
1

Improvements to A-Priori

Bloom Filters

Park-Chen-Yu Algorithm

Multistage Algorithm

Approximate Algorithms

Compacting Results

2

Aside: Hash-Based Filtering

�Simple problem: I have a set S of one
billion strings of length 10.

�I want to scan a larger file F of strings
and output those that are in S.

�I have 1GB of main memory.

� So I can’t afford to store S in memory.

3

Solution – (1)

�Create a bit array of 8 billion bits, initially
all 0’s.

�Choose a hash function h with range
[0, 8*109), and hash each member of S to
one of the bits, which is then set to 1.

�Filter the file F by hashing each string and
outputting only those that hash to a 1.

4

Solution – (2)

FilterFile F

0010001011000

To output;
may be in S.

h

Drop; surely
not in S.

5

Solution – (3)

�As at most 1/8 of the bit array is 1,
only 1/8th of the strings not in S get
through to the output.

�If a string is in S, it surely hashes to a
1, so it always gets through.

�Can repeat with another hash function
and bit array to reduce the false
positives by another factor of 8.

6

Solution – Summary

�Each filter step costs one pass through the
remaining file F and reduces the fraction of
false positives by a factor of 8.

� Actually 1/(1-e -1/8).

�Repeat passes until few false positives.

�Either accept some errors, or check the
remaining strings.

� e.g., divide surviving F into chunks that fit in
memory and make a pass though S for each.

7

Aside: Throwing Darts

�A number of times we are going to
need to deal with the problem: If we
throw k darts into n equally likely
targets, what is the probability that a
target gets at least one dart?

�Example: targets = bits, darts = hash
values of elements.

8

Throwing Darts – (2)

(1 – 1/n)

Probablity
target not hit
by one dart

k
1 -

Probability at
least one dart
hits target

n(/n)

Equivalent
Equals 1/e
as n →∞

1 – e–k/n

9

Throwing Darts – (3)

�If k << n, then e-k/n can be
approximated by the first two terms of
its Taylor expansion: 1 – k/n.

�Example: 109 darts, 8*109 targets.

� True value: 1 – e-1/8 = .1175.

� Approximation: 1 – (1 – 1/8) = .125.

10

Improvement: Superimposed
Codes (Bloom Filters)

�We could use two hash functions, and
hash each member of S to two bits of
the bit array.

�Now, around ¼ of the array is 1’s.

�But we transmit a string in F to the
output only if both its bits are 1, i.e.,
only 1/16th are false positives.
� Actually (1-e -1/4)2 = 0.0493.

11

Superimposed Codes – (2)

�Generalizes to any number of hash
functions.

�The more hash functions, the smaller
the probability of a false positive.

�Limiting Factor: Eventually, the bit
vector becomes almost all 1’s.

� Almost anything hashes to only 1’s.

12

Aside: History

�The idea is attributed to Bloom (1970).

�But I learned the same idea as
“superimposed codes,” at Bell Labs,
which I left in 1969.

� Technically, the original paper on
superimposed codes (Kautz and Singleton,
1964) required uniqueness : no two small
sets have the same bitmap.

13

PCY Algorithm – An
Application of Hash-Filtering

�During Pass 1 of A-priori, most memory is
idle.

�Use that memory to keep counts of buckets
into which pairs of items are hashed.

� Just the count, not the pairs themselves.

14

Needed Extensions to
Hash-Filtering

1. Pairs of items need to be generated
from the input file; they are not
present in the file.

2. We are not just interested in the
presence of a pair, but we need to see
whether it is present at least s
(support) times.

15

PCY Algorithm – (2)

�A bucket is frequent if its count is at
least the support threshold.

�If a bucket is not frequent, no pair that
hashes to that bucket could possibly be
a frequent pair.

�On Pass 2, we only count pairs that
hash to frequent buckets.

16

Picture of PCY

Hash
table

Item counts

Bitmap

Pass 1 Pass 2

Frequent items

Counts of
candidate
pairs

17

PCY Algorithm – Before Pass 1
Organize Main Memory

�Space to count each item.

� One (typically) 4-byte integer per item.

�Use the rest of the space for as many
integers, representing buckets, as we
can.

