CS345 Data Mining

Recommendation Systems

Recommendations

The Long Tail

From scarcity to abundance

- Shelf space is a scarce commodity for traditional retailers
 - Also: TV networks, movie theaters,...
- The web enables near-zero-cost dissemination of information about products
 - From scarcity to abundance
- More choice necessitates better filters
 - Recommendation engines
 - How Into Thin Air made Touching the Void a bestseller

Recommendation Types

- Editorial
- □ Simple aggregates
 - Top 10, Most Popular, Recent Uploads
- □ Tailored to individual users
 - Amazon, Netflix, ...

Formal Model

- \Box C = set of Customers
- \square S = set of Items
- \square Utility function *u*: $C \pounds S ! R$
 - \blacksquare R = set of ratings
 - R is a totally ordered set
 - e.g., 0-5 stars, real number in [0,1]

Utility Matrix

	King Kong	LOTR	Matrix	National Treasure
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

Key Problems

- ☐ Gathering "known" ratings for matrix
- Extrapolate unknown ratings from known ratings
 - Mainly interested in high unknown ratings
- Evaluating extrapolation methods

Gathering Ratings

- Explicit
 - Ask people to rate items
 - Doesn't work well in practice people can't be bothered
- Implicit
 - Learn ratings from user actions
 - e.g., purchase implies high rating
 - What about low ratings?

Extrapolating Utilities

- □ Key problem: matrix U is sparse
 - most people have not rated most items
- ☐ Three approaches
 - Content-based
 - Collaborative
 - Hybrid

Content-based recommendations

- Main idea: recommend items to customer C similar to previous items rated highly by C
- Movie recommendations
 - recommend movies with same actor(s), director, genre, ...
- ☐ Websites, blogs, news
 - recommend other sites with "similar" content

Plan of action

Item Profiles

- ☐ For each item, create an item profile
- Profile is a set of features
 - movies: author, title, actor, director,...
 - text: set of "important" words in document
 - Think of profile as a vector in the feature space
- □ How to pick important words?
 - Usual heuristic is TF.IDF (Term Frequency times Inverse Doc Frequency)

TF.IDF

 f_{ij} = frequency of term t_i in document d_j

$$TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$$

n_i = number of docs that mention term i

N = total number of docs

$$IDF_i = \log \frac{N}{n_i}$$

TF.IDF score $W_{ij} = TF_{ij} \pounds IDF_i$

Doc profile = set of words with highest TF.IDF scores, together with their scores

User profiles and prediction

- ☐ User profile possibilities:
 - Weighted average of rated item profiles
 - Variation: weight by difference from average rating for item
 - ...
- User profile is a vector in the feature space

Prediction heuristic

- User profile and item profile are vectors in the feature space
 - How to predict the rating by a user for an item?
- Given user profile c and item profile s,
 estimate u(c,s) = cos(c,s) =
 c.s/(|c||s|)
- Need efficient method to find items with high utility: later

Model-based approaches

- □ For each user, learn a classifier that classifies items into rating classes
 - liked by user and not liked by user
 - e.g., Bayesian, regression, SVM
- Apply classifier to each item to find recommendation candidates
- Problem: scalability
 - Won't investigate further in this class

Limitations of content-based approach

- ☐ Finding the appropriate features
 - e.g., images, movies, music
- Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
- Recommendations for new users
 - How to build a profile?

Collaborative Filtering

- Consider user c
- □ Find set D of other users whose ratings are "similar" to c's ratings
- Estimate user's ratings based on ratings of users in D

Similar users

- \square Let r_x be the vector of user x's ratings
- Cosine similarity measure
 - \blacksquare sim(x,y) = cos(r_x, r_y)
- Pearson correlation coefficient
 - S_{xy} = items rated by both users x and y

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \bar{r_x})(r_{ys} - \bar{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \bar{r_x})^2 (r_{ys} - \bar{r_y})^2}}$$

