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Clustering Preliminaries

Applications

Euclidean/Non-Euclidean Spaces

Distance Measures
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The Problem of Clustering

�Given a set of points, with a notion of 
distance between points, group the 
points into some number of clusters, so 
that members of a cluster are in some 
sense as close to each other as 
possible.
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Example

x        x

x  x      x  x

x   x x  x 

x     x  x

x   x

x

xx    x

x  x        

x    x  x   

x

x x   x

x

x   x

x  x    x    x

x    x     x

x 

x

x



4

Problems With Clustering

�Clustering in two dimensions looks 
easy.

�Clustering small amounts of data looks 
easy.

�And in most cases, looks are not
deceiving.
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The Curse of Dimensionality

�Many applications involve not 2, but 10 
or 10,000 dimensions.

�High-dimensional spaces look different: 
almost all pairs of points are at about 
the same distance.

� Example: assume random points within a 
bounding box, e.g., values between 0 and 
1 in each dimension.
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Example: SkyCat

�A catalog of 2 billion “sky objects” 
represents objects by their radiation in 
9 dimensions (frequency bands).

�Problem: cluster into similar objects, 
e.g., galaxies, nearby stars, quasars, 
etc.

�Sloan Sky Survey is a newer, better 
version.
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Example: Clustering CD’s 
(Collaborative Filtering)

�Intuitively: music divides into categories, 
and customers prefer a few categories.

� But what are categories really?

�Represent a CD by the customers who 
bought it.

�Similar CD’s have similar sets of 
customers, and vice-versa.
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The Space of CD’s

�Think of a space with one dimension 
for each customer.

� Values in a dimension may be 0 or 1 only.

�A CD’s point in this space is             
(x1, x2,…, xk), where xi = 1 iff the i 

th

customer bought the CD.

� Compare with the “shingle/signature” 
matrix: rows = customers; cols. = CD’s.
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Space of CD’s --- (2)

�For Amazon, the dimension count is 
tens of millions.

�An option: use minhashing/LSH to get 
Jaccard similarity between “close” CD’s.

�1 minus Jaccard similarity can serve as 
a (non-Euclidean) distance.
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Example: Clustering Documents

�Represent a document by a vector    
(x1, x2,…, xk), where xi = 1 iff the i th

word (in some order) appears in the 
document.

� It actually doesn’t matter if k is infinite; 
i.e., we don’t limit the set of words.

�Documents with similar sets of words 
may be about the same topic.
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Example: Gene Sequences

�Objects are sequences of {C,A,T,G}.

�Distance between sequences is edit 
distance, the minimum number of 
inserts and deletes needed to turn one 
into the other.

�Note there is a “distance,” but no 
convenient space in which points “live.”
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Distance Measures

� Each clustering problem is based on 
some kind of “distance” between 
points.

� Two major classes of distance 
measure:

1. Euclidean

2. Non-Euclidean
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Euclidean Vs. Non-Euclidean

�A Euclidean space has some number of 
real-valued dimensions and “dense” points.

� There is a notion of “average” of two points.

� A Euclidean distance is based on the locations 
of points in such a space.

�A Non-Euclidean distance is based on 
properties of points, but not their 
“location” in a space.
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Axioms of a Distance Measure

� d is a distance measure if it is a 
function from pairs of points to real 
numbers such that:

1. d(x,y) > 0. 

2. d(x,y) = 0 iff x = y.

3. d(x,y) = d(y,x).

4. d(x,y) < d(x,z) + d(z,y) (triangle 
inequality ).
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Some Euclidean Distances

�L2 norm : d(x,y) = square root of the 
sum of the squares of the differences 
between x and y in each dimension.

� The most common notion of “distance.”

�L1 norm : sum of the differences in 
each dimension.

�Manhattan distance = distance if you had 
to travel along coordinates only.
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Examples of Euclidean Distances

x = (5,5)

y = (9,8)
L2-norm:
dist(x,y) =
√(42+32)
= 5

L1-norm:
dist(x,y) =
4+3 = 7

4

35
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Another Euclidean Distance

�L∞ norm : d(x,y) = the maximum of 
the differences between x and y in 
any dimension.

