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Clustering Algorithms

Applications

Hierarchical Clustering

k -Means Algorithms

CURE Algorithm
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The Problem of Clustering

�Given a set of points, with a notion of 
distance between points, group the 
points into some number of clusters, so 
that members of a cluster are in some 
sense as close to each other as 
possible.
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Example
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Problems With Clustering

�Clustering in two dimensions looks 
easy.

�Clustering small amounts of data looks 
easy.

�And in most cases, looks are not
deceiving.
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The Curse of Dimensionality

�Many applications involve not 2, but 10 
or 10,000 dimensions.

�High-dimensional spaces look different: 
almost all pairs of points are at about 
the same distance.
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Example: Curse of Dimensionality

�Assume random points within a 
bounding box, e.g., values between 0 
and 1 in each dimension.

�In 2 dimensions: a variety of distances 
between 0 and 1.41.

�In 10,000 dimensions, the difference in 
any one dimension is distributed as a 
triangle.
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Example – Continued

�The law of large numbers applies.

�Actual distance between two random 
points is the sqrt of the sum of squares 
of essentially the same set of 
differences.
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Example High-Dimension 
Application: SkyCat

�A catalog of 2 billion “sky objects” 
represents objects by their radiation in 
7 dimensions (frequency bands).

�Problem: cluster into similar objects, 
e.g., galaxies, nearby stars, quasars, 
etc.

�Sloan Sky Survey is a newer, better 
version.



9

Example: Clustering CD’s 
(Collaborative Filtering)

�Intuitively: music divides into categories, 
and customers prefer a few categories.

� But what are categories really?

�Represent a CD by the customers who 
bought it.

�Similar CD’s have similar sets of 
customers, and vice-versa.
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The Space of CD’s

�Think of a space with one dimension 
for each customer.

� Values in a dimension may be 0 or 1 only.

�A CD’s point in this space is             
(x1, x2,…, xk), where xi = 1 iff the i th

customer bought the CD.

� Compare with boolean matrix: rows = 
customers; cols. = CD’s.
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Space of CD’s – (2)

�For Amazon, the dimension count is 
tens of millions.

�An alternative: use minhashing/LSH to 
get Jaccard similarity between “close” 
CD’s.

�1 minus Jaccard similarity can serve as 
a (non-Euclidean) distance.
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Example: Clustering Documents

�Represent a document by a vector    
(x1, x2,…, xk), where xi = 1 iff the i th

word (in some order) appears in the 
document.

� It actually doesn’t matter if k is infinite; 
i.e., we don’t limit the set of words.

�Documents with similar sets of words 
may be about the same topic.
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Aside: Cosine, Jaccard, and 
Euclidean Distances

� As with CD’s we have a choice when 
we think of documents as sets of 
words or shingles:

1. Sets as vectors: measure similarity by the 
cosine distance.

2. Sets as sets: measure similarity by the 
Jaccard distance.

3. Sets as points: measure similarity by 
Euclidean distance.
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Example: DNA Sequences

�Objects are sequences of {C,A,T,G}.

�Distance between sequences is edit 
distance, the minimum number of 
inserts and deletes needed to turn one 
into the other.

�Note there is a “distance,” but no 
convenient space in which points “live.”
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Methods of Clustering

�Hierarchical (Agglomerative):

� Initially, each point in cluster by itself.

� Repeatedly combine the two “nearest” 
clusters into one.

�Point Assignment:

� Maintain a set of clusters.

� Place points into their “nearest” cluster.
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Hierarchical Clustering

� Two important questions:

1. How do you determine the “nearness” of 
clusters?

2. How do you represent a cluster of more 
than one point?
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Hierarchical Clustering – (2)

�Key problem: as you build clusters, how 
do you represent the location of each 
cluster, to tell which pair of clusters is 
closest?

�Euclidean case: each cluster has a 
centroid = average of its points.

� Measure intercluster distances by distances 
of centroids.
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Example
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And in the Non-Euclidean Case?

�The only “locations” we can talk about 
are the points themselves.

� I.e., there is no “average” of two points.

�Approach 1: clustroid = point “closest” 
to other points.

� Treat clustroid as if it were centroid, when 
computing intercluster distances. 
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“Closest” Point?

� Possible meanings:

1. Smallest maximum distance to the other 
points.

2. Smallest average distance to other 
points.

3. Smallest sum of squares of distances to 
other points.

4. Etc., etc.
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Example
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Other Approaches to Defining 
“Nearness” of Clusters

�Approach 2: intercluster distance = 
minimum of the distances between any 
two points, one from each cluster.

�Approach 3: Pick a notion of “cohesion” 
of clusters, e.g., maximum distance from 
the clustroid.

� Merge clusters whose union is most 
cohesive.
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Cohesion

� Approach 1: Use the diameter of the 
merged cluster = maximum distance 
between points in the cluster.

� Approach 2: Use the average distance 
between points in the cluster.
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Cohesion – (2)

�Approach 3: Use a density-based 
approach:  take the diameter or 
average distance, e.g., and divide by 
the number of points in the cluster.

� Perhaps raise the number of points to a 
power first, e.g., square-root.
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k – Means Algorithm(s)

�Assumes Euclidean space.

�Start by picking k, the number of 
clusters.

�Initialize clusters by picking one point 
per cluster.

