
SQL/MR

Peter Pawlowski
Member of Technical Staff

January 16, 2009

ASTER BACKGROUND

2

Our Founders

3

3 PhD students from Stanford C.S.

  Cool ideas…

  … but no funding, no product, no clients!

OK, they had
$ 10,000…

Our Product: nCluster

  A massively scalable database designed for
analytics.

  Runs on a cluster of commodity nodes.
  Scales from GBs to 100s of TBs and beyond.
  Standard SQL interface (via a command line tool,

JDBC, ODBC, etc).
  Support MR-like functionality via user-defined SQL/

MR functions.

4

5

Our Approach: Commodity Nodes

Queen
Query  Server nodes 

Processing + Storage Results 

5

SQL/MR

6

What are SQL/MR functions?

SQL/MR functions:
  Are Java functions meeting a particular API.
  Are compiled outside the database, installed via a

command line tool, and then invoked via SQL.
  Take a database table of one schema as input and

output rows back into the database.
  Are polymorphic. During initialization, a function is

told the schema of its input (for example, (key,
value)) and needs to return its output schema.

  Accept zero or more argument clauses
(parameters), which can modify their behavior.

  Are designed to run on a massively parallel system
by allowing the user to specify which slice of the
data a particular instance of the function sees.

7

First Example: Word Count

Problem: Count the word frequency distribution
across a set of documents.

Input: A database table containing the documents in
question.

Map Phase: For each word in each document,
outputs a row of the form (word, 1).

Shuffle Phase: Brings all rows with the same value
for word together.

Reduce Phase: Count the number of rows for each
word about output (word, <total-count>).

8

Input: The Documents Table

BEGIN;

CREATE FACT TABLE documents (body varchar,
PARTITION KEY(body));

INSERT INTO documents VALUES (‘this is a single
test document. it is simple to count the words
in this single document by hand. do we need a
cluster?’);

END;

SELECT body FROM documents;

9

Map Function: tokenize

public class tokenize implements RowFunction {

...

 public void operateOnSomeRows(RowIterator inputIterator,

 RowEmitter outputEmitter)

 {

 while (inputIterator.advanceToNextRow()) {

 String[] parts =

 splitPattern_.split(inputIterator.getStringAt(0));

 for (String part : parts) {

 outputEmitter.addString(part);

 outputEmitter.addInt(1);

 outputEmitter.emitRow();

 }

 }

 }

}

10

Reduce Function: count_tokens

public class count_tokens implements PartitionFunction {

...

 public void operateOnPartition(

 PartitionDefinition partitionDefinition,

 RowIterator inputIterator, RowEmitter outputEmitter)

 {

 int count = 0;

 String word = inputIterator.getStringAt(0);

 while (inputIterator.advanceToNextRow())

 count++;

 outputEmitter.addString(word);

 outputEmitter.addInt(count);

 outputEmitter.emitRow();

 }

}

11

Invoking the Functions

BEGIN;

\install tokenize.jar

\install count_tokens.jar

SELECT word, count FROM count_tokens (

 ON (SELECT word, count

 FROM tokenize(ON documents))

 PARTITION BY word

) ORDER BY word DESC;

ABORT;

12

12

Even Better: Forget the Reduce

BEGIN;

\install tokenize.jar

SELECT word, sum(count)

FROM tokenize(ON documents)

GROUP BY word

ORDER BY word;

ABORT;

13

Types of SQL/MR Functions

RowFunction
  Corresponds to a map function.

  Must implement the operateOnSomeRows method.

  Must be invoked without a PARTITION BY.

  “Sees” all the appropriate rows on a particular worker.

PartitionFunction
  Corresponds to a reduce function.

  Must implement the operateOnPartition method.

  Must be invoked with a PARTITION BY, which specifies how
rows are reshuffled.

  “Sees” all the appropriate rows in a partition.

14

Requirements of a SQL/MR Function

  Must implement either RowFunction or
PartitionFunction.

  Must have a single-argument constructor which
takes a single RuntimeContract as a parameter.

  Class name must be all lowercase.
  Name of jar file must be the same as the SQL/MR

function name.
  Note: can also upload a <functionname>.zip file,

containing multiple jars. The jar with the SQL/MR
function must have same name as the function, but
other jars can be included. Useful for including
libraries.

15

The Constructor

public tokenize(RuntimeContract contract)

{

 ArrayList<ColumnDefinition> output =

 new ArrayList<ColumnDefinition>();

 outputColumns.add(

 new ColumnDefinition("word", SqlType.varchar()));

 outputColumns.add(

 new ColumnDefinition("count", SqlType.bigint()));

 contract.setOutputInfo(new OutputInfo(outputColumns));

 contract.complete();

}

16

The Constructor

  The constructor can throw exceptions. If the
exception is a subclass of
ClientVisibleException, the user sees a
descriptive message on the command line tool.
Otherwise, they see a generic error message.

  A full stack trace of the exception can be viewed via
the AMC.

17

Full Syntax

SELECT ...

FROM FunctionName(

ON {tablename | (subquery)}

 [PARTITION BY ...]

 [ORDER BY ...]

 ARGCLAUSE1 (..., ...)

 MYCLAUSE (...)

 ...

);

18

Tip 1: CTAS

19

BEGIN;

\install tokeninze.jar

CREATE FACT TABLE counts (PARTITION
KEY(word)) AS

SELECT word, sum(count)

FROM tokenize(ON documents)

GROUP BY word;

ORDER BY word;

END;

Tip 2: Use Transactions

20

BEGIN;

\install tokeninze.jar

CREATE FACT TABLE counts (PARTITION
KEY(word)) AS

SELECT word, sum(count)

FROM tokenize(ON documents)

GROUP BY word;

ORDER BY word;

END;

Tip 3: PARTITION BY c

21

BEGIN;

\install exact_percentile.jar

SELECT *

FROM exact_percentile(

 ON source_data

 PARTITION BY 1

 PERCENTILE(25, 50, 75)

);

ABORT;

Tip 4: Using act

22

To connect to the cluster, use the command line tool
act.

bash$ act -h <ip-address> -d <databasename> -U <username>

Useful commands

\d List all tables.
\d <table name> Show table details.
\dF List installed SQL/MR files.
\? More detailed help.
\timing Enable query timing.

Beyond Java: Stream

BEGIN;

\install tokeninze.py

SELECT word, sum(count)

FROM STREAM(

ON documents

SCRIPT(‘tokenize.py’)

 OUTPUTS(‘word varchar’, ‘count int’)

)

GROUP BY word

ORDER BY word;

ABORT;

23

Netflix Data Schema

movie_titles. Stores movie id, year, and titles.

training_set. Main training dataset. Stores
(customerid, movieid, viewdate, and rating).

probe_set. A random sample of (customerid, movieid)
pairs from the training set. Designed to be used for
testing your classifier.

qualifying_set. A set of (customerid, movieid,
viewdate) rows not in the training set. To enter the
contest, submit your classifier’s ratings for these
movies.

24

Netflix Data Notes

  Both the probe and qualifying sets are ordered. The
file you submit to Netflix needs to be in that same
order. Therefore, the probe_set and qualifying_set
tables have an extra entryid column.

  See www.netflixprize.com for more details about
the dataset and on entering the contest.

25

