Clustering Preliminaries

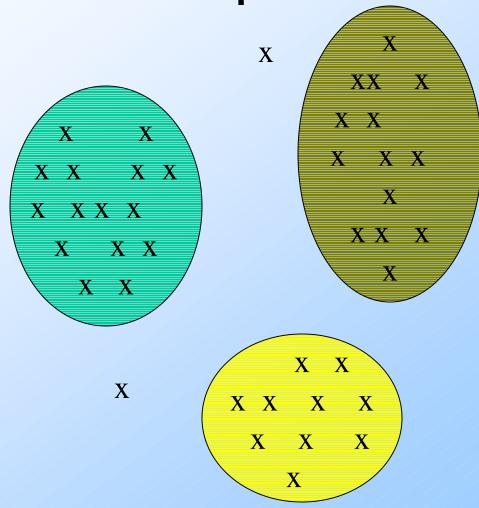
Applications

Euclidean/Non-Euclidean Spaces

Distance Measures

The Problem of Clustering

Given a set of points, with a notion of distance between points, group the points into some number of *clusters*, so that members of a cluster are in some sense as close to each other as possible. Example



Problems With Clustering

- Clustering in two dimensions looks easy.
- Clustering small amounts of data looks easy.
- And in most cases, looks are not deceiving.

The Curse of Dimensionality

- Many applications involve not 2, but 10 or 10,000 dimensions.
- High-dimensional spaces look different: almost all pairs of points are at about the same distance.
 - Example: assume random points within a bounding box, e.g., values between 0 and 1 in each dimension.

Example: SkyCat

- A catalog of 2 billion "sky objects" represents objects by their radiation in 9 dimensions (frequency bands).
- Problem: cluster into similar objects, e.g., galaxies, nearby stars, quasars, etc.
- Sloan Sky Survey is a newer, better version.

Example: Clustering CD's (Collaborative Filtering)

- Intuitively: music divides into categories, and customers prefer a few categories.
 - But what are categories really?
- Represent a CD by the customers who bought it.
- Similar CD's have similar sets of customers, and vice-versa.

The Space of CD's

- Think of a space with one dimension for each customer.
 - Values in a dimension may be 0 or 1 only.
- •A CD's point in this space is $(x_1, x_2,..., x_k)$, where $x_i = 1$ iff the i^{th} customer bought the CD.
 - Compare with the "shingle/signature" matrix: rows = customers; cols. = CD's.

Space of CD's --- (2)

- For Amazon, the dimension count is tens of millions.
- An option: use minhashing/LSH to get Jaccard similarity between "close" CD's.
- 1 minus Jaccard similarity can serve as a (non-Euclidean) distance.

Example: Clustering Documents

- Represent a document by a vector $(x_1, x_2,..., x_k)$, where $x_i = 1$ iff the ith word (in some order) appears in the document.
 - It actually doesn't matter if k is infinite;
 i.e., we don't limit the set of words.
- Documents with similar sets of words may be about the same topic.

Example: Gene Sequences

- Objects are sequences of {C,A,T,G}.
- ◆ Distance between sequences is *edit distance*, the minimum number of inserts and deletes needed to turn one into the other.
- Note there is a "distance," but no convenient space in which points "live."

Distance Measures

- Each clustering problem is based on some kind of "distance" between points.
- Two major classes of distance measure:
 - 1. Euclidean
 - 2. Non-Euclidean

Euclidean Vs. Non-Euclidean

- A Euclidean space has some number of real-valued dimensions and "dense" points.
 - There is a notion of "average" of two points.
 - A Euclidean distance is based on the locations of points in such a space.
- A Non-Euclidean distance is based on properties of points, but not their "location" in a space.

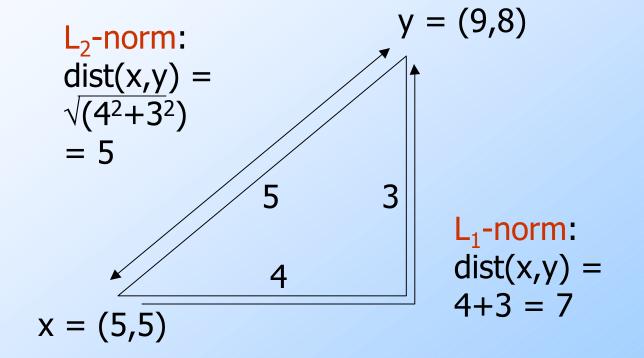
Axioms of a Distance Measure

- d is a distance measure if it is a function from pairs of points to real numbers such that:
 - 1. $d(x,y) \ge 0$.
 - 2. d(x,y) = 0 iff x = y.
 - 3. d(x,y) = d(y,x).
 - 4. $d(x,y) \le d(x,z) + d(z,y)$ (triangle inequality).

Some Euclidean Distances

- - The most common notion of "distance."
- $igoplus_{L_1}$ norm: sum of the differences in each dimension.
 - Manhattan distance = distance if you had to travel along coordinates only.