� Example: pick one point at random, then   
k -1 other points, each as far away as 
possible from the previous points.
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Populating Clusters

1. For each point, place it in the cluster 
whose current centroid it is nearest.

2. After all points are assigned, fix the 
centroids of the k clusters.

3. Optional: reassign all points to their 
closest centroid.
� Sometimes moves points between 

clusters.
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Example: Assigning Clusters
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Getting k Right

� Try different k, looking at the change in 
the average distance to centroid, as k
increases.

�Average falls rapidly until right k, then 
changes little.

k

Average
distance to
centroid

Best value
of k
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Example: Picking k

x        x

x  x      x  x

x   x x  x 

x     x  x

x   x

x

xx    x

x  x        

x    x  x   

x

x x   x

x

x   x

x  x    x    x

x    x     x

x 

x

x

Too few;
many long
distances
to centroid.



30

Example: Picking k
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Example: Picking k
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BFR Algorithm

�BFR (Bradley-Fayyad-Reina) is a variant 
of k -means designed to handle very 
large (disk-resident) data sets.

�It assumes that clusters are normally 
distributed around a centroid in a 
Euclidean space.

� Standard deviations in different dimensions 
may vary.
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BFR – (2)

�Points are read one main-memory-full at 
a time.

�Most points from previous memory loads 
are summarized by simple statistics.

�To begin, from the initial load we select 
the initial k centroids by some sensible 
approach.
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Initialization: k -Means

� Possibilities include:

1. Take a small random sample and cluster 
optimally.

2. Take a sample; pick a random point, and 
then k – 1 more points, each as far from 
the previously selected points as possible.
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Three Classes of Points

1. The discard set : points close enough to 
a centroid to be summarized.

2. The compression set : groups of points 
that are close together but not close to 
any centroid.  They are summarized, but 
not assigned to a cluster.

3. The retained set : isolated points.
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Summarizing Sets of Points

� For each cluster, the discard set is 
summarized by:

1. The number of points, N.

2. The vector SUM, whose i th component is 
the sum of the coordinates of the points in 
the i th dimension.

3. The vector SUMSQ: i th component = sum 
of squares of coordinates in i th dimension.
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Comments

�2d + 1 values represent any number of 
points.

� d = number of dimensions.

�Averages in each dimension (centroid 
coordinates) can be calculated easily as 
SUMi /N.

� SUMi = i th component of SUM.
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Comments – (2)

�Variance of a cluster’s discard set in 
dimension i can be computed by: 

(SUMSQi /N ) – (SUMi /N )2

�And the standard deviation is the 
square root of that.

�The same statistics can represent any 
compression set.
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“Galaxies” Picture

A cluster.  Its points
are in the DS.

The centroid

Compressed sets.
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Processing a “Memory-Load” 
of Points

1. Find those points that are “sufficiently 
close” to a cluster centroid; add those 
points to that cluster and the DS.

2. Use any main-memory clustering 
algorithm to cluster the remaining 
points and the old RS.

� Clusters go to the CS; outlying points to 
the RS.
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Processing – (2)

3. Adjust statistics of the clusters to 
account for the new points.
� Add N’s, SUM’s, SUMSQ’s.

4. Consider merging compressed sets in 
the CS.

5. If this is the last round, merge all 
compressed sets in the CS and all RS 
points into their nearest cluster.



42

A Few Details . . .

�How do we decide if a point is “close 
enough” to a cluster that we will add 
the point to that cluster?

�How do we decide whether two 
compressed sets deserve to be 
combined into one?
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How Close is Close Enough?

� We need a way to decide whether to 
put a new point into a cluster.

� BFR suggest two ways:

1. The Mahalanobis distance is less than a 
threshold.

2. Low likelihood of the currently nearest 
centroid changing.
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Mahalanobis Distance

� Normalized Euclidean distance from 
centroid.

� For point (x1,…,xk) and centroid 
(c1,…,ck):

1. Normalize in each dimension: yi = (xi -ci)/σi

2. Take sum of the squares of the yi ’s.

3. Take the square root.
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Mahalanobis Distance – (2)

�If clusters are normally distributed in d
dimensions, then after transformation, 
one standard deviation = √d.

� I.e., 70% of the points of the cluster will 
have a Mahalanobis distance < √d.

�Accept a point for a cluster if its M.D. is 
< some threshold, e.g. 4 standard 
deviations.
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Picture: Equal M.D. Regions
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Should Two CS Subclusters Be 
Combined?

�Compute the variance of the combined 
subcluster.

� N, SUM, and SUMSQ allow us to make that 
calculation quickly.

�Combine if the variance is below some 
threshold.

�Many alternatives: treat dimensions 
differently, consider density.
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The CURE Algorithm

�Problem with BFR/k -means:

� Assumes clusters are normally distributed 
in each dimension.

� And axes are fixed – ellipses at an angle 
are not OK.

�CURE:

� Assumes a Euclidean distance.

� Allows clusters to assume any shape.
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Example: Stanford Faculty Salaries
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Starting CURE

1. Pick a random sample of points that fit 
in main memory.

2. Cluster these points hierarchically –
group nearest points/clusters.

3. For each cluster, pick a sample of 
points, as dispersed as possible.

4. From the sample, pick representatives 
by moving them (say) 20% toward 
the centroid of the cluster.
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Example: Initial Clusters
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Example: Pick Dispersed Points
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Example: Pick Dispersed Points
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Finishing CURE

�Now, visit each point p in the data set.

�Place it in the “closest cluster.”

� Normal definition of “closest”: that cluster 
with the closest (to p ) among all the 
sample points of all the clusters.


