytes instead
of nine. Not only has the data been compacted, but we can now manipulate
(hashed) shingles by single-word machine operations.

Notice that we can differentiate documents better if we use 9-shingles and
hash them down to four bytes than to use 4-shingles, even though the space used
to represent a shingle is the same. The reason was touched upon in Section 3.2.2.
If we use 4-shingles, most sequences of four bytes are unlikely or impossible to
find in typical documents. Thus, the effective number of different shingles is
much less than 232 — 1. If, as in Section 3.2.2, we assume only 20 characters are
frequent in English text, then the number of different 4-shingles that are likely
to occur is only (20)* = 160,000. However, if we use 9-shingles, there are many
more than 232 likely shingles. When we hash them down to four bytes, we can
expect almost any sequence of four bytes to be possible, as was discussed in
Section 1.3.2.

3.2.4 Shingles Built from Words

An alternative form of shingle has proved effective for the problem of identifying
similar news articles, mentioned in Section 3.1.2. The exploitable distinction for
this problem is that the news articles are written in a rather different style than
are other elements that typically appear on the page with the article. News
articles, and most prose, have a lot of stop words (see Section 1.3.1), the most
common words such as “and,” “you,” “to,” and so on. In many applications,
we want to ignore stop words, since they don’t tell us anything useful about
the article, such as its topic.

However, for the problem of finding similar news articles, it was found that
defining a shingle to be a stop word followed by the next two words, regardless
of whether or not they were stop words, formed a useful set of shingles. The
advantage of this approach is that the news article would then contribute more
shingles