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Aside: Hash-Based Filtering

�Simple problem: I have a set S of one 
billion strings of length 10.

�I want to scan a larger file F of strings 
and output those that are in S.

�I have 1GB of main memory.

� So I can’t afford to store S in memory.
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Solution – (1)

�Create a bit array of 8 billion bits, initially 
all 0’s.

�Choose a hash function h with range 
[0, 8*109), and hash each member of S to 
one of the bits, which is then set to 1.

�Filter the file F by hashing each string and 
outputting only those that hash to a 1.
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Solution – (2)

FilterFile F

0010001011000

To output;
may be in S.

h

Drop; surely
not in S.
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Solution – (3)

�As at most 1/8 of the bit array is 1, 
only 1/8th of the strings not in S get 
through to the output.

�If a string is in S, it surely hashes to a 
1, so it always gets through.

�Can repeat with another hash function 
and bit array to reduce the false 
positives by another factor of 8.
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Solution – Summary

�Each filter step costs one pass through the 
remaining file F and reduces the fraction of 
false positives by a factor of 8.

� Actually 1/(1-e -1/8).

�Repeat passes until few false positives.

�Either accept some errors, or check the 
remaining strings.

� e.g., divide surviving F into chunks that fit in 
memory and make a pass though S for each.
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Aside: Throwing Darts

�A number of times we are going to 
need to deal with the problem: If we 
throw k darts into n equally likely 
targets, what is the probability that a 
target gets at least one dart?

�Example: targets = bits, darts = hash 
values of elements.
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Throwing Darts – (2)

(1 – 1/n)

Probablity
target not hit
by one dart

k
1 -

Probability at
least one dart
hits target

n( /n)

Equivalent
Equals 1/e
as n →∞

1 – e–k/n
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Throwing Darts – (3)

�If k << n, then e-k/n can be 
approximated by the first two terms of 
its Taylor expansion: 1 – k/n.

�Example: 109 darts, 8*109 targets.

� True value: 1 – e-1/8 = .1175.

� Approximation: 1 – (1 – 1/8) = .125.
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Improvement: Superimposed 
Codes (Bloom Filters)

�We could use two hash functions, and 
hash each member of S to two bits of 
the bit array.

�Now, around ¼ of the array is 1’s.

�But we transmit a string in F to the 
output only if both its bits are 1, i.e., 
only 1/16th are false positives.
� Actually (1-e -1/4)2 = 0.0493.
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Superimposed Codes – (2)

�Generalizes to any number of hash 
functions.

�The more hash functions, the smaller 
the probability of a false positive.

�Limiting Factor: Eventually, the bit 
vector becomes almost all 1’s.

� Almost anything hashes to only 1’s.
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Aside: History

�The idea is attributed to Bloom (1970).

�But I learned the same idea as 
“superimposed codes,” at Bell Labs, 
which I left in 1969.

� Technically, the original paper on 
superimposed codes (Kautz and Singleton, 
1964) required uniqueness : no two small 
sets have the same bitmap.
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PCY Algorithm – An 
Application of Hash-Filtering

�During Pass 1 of A-priori, most memory is 
idle.

�Use that memory to keep counts of buckets 
into which pairs of items are hashed.

� Just the count, not the pairs themselves.
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Needed Extensions to 
Hash-Filtering

1. Pairs of items need to be generated 
from the input file; they are not 
present in the file.

2. We are not just interested in the 
presence of a pair, but we need to see 
whether it is present at least s
(support) times.
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PCY Algorithm – (2)

�A bucket is frequent if its count is at 
least the support threshold.

�If a bucket is not frequent, no pair that 
hashes to that bucket could possibly be 
a frequent pair.

�On Pass 2, we only count pairs that 
hash to frequent buckets.



16

Picture of PCY

Hash
table

Item counts

Bitmap

Pass 1 Pass 2

Frequent items

Counts of
candidate
pairs
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PCY Algorithm – Before Pass 1 
Organize Main Memory

�Space to count each item.

� One (typically) 4-byte integer per item.

