
CS345
Data Mining

Recommendation Systems

Anand Rajaraman, Jeffrey D. Ullman

Recommendations

Items

Search Recommendations

Products, web sites, blogs, news items, …

The Long Tail

Source: Chris Anderson (2004)

From scarcity to abundance
Shelf space is a scarce commodity for
traditional retailers

Also: TV networks, movie theaters,…
The web enables near-zero-cost
dissemination of information about
products

From scarcity to abundance
More choice necessitates better filters

Recommendation engines
How Into Thin Air made Touching the Void a
bestseller

Recommendation Types

Editorial
Simple aggregates

Top 10, Most Popular, Recent Uploads

Tailored to individual users
Amazon, Netflix, …

Formal Model

C = set of Customers
S = set of Items
Utility function u: C £ S ! R

R = set of ratings
R is a totally ordered set
e.g., 0-5 stars, real number in [0,1]

Utility Matrix

0.4
10.2

0.30.5
0.21

King KongKing Kong LOTRLOTR MatrixMatrix National TreasureNational Treasure

AliceAlice

BobBob

CarolCarol

DavidDavid

Key Problems

Gathering “known” ratings for matrix
Extrapolate unknown ratings from
known ratings

Mainly interested in high unknown ratings

Evaluating extrapolation methods

Gathering Ratings

Explicit
Ask people to rate items
Doesn’t work well in practice – people can’t
be bothered

Implicit
Learn ratings from user actions
e.g., purchase implies high rating
What about low ratings?

Extrapolating Utilities

Key problem: matrix U is sparse
most people have not rated most items

Three approaches
Content-based
Collaborative
Hybrid

Content-based recommendations

Main idea: recommend items to
customer C similar to previous items
rated highly by C
Movie recommendations

recommend movies with same actor(s),
director, genre, …

Websites, blogs, news
recommend other sites with “similar”
content

Plan of action

likeslikes
Item profilesItem profiles

RedRed
CirclesCircles

TrianglesTriangles

User profileUser profile

matchmatch

recommendrecommend
buildbuild

Item Profiles

For each item, create an item profile
Profile is a set of features

movies: author, title, actor, director,…
text: set of “important” words in document
Think of profile as a vector in the feature
space

How to pick important words?
Usual heuristic is TF.IDF (Term Frequency
times Inverse Doc Frequency)

TF.IDF

fij = frequency of term ti in document dj

ni = number of docs that mention term i
N = total number of docs

TF.IDF score wij = TFij £ IDFi
Doc profile = set of words with highest

TF.IDF scores, together with their scores

User profiles and prediction

User profile possibilities:
Weighted average of rated item profiles
Variation: weight by difference from average
rating for item
…

User profile is a vector in the feature
space

Prediction heuristic

User profile and item profile are vectors
in the feature space

How to predict the rating by a user for an
item?

Given user profile c and item profile s,
estimate u(c,s) = cos(c,s) =
c.s/(|c||s|)
Need efficient method to find items with
high utility: later

Model-based approaches

For each user, learn a classifier that
classifies items into rating classes

liked by user and not liked by user
e.g., Bayesian, regression, SVM

Apply classifier to each item to find
recommendation candidates
Problem: scalability

Won’t investigate further in this class

Limitations of content-based
approach

Finding the appropriate features
e.g., images, movies, music

Overspecialization
Never recommends items outside user’s
content profile
People might have multiple interests

Recommendations for new users
How to build a profile?

Collaborative Filtering

Consider user c
Find set D of other users whose ratings
are “similar” to c’s ratings
Estimate user’s ratings based on ratings
of users in D

Similar users

Let rx be the vector of user x’s ratings
Cosine similarity measure

sim(x,y) = cos(rx , ry)

Pearson correlation coefficient
Sxy = items rated by both users x and y

Rating predictions

Let D be the set of k users most similar to c
who have rated item s
Possibilities for prediction function (item s):

rcs = 1/k ∑d2D rds

rcs = (∑d2D sim(c,d)£ rds)/(∑d2 D
sim(c,d))

Other options?

Many tricks possible…
Harry Potter problem

Complexity

Expensive step is finding k most similar
customers

O(|U|)

Too expensive to do at runtime
Need to pre-compute

Naïve precomputation takes time
O(N|U|)
Can use clustering, partitioning as
alternatives, but quality degrades

Item-Item Collaborative Filtering

So far: User-user collaborative filtering
Another view

For item s, find other similar items
Estimate rating for item based on ratings for
similar items
Can use same similarity metrics and
prediction functions as in user-user model

In practice, it has been observed that
item-item often works better than user-
user

Pros and cons of collaborative
filtering

Works for any kind of item
No feature selection needed

New user problem
New item problem
Sparsity of rating matrix

Cluster-based smoothing?

Hybrid Methods

Implement two separate recommenders
and combine predictions
Add content-based methods to
collaborative filtering

item profiles for new item problem
demographics to deal with new user
problem

Evaluating Predictions
Compare predictions with known ratings

Root-mean-square error (RMSE)
Another approach: 0/1 model

Coverage
Number of items/users for which system
can make predictions

Precision
Accuracy of predictions

Receiver operating characteristic (ROC)
Tradeoff curve between false positives and
false negatives

Problems with Measures

Narrow focus on accuracy sometimes
misses the point

Prediction Diversity
Prediction Context
Order of predictions

Finding similar vectors

Common problem that comes up in
many settings
Given a large number N of vectors in
some high-dimensional space (M
dimensions), find pairs of vectors that
have high cosine-similarity
Compare to min-hashing approach for
finding near-neighbors for Jaccard
similarity

Similarity-Preserving Hash
Functions

Suppose we can create a family F of
hash functions, such that for any h2F,
given vectors x and y:

Pr[h(x) = h(y)] = sim(x,y) = cos(x,y)

We could then use Eh2F[h(x) = h(y)] as
an estimate of sim(x,y)

Can get close to Eh2F[h(x) = h(y)] by using
several hash functions

Similarity metric

Let θ be the angle between vectors x
and y
cos(θ) = x.y/(|x||y|)
It turns out to be convenient to use
sim(x,y) = 1 - θ/π

instead of sim(x,y) = cos(θ)
Can compute cos(θ) once we estimate θ

Random hyperplanes

uu

vv
rr

Vectors u, v subtend angle Vectors u, v subtend angle θθ

Random Random hyperplanehyperplane throughthrough

origin (normal r)origin (normal r)

hhrr(u(u) = 1 if) = 1 if r.ur.u ¸̧ 00

0 if 0 if r.ur.u < 0< 0

Random hyperplanes

hhrr(u(u) = 1 if) = 1 if r.ur.u ¸̧ 00

0 if 0 if r.ur.u < 0< 0

Pr[hPr[hrr(u(u) =) = hhrr(v(v)] = 1)] = 1 -- θθ//ππ

uu

vv
rr

Vector sketch

For vector u, we can contruct a k-bit
sketch by concatenating the values of k
different hash functions

sketch(u) = [h1(u) h2(u) … hk(u)]

Can estimate θ to arbitrary degree of
accuracy by comparing sketches of
increasing lengths
Big advantage: each hash is a single bit

So can represent 256 hashes using 32 bytes

Picking hyperplanes

Picking a random hyperplane in M-
dimensions requires M random numbers
In practice, can randomly pick each
dimension to be +1 or -1

So we need only M random bits

Finding all similar pairs

Compute sketches for each vector
Easy if we can fit random bits for each
dimension in memory

For k-bit sketch, we need Mk bits of
memory

Might need to use ideas similar to page rank
computation (e.g., block algorithm)

Can use DCM or LSH to find all similar
pairs

