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Review Page Rank

� Web graph encoded by matrix M

� N£N matrix (N = number of web pages)

� Mij = 1/|O(j)| iff there is a link from j to i

� Mij = 0 otherwise

� O(j) = set of pages node i links to

� Define matrix A as follows 

� Aij = βMij + (1-β)/N, where 0<β<1

� 1-β is the “tax” discussed in prior lecture

� Page rank r is first eigenvector of A

� Ar = r



Random walk interpretation

� At time 0, pick a page on the web 
uniformly at random to start the walk

� Suppose at time t, we are at page j

� At time t+1
� With probability β, pick a page uniformly at 

random from O(j) and walk to it

� With probability 1-β, pick a page on the web 
uniformly at random and teleport into it

� Page rank of page p = “steady state”
probability that at any given time, the 
random walker is at page p



Many random walkers

� Alternative, equivalent model

� Imagine a large number M of 
independent, identical random walkers 
(MÀN)

� At any point in time, let M(p) be the 
number of random walkers at page p

� The page rank of p is the fraction of 
random walkers that are expected to be 
at page p i.e., E[M(p)]/M.



Problems with page rank

� Measures generic popularity of a page

� Biased against topic-specific authorities

� Ambiguous queries e.g., jaguar

� This lecture

� Link spam

� Creating artificial link topographies in order 
to boost page rank

� Next lecture



Topic-Specific Page Rank

� Instead of generic popularity, can we measure 
popularity within a topic?

� E.g., computer science, health

� Bias the random walk

� When the random walker teleports, he picks a page 
from a set S of web pages

� S contains only pages that are relevant to the topic

� E.g., Open Directory (DMOZ) pages for a given topic 
(www.dmoz.org)

� Correspong to each teleport set S, we get a 
different rank vector rS



Matrix formulation

� Aij = βMij + (1-β)/|S| if i 2 S

� Aij = βMij otherwise

� Show that A is stochastic

� We have weighted all pages in the 
teleport set S equally

� Could also assign different weights to them 



Example
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Suppose S = {1}, β = 0.8

Node Iteration

0 1 2… stable
1 0.2 0.2 0.264 0.294
2 0 0.08 0.08 0.118
3 0 0.08 0.08 0.328
4 0 0 0.064 0.262

Note how we initialize the page rank vector differently from the
unbiased page rank case. 



How well does TSPR work?

� Experimental results [Haveliwala 2000]

� Picked 16 topics
� Teleport sets determined using DMOZ

� E.g., arts, business, sports,…

� “Blind study” using volunteers
� 35 test queries

� Results ranked using Page Rank and TSPR of 
most closely related topic 

� E.g., bicycling using Sports ranking

� In most cases volunteers preferred TSPR 
ranking



Which topic ranking to use?

� User can pick from a menu

� Can use the context of the query
� E.g., query is launched from a web page 

talking about a known topic

� E.g., use Bayesian classification schemes to 
classify query into a topic (forthcoming 
lecture)

� History of queries e.g., “basketball” followed 
by “jordan”

� User context e.g., user’s My Yahoo 
settings, bookmarks, …



Scaling with topics and users

� Suppose we wanted to cover 1000’s of 
topics
� Need to compute 1000’s of different rank 

vectors

� Need to store and retrieve them efficiently 
at query time

� For good performance vectors must fit in 
memory

� Even harder when we consider 
personalization
� Each user has their own teleport vector

� One page rank vector per user!



Tricks

� Determine a set of basis vectors so that 
any rank vector is a linear combination 
of basis vectors

� Encode basis vectors compactly as 
partial vectors and a hubs skeleton

� At runtime perform a small amount of 
computation to derive desired rank 
vector elements 



Linearity Theorem 

� Let S be a teleport set and rS be the 
corresponding rank vector

� For page i2S, let ri be the rank vector 
corresponding to the teleport set {i}

� ri is a vector with N entries

� rS = (1/|S|) ∑i2S ri

� Why is linearity important?

� Instead of 2N biased page rank vectors we 
need to store N vectors



Linearity example 
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Let us compute r{1,2} for β = 0.8

Node Iteration

0 1 2… stable
1 0.1 0.1 0.164 0.300
2 0.1 0.14 0.172 0.323
3 0 0.04 0.04 0.120
4 0 0.04 0.056 0.130
5 0 0.04 0.056 0.130
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Linearity example
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Intuition behind proof

� Let’s use the many-random-walkers 
model with M random walkers

� Let us color a random walker with color i 
if his most recent teleport was to page i

� At time t, we expect M/|S| of the 
random walkers to be colored i

� At any page j, we would therefore 
expect to find (M/|S|)ri(j) random 
walkers colored i

� So total number of random walkers at 
page j = (M/|S|)∑i2Sri(j)



Basis Vectors

� Suppose T = union of all teleport sets of 
interest

� Call it the teleport universe

� We can compute the rank vector corresponding 
to any teleport set SµT as a linear combination 
of the vectors ri for i2T 

� We call these vectors the basis vectors for T

� We can also compute rank vectors where we 
assign different weights to teleport pages



Decomposition

� Still too many basis vectors

� E.g., |T| might be in the thousands

� N|T| values

� Decompose basis vectors into partial 
vectors and hubs skeleton



Tours

� Consider a random walker with teleport set {i}

� Suppose walker is currently at node j 

� The random walker’s tour is the sequence of 
nodes on the walker’s path since the last 
teleport

� E.g., i,a,b,c,a,j

� Nodes can repeat in tours – why?