Rating predictions

- □ Let D be the set of k users most similar to c who have rated item s
- Possibilities for prediction function (item s):
 - $r_{cs} = 1/k \sum_{d2D} r_{ds}$
 - $r_{cs} = (\sum_{d2D} sim(c,d) \pounds r_{ds}) / (\sum_{d^2 D} sim(c,d))$
 - Other options?
- Many tricks possible...
 - Harry Potter problem

Complexity

- Expensive step is finding k most similar customers
 - O(|U|)
- □ Too expensive to do at runtime
 - Need to pre-compute
- □ Naïve precomputation takes time O(N|U|)
- Can use clustering, partitioning as alternatives, but quality degrades

Item-Item Collaborative Filtering

- So far: User-user collaborative filtering
- Another view
 - For item s, find other similar items
 - Estimate rating for item based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model
- In practice, it has been observed that item-item often works better than useruser

Pros and cons of collaborative filtering

- Works for any kind of item
 - No feature selection needed
- New user problem
- New item problem
- Sparsity of rating matrix
 - Cluster-based smoothing?

Hybrid Methods

- □ Implement two separate recommenders and combine predictions
- Add content-based methods to collaborative filtering
 - item profiles for new item problem
 - demographics to deal with new user problem

Evaluating Predictions

- Compare predictions with known ratings
 - Root-mean-square error (RMSE)
- Another approach: 0/1 model
 - Coverage
 - Number of items/users for which system can make predictions
 - Precision
 - Accuracy of predictions
 - Receiver operating characteristic (ROC)
 - Tradeoff curve between false positives and false negatives

Problems with Measures

- □ Narrow focus on accuracy sometimes misses the point
 - Prediction Diversity
 - Prediction Context
 - Order of predictions

Finding similar vectors

- Common problem that comes up in many settings
- ☐ Given a large number N of vectors in some high-dimensional space (M dimensions), find pairs of vectors that have high cosine-similarity
- Compare to min-hashing approach for finding near-neighbors for Jaccard similarity

Similarity-Preserving Hash Functions

- □ Suppose we can create a family F of hash functions, such that for any h2F, given vectors x and y:
 - Pr[h(x) = h(y)] = sim(x,y) = cos(x,y)
- ☐ We could then use $E_{h2F}[h(x) = h(y)]$ as an estimate of sim(x,y)
 - Can get close to $E_{h2F}[h(x) = h(y)]$ by using several hash functions

Similarity metric

- Let θ be the angle between vectors x and y
- $\square \cos(\theta) = x.y/(|x||y|)$
- □ It turns out to be convenient to use $sim(x,y) = 1 \theta/\pi$
 - instead of $sim(x,y) = cos(\theta)$
 - **Can compute cos(θ) once we estimate θ**

Random hyperplanes

Vectors u, v subtend angle θ

Random hyperplane through origin (normal r)

$$h_r(u) = 1 \text{ if r.u }_{,} 0$$

0 if r.u < 0

Random hyperplanes

$$h_r(u) = 1 \text{ if r.u }_{,} 0$$

0 if r.u < 0

$$Pr[h_r(u) = h_r(v)] = 1 - \theta/\pi$$

Vector sketch

- For vector u, we can contruct a k-bit sketch by concatenating the values of k different hash functions
 - **sketch(u)** = $[h_1(u) h_2(u) ... h_k(u)]$
- Can estimate θ to arbitrary degree of accuracy by comparing sketches of increasing lengths
- ☐ Big advantage: each hash is a single bit
 - So can represent 256 hashes using 32 bytes

Picking hyperplanes

- Picking a random hyperplane in Mdimensions requires M random numbers
- □ In practice, can randomly pick each dimension to be +1 or -1
 - So we need only M random bits

Finding all similar pairs

- Compute sketches for each vector
 - Easy if we can fit random bits for each dimension in memory
 - □ For k-bit sketch, we need Mk bits of memory
 - Might need to use ideas similar to page rank computation (e.g., block algorithm)
- Can use DCM or LSH to find all similar pairs