�Use the rest of the space for as many 
integers, representing buckets, as we 
can.
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PCY Algorithm – Pass 1

FOR (each basket) {

FOR (each item in the basket)

add 1 to item’s count;

FOR (each pair of items) {

hash the pair to a bucket;

add 1 to the count for that 

bucket

}

}
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Observations About Buckets

1. A bucket that a frequent pair hashes 
to is surely frequent.

� We cannot use the hash table to 
eliminate any member of this bucket.

2. Even without any frequent pair, a 
bucket can be frequent.

� Again, nothing in the bucket can be 
eliminated.
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Observations – (2)

3. But in the best case, the count for a  
bucket is less than the support s.

� Now, all pairs that hash to this bucket can 
be eliminated as candidates, even if the 
pair consists of two frequent items.

�Thought question: under what 
conditions can we be sure most buckets 
will be in case 3?
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PCY Algorithm – Between 
Passes

�Replace the buckets by a bit-vector:

� 1 means the bucket is frequent; 0 means it is 
not.

�4-byte integers are replaced by bits, so the 
bit-vector requires 1/32 of memory.

�Also, decide which items are frequent and 
list them for the second pass.
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PCY Algorithm – Pass 2

� Count all pairs {i, j } that meet the 
conditions for being a candidate pair:

1. Both i and j are frequent items.

2. The pair {i, j }, hashes to a bucket 
number whose bit in the bit vector is 1.

� Notice all these conditions are 
necessary for the pair to have a 
chance of being frequent.
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Memory Details

�Buckets require a few bytes each.

� Note: we don’t have to count past s.

� # buckets is O(main-memory size).

�On second pass, a table of (item, item, 
count) triples is essential (why?).

� Thus, hash table must eliminate 2/3 of the 
candidate pairs for PCY to beat a-priori.
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Multistage Algorithm

�Key idea: After Pass 1 of PCY, rehash 
only those pairs that qualify for Pass 2 
of PCY.

�On middle pass, fewer pairs contribute 
to buckets, so fewer false positives –
frequent buckets with no frequent pair.
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Multistage Picture

First
hash table
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hash table
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Bitmap 2
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candidate
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Pass 1 Pass 2 Pass 3
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Multistage – Pass 3

� Count only those pairs {i, j } that 
satisfy these candidate pair conditions:

1. Both i and j are frequent items.

2. Using the first hash function, the pair 
hashes to a bucket whose bit in the first 
bit-vector is 1.

3. Using the second hash function, the pair 
hashes to a bucket whose bit in the 
second bit-vector is 1.
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Important Points

1. The two hash functions have to be 
independent.

2. We need to check both hashes on the 
third pass.

� If not, we would wind up counting pairs 
of frequent items that hashed first to an 
infrequent bucket but happened to hash 
second to a frequent bucket.
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Multihash

�Key idea: use several independent hash 
tables on the first pass.

�Risk: halving the number of buckets 
doubles the average count.  We have to 
be sure most buckets will still not reach 
count s.

�If so, we can get a benefit like 
multistage, but in only 2 passes.
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Multihash Picture

First hash
table

Second
hash table

Item counts
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Bitmap 2
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candidate
pairs

Pass 1 Pass 2
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Extensions

�Either multistage or multihash can use 
more than two hash functions.

�In multistage, there is a point of 
diminishing returns, since the bit-vectors 
eventually consume all of main memory.

�For multihash, the bit-vectors occupy 
exactly what one PCY bitmap does, but too 
many hash functions makes all counts > s.
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All (Or Most) Frequent Itemsets 
In < 2 Passes

�A-Priori, PCY, etc., take k passes to 
find frequent itemsets of size k.

�Other techniques use 2 or fewer passes 
for all sizes:

� Simple algorithm.

� SON (Savasere, Omiecinski, and Navathe).

� Toivonen.
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Simple Algorithm – (1)

�Take a random sample of the market 
baskets.

�Run a-priori or one of its improvements 
(for sets of all sizes, not just pairs) in 
main memory, so you don’t pay for disk 
I/O each time you increase the size of 
itemsets.

� Be sure you leave enough space for counts.
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Main-Memory Picture

Copy of
sample
baskets

Space
for
counts
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Simple Algorithm – (2)

�Use as your support threshold a 
suitable, scaled-back number.