� Interior nodes of the tour = {a,b,c,j}

� Start node = {i}, end node = {j}

� A page can be both start node and interior node, etc



Tour splitting

� Consider random walker with teleport 
set {i}, biased rank vector ri

� ri(j) = probability random walker 
reaches j by following some tour with 
start node i and end node j

� Consider node k 

� Can have i = k or j = k

i

k

j



Tour splitting

� Let ri
k(j) be the probability that random surfer 

reaches page j through a tour that includes
page k as an interior node or end node

� Let ri
~k(j) be the probability that random surfer 

reaches page j through a tour that does not
include k as an interior node or end node

� ri(j) = ri
k(j) + ri

~k(j)

i

k

j



Example
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Let us compute r1
~2 for β = 0.8

Node Iteration

0 1 2… stable
1 0.2 0.2 0.264 0.294
2 0 0 0 0
3 0 0.08 0.08 0.118
4 0 0 0 0
5 0 0 0 0

Note that
many entries are 
zeros
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Example
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Let us compute r2
~2 for β = 0.8

Node Iteration

0 1 2… stable
1 0 0 0.064 0.094
2 0.2 0.2 0.2 0.2
3 0 0 0 0.038
4 0 0.08 0.08 0.08
5 0 0.08 0.08 0.08



Rank composition

� Notice:

� r1
2(3) = r1(3) – r1

~2(3)

= 0.163 - 0.118 = 0.045

� r1(2) * r2
~2(3) = 0.239 * 0.038

= 0.009

= 0.2 * 0.045

= (1-β)*r1
2(3)

� r1
2(3) = r1(2) r2

~2(3)/ (1-β)



Rank composition

i jk

ri(k)
rk

~k(j)

ri
k(j) = ri(k)rk

~k(j)/(1-β)



Hubs

� Instead of a single page k, we can use a 
set H of “hub” pages

� Define ri
~H(j) as set of tours from i to j that 

do not include any node from H as interior 
nodes or end node



Hubs example
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H = {1,2}

β = 0.8

r2
~H

Node Iteration

0 1 stable
1 0 0 0
2 0.2 0.2 0.2
3 0 0 0
4 0 0.08 0.08
5 0 0.08 0.08

r1
~H

Node Iteration

0 1 stable
1 0.2 0 0.2
2 0 0 0
3 0 0.08 0.08
4 0 0 0
5 0 0 0



Rank composition with hubs

i j

wi(h)
rh

~H(j)

H

h

ri(j) = ri
~H(j) + ri

H(j)

ri
H(j) = ∑h2Hwi(h)rh

~H(j)/(1-β)

wi(h) = ri(h) if i = h

wi(h) = ri(h) - (1-β) if i = h

ri
~H(j)



Hubs rule example

r2(3) = r2
~H(3) + r2

H(3) = 0 + r2
H(3)

= [r2(1)r1
~H(3)]/0.2+[(r2(2)-0.2)r2

~H(3)]/0.2

= [0.192*0.08]/0.2+[(0.407-0.2)*0]/0.2

= 0.077

1 2

3 4 5

H = {1,2}

β = 0.8

H



Hubs

� Start with H = T, the teleport universe

� Add nodes to H such that given any pair 
of nodes i and j, there is a high 
probability that H separates i and j

� i.e., ri
~H(j) is zero for most i,j pairs

� Observation: high page rank nodes are 
good separators and hence good hub 
nodes



Hubs skeleton

� To compute ri(j) we need:

� ri
~H(j) for all i2H, j2V

� called the partial vector

� Sparse

� ri(h) for all h2H

� called the hubs skeleton

i j

ri(h)
rh

~H(j)

ri
~H(j)

H



Storage reduction

� Say |T| = 1000, |H|=2000, N = 1 billion

� Store all basis vectors

� 1000*1 billion = 1 trillion nonzero values

� Use partial vectors and hubs skeleton

� Suppose each partial vector has N/200 nonzero 
entries

� Partial vectors = 2000*N/200 = 10 billion nonzero 
values

� Hubs skeleton = 2000*2000 = 4 million values

� Total = approx 10 billion nonzero values

� Approximately 100x compression


