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Recommendations 

Items

Search Recommendations

Products, web sites, blogs, news items, …



The Long Tail

Source: Chris Anderson (2004)



From scarcity to abundance
Shelf space is a scarce commodity for 
traditional retailers 

Also: TV networks, movie theaters,…
The web enables near-zero-cost 
dissemination of information about 
products

From scarcity to abundance
More choice necessitates better filters

Recommendation engines
How Into Thin Air made Touching the Void a 
bestseller



Recommendation Types

Editorial
Simple aggregates

Top 10, Most Popular, Recent Uploads

Tailored to individual users
Amazon, Netflix, …



Formal Model

C = set of Customers
S = set of Items
Utility function u: C £ S ! R

R = set of ratings
R is a totally ordered set
e.g., 0-5 stars, real number in [0,1]
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Key Problems

Gathering “known” ratings for matrix
Extrapolate unknown ratings from 
known ratings

Mainly interested in high unknown ratings

Evaluating extrapolation methods



Gathering Ratings

Explicit
Ask people to rate items
Doesn’t work well in practice – people can’t 
be bothered

Implicit
Learn ratings from user actions
e.g., purchase implies high rating
What about low ratings?



Extrapolating Utilities

Key problem: matrix U is sparse
most people have not rated most items

Three approaches
Content-based
Collaborative
Hybrid



Content-based recommendations

Main idea: recommend items to 
customer C similar to previous items 
rated highly by C
Movie recommendations

recommend movies with same actor(s), 
director, genre, …

Websites, blogs, news
recommend other sites with “similar”
content



Plan of action
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Item Profiles

For each item, create an item profile
Profile is a set of features

movies: author, title, actor, director,…
text: set of “important” words in document
Think of profile as a vector in the feature 
space

How to pick important words?
Usual heuristic is TF.IDF (Term Frequency 
times Inverse Doc Frequency)



TF.IDF

fij = frequency of term ti in document dj

ni = number of docs that mention term i
N = total number of docs

TF.IDF score  wij = TFij £ IDFi
Doc profile = set of words with highest 

TF.IDF scores, together with their scores



User profiles and prediction

User profile possibilities:
Weighted average of rated item profiles
Variation: weight by difference from average 
rating for item
…

User profile is a vector in the feature 
space



Prediction heuristic

User profile and item profile are vectors 
in the feature space

How to predict the rating by a user for an 
item?

Given user profile c and item profile s, 
estimate u(c,s) = cos(c,s) = 
c.s/(|c||s|)
Need efficient method to find items with 
high utility: later



Model-based approaches

For each user, learn a classifier that 
classifies items into rating classes

liked by user and not liked by user
e.g., Bayesian, regression, SVM

Apply classifier to each item to find 
recommendation candidates
Problem: scalability

Won’t investigate further in this class



Limitations of content-based 
approach

Finding the appropriate features
e.g., images, movies, music

Overspecialization
Never recommends items outside user’s 
content profile
People might have multiple interests

Recommendations for new users
How to build a profile?



Collaborative Filtering

Consider user c
Find set D of other users whose ratings 
are “similar” to c’s ratings
Estimate user’s ratings based on ratings 
of users in D



Similar users

Let rx be the vector of user x’s ratings
Cosine similarity measure

sim(x,y) = cos(rx , ry)

Pearson correlation coefficient
Sxy = items rated by both users x and y



Rating predictions

Let D be the set of k users most similar to c 
who have rated item s
Possibilities for prediction function (item s):

rcs = 1/k ∑d2D rds

rcs = (∑d2D sim(c,d)£ rds)/(∑d2 D
sim(c,d))

Other options?

Many tricks possible…
Harry Potter problem



Complexity

Expensive step is finding k most similar 
customers

O(|U|) 

Too expensive to do at runtime
Need to pre-compute

Naïve precomputation takes time 
O(N|U|)
Can use clustering, partitioning as 
alternatives, but quality degrades



Item-Item Collaborative Filtering

So far: User-user collaborative filtering
Another view

For item s, find other similar items 
Estimate rating for item based on ratings for 
similar items
Can use same similarity metrics and 
prediction functions as in user-user model

In practice, it has been observed that 
item-item often works better than user-
user



Pros and cons of collaborative 
filtering

Works for any kind of item
No feature selection needed

New user problem
New item problem
Sparsity of rating matrix

Cluster-based smoothing?



Hybrid Methods

Implement two separate recommenders 
and combine predictions
Add content-based methods to 
collaborative filtering

item profiles for new item problem
demographics to deal with new user 
problem



Evaluating Predictions
Compare predictions with known ratings

Root-mean-square error (RMSE)
Another approach: 0/1 model

Coverage
Number of items/users for which system 
can make predictions 

Precision
Accuracy of predictions 

Receiver operating characteristic (ROC)
Tradeoff curve between false positives and 
false negatives



Problems with Measures

Narrow focus on accuracy sometimes 
misses the point

Prediction Diversity
Prediction Context
Order of predictions



Finding similar vectors

Common problem that comes up in 
many settings
Given a large number N of vectors in 
some high-dimensional space (M 
dimensions), find pairs of vectors that 
have high cosine-similarity
Compare to min-hashing approach for 
finding near-neighbors for Jaccard
similarity



Similarity-Preserving Hash 
Functions

Suppose we can create a family F of 
hash functions, such that for any h2F, 
given vectors x and y:

Pr[h(x) = h(y)] = sim(x,y) = cos(x,y)

We could then use Eh2F[h(x) = h(y)] as 
an estimate of sim(x,y)

Can get close to Eh2F[h(x) = h(y)] by using 
several hash functions



Similarity metric

Let θ be the angle between vectors x 
and y
cos(θ) = x.y/(|x||y|)
It turns out to be convenient to use 
sim(x,y) = 1 - θ/π

instead of sim(x,y) = cos(θ)
Can compute cos(θ) once we estimate θ



Random hyperplanes
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Vectors u, v subtend angle Vectors u, v subtend angle θθ

Random Random hyperplanehyperplane throughthrough

origin (normal r)origin (normal r)

hhrr(u(u) = 1 if ) = 1 if r.ur.u ¸̧ 00

0 if 0 if r.ur.u < 0< 0



Random hyperplanes

hhrr(u(u) = 1 if ) = 1 if r.ur.u ¸̧ 00

0 if 0 if r.ur.u < 0< 0
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Vector sketch

For vector u, we can contruct a k-bit 
sketch by concatenating the values of k 
different hash functions

sketch(u) = [h1(u) h2(u) … hk(u)]

Can estimate θ to arbitrary degree of 
accuracy by comparing sketches of 
increasing lengths
Big advantage: each hash is a single bit

So can represent 256 hashes using 32 bytes



Picking hyperplanes

Picking a random hyperplane in M-
dimensions requires M random numbers
In practice, can randomly pick each 
dimension to be +1 or -1

So we need only M random bits



Finding all similar pairs

Compute sketches for each vector
Easy if we can fit random bits for each 
dimension in memory

For k-bit sketch, we need Mk bits of 
memory

Might need to use ideas similar to page rank 
computation (e.g., block algorithm)

Can use DCM or LSH to find all similar 
pairs