Examples of Euclidean Distances



Another Euclidean Distance

- $igstar{} L_{\infty}$ norm: d(x,y) = the maximum of the differences between x and y in any dimension.
- Note: the maximum is the limit as n goes to ∞ of what you get by taking the nth power of the differences, summing and taking the nth root.

Non-Euclidean Distances

- ◆ Jaccard distance for sets = 1 minus ratio of sizes of intersection and union.
- Cosine distance = angle between vectors from the origin to the points in question.
- Edit distance = number of inserts and deletes to change one string into another.

Jaccard Distance for Bit-Vectors

- **Example:** $p_1 = 10111$; $p_2 = 10011$.
 - Size of intersection = 3; size of union = 4,
 Jaccard similarity (not distance) = 3/4.
- Need to make a distance function satisfying triangle inequality and other laws.
- \bullet d(x,y) = 1 (Jaccard similarity) works.

Why J.D. Is a Distance Measure

- \bullet d(x,x) = 0 because x \cap x = x \cup x.
- \bullet d(x,y) = d(y,x) because union and intersection are symmetric.
- \bullet d(x,y) \geq 0 because $|x \cap y| \leq |x \cup y|$.
- \bullet d(x,y) \leq d(x,z) + d(z,y) trickier --- next slide.

Triangle Inequality for J.D.

$$1 - \frac{|x \cap z|}{|x \cup z|} + 1 - \frac{|y \cap z|}{|y \cup z|} \ge 1 - \frac{|x \cap y|}{|x \cup y|}$$

- ◆Remember: $|a \cap b|/|a \cup b| = probability$ that minhash(a) = minhash(b).
- ◆Thus, $1 |a \cap b|/|a \cup b| = probability$ that minhash(a) \neq minhash(b).

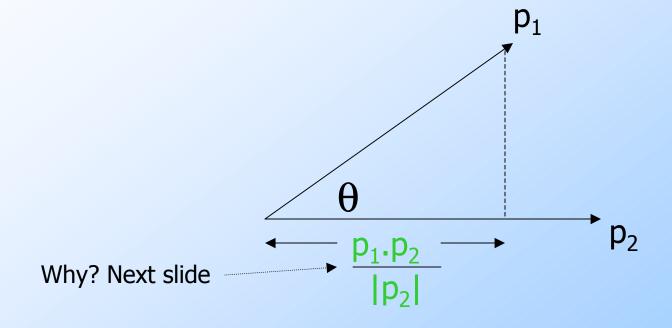
Triangle Inequality --- (2)

- ◆Clincher: whenever minhash(x) \neq minhash(y), at least one of minhash(x) \neq minhash(z) and minhash(z) \neq minhash(y) must be true.

Cosine Distance

- Think of a point as a vector from the origin (0,0,...,0) to its location.
- Two points' vectors make an angle, whose cosine is the normalized dot-product of the vectors: $p_1 \cdot p_2/|p_2||p_1|$.
 - Example $p_1 = 00111$; $p_2 = 10011$.
 - $p_1.p_2 = 2$; $|p_1| = |p_2| = \sqrt{3}$.
 - $cos(\theta) = 2/3$; θ is about 48 degrees.

Cosine-Measure Diagram



$$dist(p_1, p_2) = \theta = arccos(p_1.p_2/|p_2||p_1|)$$

Why?

Dot product is invariant under rotation, so pick convenient coordinate system.

$$p_1.p_2 = x_1x_2.$$

 $|p_2| = x_2.$



 $\mathsf{p}_1 = (\mathsf{x}_1, \mathsf{y}_1)$

$$x_1 = x_1 x_2 / x_2 = p_1 p_2 / |p_2|$$

Why C.D. Is a Distance Measure

- \diamond d(x,x) = 0 because arccos(1) = 0.
- \bullet d(x,y) = d(y,x) by symmetry.
- \bullet d(x,y) \geq 0 because angles are chosen to be in the range 0 to 180 degrees.
- ◆Triangle inequality: physical reasoning. If I rotate an angle from x to z and then from z to y, I can't rotate less than from x to y.

Edit Distance

- ◆The edit distance of two strings is the number of inserts and deletes of characters needed to turn one into the other.
- Equivalently: d(x,y) = |x| + |y| -2|LCS(x,y)|.
 - LCS = longest common subsequence = longest string obtained both by deleting from x and deleting from y.

Example

- $\bigstar x = abcde$; y = bcduve.
- ◆Turn x into y by deleting a, then inserting u and v after d.
 - Edit-distance = 3.
- \bullet Or, LCS(x,y) = *bcde*.
- |x| + |y| 2|LCS(x,y)| = 5 + 6 2*4 = 3.

Why E.D. Is a Distance Measure

- \bullet d(x,x) = 0 because 0 edits suffice.
- \bullet d(x,y) = d(y,x) because insert/delete are inverses of each other.
- \bullet d(x,y) \geq 0: no notion of negative edits.
- ◆Triangle inequality: changing x to z and then to y is one way to change x to y.

Variant Edit Distance

- Allow insert, delete, and mutate.
 - Change one character into another.
- Minimum number of inserts, deletes, and mutates also forms a distance measure.