18

PCY Algorithm – Pass 1

FOR (each basket) {

FOR (each item in the basket)

add 1 to item’s count;

FOR (each pair of items) {

hash the pair to a bucket;

add 1 to the count for that

bucket

}

}

19

Observations About Buckets

1. A bucket that a frequent pair hashes
to is surely frequent.

� We cannot use the hash table to
eliminate any member of this bucket.

2. Even without any frequent pair, a
bucket can be frequent.

� Again, nothing in the bucket can be
eliminated.

20

Observations – (2)

3. But in the best case, the count for a
bucket is less than the support s.

� Now, all pairs that hash to this bucket can
be eliminated as candidates, even if the
pair consists of two frequent items.

�Thought question: under what
conditions can we be sure most buckets
will be in case 3?

21

PCY Algorithm – Between
Passes

�Replace the buckets by a bit-vector:

� 1 means the bucket is frequent; 0 means it is
not.

�4-byte integers are replaced by bits, so the
bit-vector requires 1/32 of memory.

�Also, decide which items are frequent and
list them for the second pass.

22

PCY Algorithm – Pass 2

� Count all pairs {i, j } that meet the
conditions for being a candidate pair:

1. Both i and j are frequent items.

2. The pair {i, j }, hashes to a bucket
number whose bit in the bit vector is 1.

� Notice all these conditions are
necessary for the pair to have a
chance of being frequent.

23

Memory Details

�Buckets require a few bytes each.

� Note: we don’t have to count past s.

� # buckets is O(main-memory size).

�On second pass, a table of (item, item,
count) triples is essential (why?).

� Thus, hash table must eliminate 2/3 of the
candidate pairs for PCY to beat a-priori.

24

Multistage Algorithm

�Key idea: After Pass 1 of PCY, rehash
only those pairs that qualify for Pass 2
of PCY.

�On middle pass, fewer pairs contribute
to buckets, so fewer false positives –
frequent buckets with no frequent pair.

25

Multistage Picture

First
hash table

Second
hash table

Item counts

Bitmap 1 Bitmap 1

Bitmap 2

Freq. items Freq. items

Counts of
candidate
pairs

Pass 1 Pass 2 Pass 3

26

Multistage – Pass 3

� Count only those pairs {i, j } that
satisfy these candidate pair conditions:

1. Both i and j are frequent items.

2. Using the first hash function, the pair
hashes to a bucket whose bit in the first
bit-vector is 1.

3. Using the second hash function, the pair
hashes to a bucket whose bit in the
second bit-vector is 1.

27

Important Points

1. The two hash functions have to be
independent.

2. We need to check both hashes on the
third pass.

� If not, we would wind up counting pairs
of frequent items that hashed first to an
infrequent bucket but happened to hash
second to a frequent bucket.

28

Multihash

�Key idea: use several independent hash
tables on the first pass.

�Risk: halving the number of buckets
doubles the average count. We have to
be sure most buckets will still not reach
count s.

�If so, we can get a benefit like
multistage, but in only 2 passes.

29

Multihash Picture

First hash
table

Second
hash table

Item counts

Bitmap 1

Bitmap 2

Freq. items

Counts of
candidate
pairs

Pass 1 Pass 2

30

Extensions

�Either multistage or multihash can use
more than two hash functions.

�In multistage, there is a point of
diminishing returns, since the bit-vectors
eventually consume all of main memory.

�For multihash, the bit-vectors occupy
exactly what one PCY bitmap does, but too
many hash functions makes all counts > s.

31

All (Or Most) Frequent Itemsets
In < 2 Passes

�A-Priori, PCY, etc., take k passes to
find frequent itemsets of size k.

�Other techniques use 2 or fewer passes
for all sizes:

� Simple algorithm.

� SON (Savasere, Omiecinski, and Navathe).

� Toivonen.

32

Simple Algorithm – (1)

�Take a random sample of the market
baskets.

�Run a-priori or one of its improvements
(for sets of all sizes, not just pairs) in
main memory, so you don’t pay for disk
I/O each time you increase the size of
itemsets.

� Be sure you leave enough space for counts.

