ES 545
Data Mining

Page Rank Variants




Review Page Rank

Web graph encoded by matrix M

B NEN matrix (N = number of web pages)
B M; = 1/[0(])]| iff there is a link from j to i
B M; = 0 otherwise

B O(j) = set of pages node i links to

Define matrix A as follows
B A; = BM; + (1-B)/N, where 0<p<1
B 1-Bis the “tax” discussed in prior lecture

Page rank r is first eigenvector of A
H Ar=r




Random walk interpretation

At time 0, pick a page on the web
uniformly at random to start the walk

Suppose at time t, we are at page j

At time t+1

B With probability B, pick a page uniformly at
random from O(j) and walk to it

B With probability 1-3, pick a page on the web
uniformly at random and teleport into it

Page rank of page p = “steady state”

probability that at any given time, the
random walker is at page p




Many random walkers

Alternative, equivalent model

Imagine a large number M of
independent, identical random walkers
(MAN)

At any point in time, let M(p) be the
number of random walkers at page p

The page rank of p is the fraction of

random walkers that are expected to be
at page p i.e., E[M(p)]/M.




Problems with page rank

Measures generic popularity of a page
B Biased against topic-specific authorities
B Ambiguous queries e.g., jaguar

B This lecture

Link spam

B Creating artificial link topographies in order
to boost page rank

B Next lecture




Topic-Specific Page Rank

[0 Instead of generic popularity, can we measure
popularity within a topic?
B E.g., computer science, health

[0 Bias the random walk

B When the random walker teleports, he picks a page
from a set S of web pages

B S contains only pages that are relevant to the topic
B E.g., Open Directory (DMOZ) pages for a given topic
(www.dmoz.org)
[0 Correspong to each teleport set S, we get a
different rank vector rg




Matrix formulation

A; = BM;; otherwise
Show that A is stochastic

We have weighted all pages in the
teleport set S equally

B Could also assign different weights to them




Example

a6
|

Suppose S = {1}, B = 0.8

Node | Iteration

0 1 2 stable
1 0.2 0.2 0.264 0.294
2 0 0.08 0.08 0.118
3 0 0.08 0.08 0.328
4 0 0 0.064 0.262

Note how we initialize the page rank vector differently from the

unbiased page rank case.




How well does TSPR work?

Experimental results [Haveliwala 2000]
Picked 16 topics

B Teleport sets determined using DMOZ

E.g., arts, business, sports,...

“"Blind study” using volunteers

35 test queries

Results ranked using Page Rank and TSPR of
most closely related topic

E.g., bicycling using Sports ranking

In most cases volunteers preferred TSPR
ranking




Which topic ranking to use?

User can pick from a menu

Can use the context of the query

B E.g., query is launched from a web page
talking about a known topic

B E.g., use Bayesian classification schemes to
classify query into a topic (forthcoming
lecture)

B History of queries e.g., “"basketball” followed
by “jordan”

User context e.g., user’'s My Yahoo
settings, bookmarks, ...




Scaling with topics and users

Suppose we wanted to cover 1000’s of
topics

B Need to compute 1000’s of different rank
vectors

B Need to store and retrieve them efficiently
at query time

B For good performance vectors must fit in
memory

Even harder when we consider
personalization

B Each user has their own teleport vector
B One page rank vector per user!




Tricks

Determine a set of basis vectors so that
any rank vector is a linear combination
of basis vectors

Encode basis vectors compactly as
partial vectors and a hubs skeleton

At runtime perform a small amount of
computation to derive desired rank
vector elements




Linearity Theorem

Let S be a teleport set and rg be the
corresponding rank vector

For page i2S, let r, be the rank vector
corresponding to the teleport set {i}
B r is a vector with N entries

rs = (1/1S]) Zixs i
Why is linearity important?

B Instead of 2N biased page rank vectors we
need to store N vectors




Linearity example

(1—(2,
9/ !\9

Let us compute r, 5, for § = 0.8

Node | Iteration

0 1 2. stable
1 0.1 0.1 0.164 0.300
2 0.1 0.14 0.172 0.323
3 0 0.04 0.04 0.120
4 0 0.04 0.056 0.130
5 0 0.04 0.056 0.130




Linearity example

0
4

1,23 ry o ()2
0.300 0.407 0.192 0.300
0.323 0.239 0.407 0.323
0.120 0.163 0.077 0.120
0.130 0.096 0.163 0.130
0.130 0.096 0.163 0.130




Intuition behind proof

Let’'s use the many-random-walkers
model with M random walkers

Let us color a random walker with color |
if his most recent teleport was to page i