�Note: the maximum is the limit as n
goes to ∞ of what you get by taking 

the n th power of the differences, 
summing and taking the n th root.
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Non-Euclidean Distances

�Jaccard distance for sets = 1 minus 
ratio of sizes of intersection and union.

�Cosine distance = angle between 
vectors from the origin to the points in 
question.

�Edit distance = number of inserts and 
deletes to change one string into 
another.
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Jaccard Distance for Bit-Vectors

�Example: p1 = 10111; p2 = 10011.

� Size of intersection = 3; size of union = 4, 
Jaccard similarity (not distance) = 3/4.

�Need to make a distance function 
satisfying triangle inequality and other 
laws.

�d(x,y) = 1 – (Jaccard similarity) works.
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Why J.D. Is a Distance Measure

�d(x,x) = 0 because x∩x = x∪x.

�d(x,y) = d(y,x) because union and 
intersection are symmetric.

�d(x,y) > 0 because |x∩y| < |x∪y|.

�d(x,y) < d(x,z) + d(z,y) trickier --- next 
slide.
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Triangle Inequality for J.D.

1 - |x ∩z| + 1 - |y ∩z| > 1  - |x ∩y|

|x ∪z|         |y ∪z|          |x ∪y|

�Remember: |a ∩b|/|a ∪b| = probability 
that minhash(a) = minhash(b).

�Thus, 1 - |a ∩b|/|a ∪b| = probability 
that minhash(a) ≠ minhash(b).
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Triangle Inequality --- (2)

�Observe that prob[minhash(x) ≠ minhash(y)] 
< prob[minhash(x) ≠ minhash(z)] +
prob[minhash(z) ≠ minhash(y)]

�Clincher: whenever minhash(x) ≠ minhash(y), 
at least one of minhash(x) ≠ minhash(z) and
minhash(z) ≠ minhash(y) must be true.
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Cosine Distance

�Think of a point as a vector from the 
origin (0,0,…,0) to its location.

�Two points’ vectors make an angle, 
whose cosine is the normalized dot-
product of the vectors: p1.p2/|p2||p1|.
� Example p1 = 00111; p2 = 10011.

� p1.p2 = 2; |p1| = |p2| = √3.

� cos(θ) = 2/3; θ is about 48 degrees.
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Cosine-Measure Diagram

p1

p2p1.p2

θ

|p2|

dist(p1, p2) = θ = arccos(p1.p2/|p2||p1|)

Why? Next slide
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Why?

p1 = (x1,y1)

p2 = (x2,0)x1

θ

Dot product is invariant under
rotation, so pick convenient
coordinate system.

x1 =x1x2/x2 = p1.p2/|p2|

p1.p2 = x1x2.
|p2| = x2.
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Why C.D. Is a Distance Measure

�d(x,x) = 0 because arccos(1) = 0.

�d(x,y) = d(y,x) by symmetry.

�d(x,y) > 0 because angles are chosen 
to be in the range 0 to 180 degrees.

�Triangle inequality: physical reasoning.  
If I rotate an angle from x to z and 
then from z to y, I can’t rotate less 
than from x to y.
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Edit Distance

�The edit distance of two strings is the 
number of inserts and deletes of 
characters needed to turn one into the 
other.

�Equivalently: d(x,y) =                      
|x| + |y| -2|LCS(x,y)|.

� LCS = longest common subsequence = 
longest string obtained both by deleting 
from x and deleting from y.
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Example

�x = abcde ; y = bcduve.

�Turn x into y by deleting a, then 
inserting u and v after d.

� Edit-distance = 3.

�Or, LCS(x,y) = bcde.

�|x| + |y| - 2|LCS(x,y)| = 5 + 6 –2*4 = 3.
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Why E.D. Is a Distance Measure

�d(x,x) = 0 because 0 edits suffice.

�d(x,y) = d(y,x) because insert/delete 
are inverses of each other.

�d(x,y) > 0: no notion of negative edits.

�Triangle inequality: changing x to z
and then to y is one way to change x
to y.
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Variant Edit Distance

�Allow insert, delete, and mutate.

� Change one character into another.

�Minimum number of inserts, deletes, 
and mutates also forms a distance 
measure.