33

Main-Memory Picture

Copy of
sample
baskets

Space
for
counts

34

Simple Algorithm – (2)

�Use as your support threshold a
suitable, scaled-back number.

� E.g., if your sample is 1/100 of the
baskets, use s /100 as your support
threshold instead of s .

35

Simple Algorithm – Option

�Optionally, verify that your guesses are
truly frequent in the entire data set by a
second pass.

�But you don’t catch sets frequent in the
whole but not in the sample.

� Smaller threshold, e.g., s /125, helps catch
more truly frequent itemsets.

• But requires more space.

36

SON Algorithm – (1)

�Repeatedly read small subsets of the
baskets into main memory and perform
the first pass of the simple algorithm on
each subset.

�An itemset becomes a candidate if it is
found to be frequent in any one or
more subsets of the baskets.

37

SON Algorithm – (2)

�On a second pass, count all the
candidate itemsets and determine
which are frequent in the entire set.

�Key “monotonicity” idea: an itemset
cannot be frequent in the entire set of
baskets unless it is frequent in at least
one subset.

38

SON Algorithm – Distributed Version

�This idea lends itself to distributed data
mining.

�If baskets are distributed among many
nodes, compute frequent itemsets at
each node, then distribute the
candidates from each node.

�Finally, accumulate the counts of all
candidates.

39

Toivonen’s Algorithm – (1)

�Start as in the simple algorithm, but
lower the threshold slightly for the
sample.

� Example: if the sample is 1% of the
baskets, use s /125 as the support
threshold rather than s /100.

� Goal is to avoid missing any itemset that is
frequent in the full set of baskets.

40

Toivonen’s Algorithm – (2)

�Add to the itemsets that are frequent in
the sample the negative border of these
itemsets.

�An itemset is in the negative border if it
is not deemed frequent in the sample,
but all its immediate subsets are.

41

Example: Negative Border

� ABCD is in the negative border if and
only if:

1. It is not frequent in the sample, but

2. All of ABC, BCD, ACD, and ABD are.

� A is in the negative border if and only
if it is not frequent in the sample.

� Because the empty set is always frequent.

� Unless there are fewer baskets than the
support threshold (silly case).

42

Picture of Negative Border

…

tripletons

doubletons

singletons

Negative Border

Frequent Itemsets
from Sample

43

Toivonen’s Algorithm – (3)

�In a second pass, count all candidate
frequent itemsets from the first pass,
and also count their negative border.

�If no itemset from the negative border
turns out to be frequent, then the
candidates found to be frequent in the
whole data are exactly the frequent
itemsets.

44

Toivonen’s Algorithm – (4)

�What if we find that something in the
negative border is actually frequent?

�We must start over again!

�Try to choose the support threshold so the
probability of failure is low, while the
number of itemsets checked on the second
pass fits in main-memory.

45

If Something in the Negative
Border is Frequent . . .

…

tripletons

doubletons

singletons

Negative Border

Frequent Itemsets
from Sample

We broke through the
negative border. How
far does the problem

go?

46

Theorem:

�If there is an itemset that is frequent in
the whole, but not frequent in the
sample, then there is a member of the
negative border for the sample that is
frequent in the whole.

47

� Proof: Suppose not; i.e.;

1. There is an itemset S frequent in the whole
but not frequent in the sample, and

2. Nothing in the negative border is frequent in
the whole.

� Let T be a smallest subset of S that is
not frequent in the sample.

� T is frequent in the whole (S is
frequent + monotonicity).

� T is in the negative border (else not
“smallest”).

48

Compacting the Output

1. Maximal Frequent itemsets : no
immediate superset is frequent.

2. Closed itemsets : no immediate
superset has the same count (> 0).

� Stores not only frequent information, but
exact counts.

49

Example: Maximal/Closed

Count Maximal (s=3) Closed

A 4 No No

B 5 No Yes

C 3 No No

AB 4 Yes Yes

AC 2 No No

BC 3 Yes Yes

ABC 2 No Yes

Frequent, but
superset BC
also frequent.

Frequent, and
its only superset,
ABC, not freq.

Superset BC
has same count.

Its only super-
set, ABC, has
smaller count.