At time t, we expect M/|S]| of the
random walkers to be colored i

At any page j, we would therefore
expect to find (M/|S|)r;(j) random
walkers colored i

So tot_al number of ran_dom walkers at
page j = (M/|S]|)Xshi(d)




Basis Vectors

Ll

Suppose T = union of all teleport sets of
Interest
B Call it the teleport universe

We can compute the rank vector corresponding
to any teleport set SuT as a linear combination
of the vectors r; for i2T

We call these vectors the basis vectors for T

We can also compute rank vectors where we
assign different weights to teleport pages




Decomposition

Still too many basis vectors

B E.g., |T| might be in the thousands
B N|T| values

Decompose basis vectors into partial

vectors and hubs skeleton




Tours

Ll

Ll

Consider a random walker with teleport set {i}
B Suppose walker is currently at node j

The random walker’s tour is the sequence of
nodes on the walker’s path since the last
teleport

B Ed.,labca,l

B Nodes can repeat in tours — why?

Interior nodes of the tour = {a,b,c,j}

Start node = {i}, end node = {j;

B A page can be both start node and interior node, etc




Tour splitting

Consider random walker with teleport
set {i}, biased rank vector r,

r:(j) = probability random walker
reaches j by following some tour with
start node i and end node j

Consider node k

O Canhaveiikorj=k




Tour splitting

Ll

Let r¥(j) be the probability that random surfer
reaches page j through a tour that includes
page k as an interior node or end node

Let r~K(j) be the probability that random surfer
reaches page j through a tour that does not
include k as an interior node or end node

) =) + (1)

k




Example

Let us compute r;~? for § = 0.8

Node | Iteration
0 1 2. stable
1 02 02 0264 0294 Note that
2 0 0 0 0 many entries are
3 0 0.08 0.08 0.118 ZEeros
4 0 0 0 0
5 0 0 0 0




Example

Let us compute r,~2 for § = 0.8

Node | Iteration

0 1 2. stable
1 0 0 0.064 0.094
2 0.2 0.2 0.2 0.2
3 0 0 0 0.038
4 0 0.08 0.08 0.08
5 0 0.08 0.08 0.08




Rank composition

Notice:
) =) )
= 0.163 - 0.118 = 0.045
. (2)'r 23 =0239 * 0038
= 0.009
= 0.2 * 0.045
= (1-B)*r,2(3)
B r,2(3) = ry(2) r,"%(3)/ (1-B)




Rank composition

r.(k) ()
o< =0 >0
i k !

ri“(3) = r(k)r~*[)/(1-p)




Hubs

Instead of a single page k, we can use a
set H of “hub” pages
B Define r,~H(j) as set of tours from i to j that

do not include any node from H as interior
nodes or end node




Hubs example

H={1,2}
B=0.8
gau P b
Node | Iteration Node | Iteration
0 1 stable 0 1 stable

1 0 0 0 1 0.2 0 0.2

2 0.2 0.2 0.2 2 0 0 0

3 0 0 0 3 0 0.08 0.08

4 0 0.08 0.08 4 0 0 0

5 0 0.08 0.08 5 0 0 0




Rank composition with hubs

ri(3) = r~"QG) + Q)

rA(G) = Zpopwi(h)r~H(3)/(1-8)
wi(h) = ri(h) ifi £ h
wi(h) = r(h) - (1-B) ifi=h




Hubs rule example

H={1,2}
B=0.8

r,(3) = rR~A(3) + RLA(3) =0 + r,A(3)

= (L), s U(S) /021 (F(2)=-0.2)r= 1 35 ]/0.2
[0.192%*%0.08]/0.2+[(0.407-0.2)*0]/0.2
0.077




Hubs

Start with H = T, the teleport universe

Add nodes to H such that given any pair
of nodes i and j, there is a high
probability that H separates i and j

M i.e., ri~H(j) is zero for most i,j pairs

Observation: high page rank nodes are

good separators and hence good hub
nodes




Hubs skeleton

r(h) o ()

i / | J

H — =0 -

o)

To compute r(j) we need:
B r~H(j) for all i2H, j2V
[0 called the partial vector
[1 Sparse
® r,(h) for all h2H
[0 called the hubs skeleton




Storage reduction

0 Say |T| = 1000, |H|=2000, N = 1 billion
[0 Store all basis vectors
m 1000*1 billion = 1 trillion nonzero values

[0 Use partial vectors and hubs skeleton

B Suppose each partial vector has N/200 nonzero
entries

B Partial vectors = 2000*N/200 = 10 billion nonzero
values

B Hubs skeleton = 2000*2000 = 4 million values
B Total = approx 10 billion nonzero values

[0 Approximately 100x compression