� E.g., if your sample is 1/100 of the 
baskets, use  s /100 as your support 
threshold instead of s .
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Simple Algorithm – Option

�Optionally, verify that your guesses are 
truly frequent in the entire data set by a 
second pass.

�But you don’t catch sets frequent in the 
whole but not in the sample.

� Smaller threshold, e.g., s /125, helps catch 
more truly frequent itemsets.

• But requires more space.
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SON Algorithm – (1)

�Repeatedly read small subsets of the 
baskets into main memory and perform 
the first pass of the simple algorithm on 
each subset.

�An itemset becomes a candidate if it is 
found to be frequent in any one or 
more subsets of the baskets.
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SON Algorithm – (2)

�On a second pass, count all the 
candidate itemsets and determine 
which are frequent in the entire set.

�Key “monotonicity” idea: an itemset 
cannot be frequent in the entire set of 
baskets unless it is frequent in at least 
one subset.
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SON Algorithm – Distributed Version

�This idea lends itself to distributed data 
mining.

�If baskets are distributed among many 
nodes, compute frequent itemsets at 
each node, then distribute the 
candidates from each node.

�Finally, accumulate the counts of all 
candidates.
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Toivonen’s Algorithm – (1)

�Start as in the simple algorithm, but 
lower the threshold slightly for the 
sample.

� Example: if the sample is 1% of the 
baskets, use s /125 as the support 
threshold rather than s /100.

� Goal is to avoid missing any itemset that is 
frequent in the full set of baskets.
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Toivonen’s Algorithm – (2)

�Add to the itemsets that are frequent in 
the sample the negative border of these 
itemsets.

�An itemset is in the negative border if it 
is not deemed frequent in the sample, 
but all its immediate subsets are.
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Example: Negative Border

� ABCD is in the negative border if and 
only if:

1. It is not frequent in the sample, but

2. All of ABC, BCD, ACD, and ABD are.

� A is in the negative border if and only 
if it is not frequent in the sample.

� Because the empty set is always frequent.

� Unless there are fewer baskets than the 
support threshold (silly case).
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Picture of Negative Border

…
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Frequent Itemsets
from Sample
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Toivonen’s Algorithm – (3)

�In a second pass, count all candidate 
frequent itemsets from the first pass, 
and also count their negative border.

�If no itemset from the negative border 
turns out to be frequent, then the 
candidates found to be frequent in the 
whole data are exactly the frequent 
itemsets.
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Toivonen’s Algorithm – (4)

�What if we find that something in the 
negative border is actually frequent?

�We must start over again!

�Try to choose the support threshold so the 
probability of failure is low, while the 
number of itemsets checked on the second 
pass fits in main-memory.
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If Something in the Negative 
Border is Frequent . . .

…

tripletons

doubletons

singletons

Negative Border

Frequent Itemsets
from Sample

We broke through the
negative border.  How
far does the problem

go?
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Theorem:

�If there is an itemset that is frequent in 
the whole, but not frequent in the 
sample, then there is a member of the 
negative border for the sample that is 
frequent in the whole.
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� Proof: Suppose not; i.e.;

1. There is an itemset S frequent in the whole 
but not frequent in the sample, and

2. Nothing in the negative border is frequent in 
the whole.

� Let T be a smallest subset of S that is 
not frequent in the sample.

� T is frequent in the whole (S is 
frequent + monotonicity).

� T is in the negative border (else not 
“smallest”).
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Compacting the Output

1. Maximal Frequent itemsets : no 
immediate superset is frequent.

2. Closed itemsets : no immediate 
superset has the same count (> 0).

� Stores not only frequent information, but 
exact counts.
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Example: Maximal/Closed

Count Maximal (s=3) Closed

A 4 No No

B 5 No Yes

C 3 No No

AB 4 Yes Yes

AC 2 No No

BC 3 Yes Yes

ABC 2 No Yes

Frequent, but
superset BC
also frequent.

Frequent, and
its only superset,
ABC, not freq.

Superset BC
has same count.

Its only super-
set, ABC, has
smaller count.


