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Decidability

Turing Machines Coded as Binary 
Strings

Diagonalizing over Turing 
Machines

Problems as Languages
Undecidable Problems
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Binary-Strings from TM’s

 We shall restrict ourselves to TM’s with 
input alphabet {0, 1}.

 Assign positive integers to the three 
classes of elements involved in moves:

1. States: q1(start state), q2 (final state), q3, …
2. Symbols X1 (0), X2 (1), X3 (blank), X4, …
3. Directions D1 (L) and D2 (R).
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Binary Strings from TM’s – (2)

Suppose δ(qi, Xj) = (qk, Xl, Dm).

Represent this rule by string 
0i10j10k10l10m.
Key point: since integers i, j, … are all 

> 0, there cannot be two consecutive 
1’s in these strings.
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Binary Strings from TM’s – (2)

Represent a TM by concatenating the 
codes for each of its moves, separated 
by 11 as punctuation.
 That is: Code111Code211Code311 …
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Enumerating TM’s and Binary 
Strings

Recall we can convert binary strings to 
integers by prepending a 1 and treating 
the resulting string as a base-2 integer.
Thus, it makes sense to talk about “the 

i-th binary string” and about “the i-th 
Turing machine.”
Note: if i makes no sense as a TM, 

assume the i-th TM accepts nothing.
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Table of Acceptance

1
2
3
4
5
6
.
.
.

TM
i

1  2  3  4  5  6 . . .

String j

x

x = 0 means
the i-th TM does
not accept the
j-th string; 1
means it does.
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Diagonalization Again

Whenever we have a table like the one 
on the previous slide, we can 
diagonalize it.
 That is, construct a sequence D by 

complementing each bit along the major 
diagonal.

Formally, D = a1a2…, where ai = 0 if 
the (i, i) table entry is 1, and vice-versa.
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The Diagonalization Argument

Could D be a row (representing the 
language accepted by a TM) of the 
table?
Suppose it were the j-th row.
But D disagrees with the j-th row at the 

j-th column.
Thus D is not a row.
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Diagonalization – (2)

Consider the diagonalization language 
Ld = {w | w is the i-th string, and the   
i-th TM does not accept w}.
We have shown that Ld is not a 

recursively enumerable language; i.e., it 
has no TM.
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Problems

Informally, a “problem” is a yes/no 
question about an infinite set of 
possible instances.
Example: “Does graph G have a 

Hamilton cycle (cycle that touches each 
node exactly once)?
 Each undirected graph is an instance of the 

“Hamilton-cycle problem.”
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Problems – (2)

Formally, a problem is a language.
Each string encodes some instance.
The string is in the language if and only 

if the answer to this instance of the 
problem is “yes.”
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Example: A Problem About 
Turing Machines

We can think of the language Ld as a 
problem.
“Does this TM not accept its own 

code?”
Aside: We could also think of it as a 

problem about binary strings.
 Do you see how to phrase it?



13

Decidable Problems

A problem is decidable if there is an 
algorithm to answer it.
 Recall: An “algorithm,” formally, is a TM 

that halts on all inputs, accepted or not.
 Put another way, “decidable problem” = 

“recursive language.”

Otherwise, the problem is undecidable.
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Bullseye Picture

Decidable
problems =
Recursive
languages

Recursively
enumerable
languages

Not recursively
enumerable
languages Ld

Are there
any languages
here?
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From the Abstract to the Real

While the fact that Ld is undecidable is 
interesting intellectually, it doesn’t 
impact the real world directly.
We first shall develop some TM-related 

problems that are undecidable, but our 
goal is to use the theory to show some 
real problems are undecidable.
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Examples: Undecidable Problems

Can a particular line of code in a 
program ever be executed?
Is a given context-free grammar 

ambiguous?
Do two given CFG’s generate the same 

language?



17

The Universal Language

An example of a recursively 
enumerable, but not recursive language 
is the language Lu of a universal Turing 
machine.
That is, the UTM takes as input the 

code for some TM M and some binary 
string w and accepts if and only if M 
accepts w.
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Designing the UTM

Inputs are of the form:
Code for M 111 w

Note: A valid TM code never has 111, 
so we can split M from w.
The UTM must accept its input if and 

only if M is a valid TM code and that TM 
accepts w.
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The UTM – (2)

The UTM will have several tapes.
Tape 1 holds the input M111w
Tape 2 holds the tape of M.
Mark the current head position of M.

Tape 3 holds the state of M.
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The UTM – (3)

Step 1: The UTM checks that M is a 
valid code for a TM.
 E.g., all moves have five components, no 

two moves have the same state/symbol as 
first two components.

If M is not valid, its language is empty, 
so the UTM immediately halts without 
accepting.
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The UTM – (4)

Step 2: The UTM examines M to see 
how many of its own tape squares it 
needs to represent one symbol of M.
Step 3: Initialize Tape 2 to represent 

the tape of M with input w, and initialize 
Tape 3 to hold the start state.
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The UTM – (5)

Step 4: Simulate M.
 Look for a move on Tape 1 that matches 

the state on Tape 3 and the tape symbol 
under the head on Tape 2.
 If found, change the symbol and move the 

head marker on Tape 2 and change the 
State on Tape 3.
 If M accepts, the UTM also accepts.
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A Question

Do we see anything like universal 
Turing machines in real life?
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Proof That Lu is Recursively 
Enumerable, but not Recursive

We designed a TM for Lu, so it is surely 
RE.
Suppose it were recursive; that is, we 

could design a UTM U that always 
halted.
Then we could also design an algorithm 

for Ld, as follows.
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Proof – (2)

 Given input w, we can decide if it is in Ld
by the following steps.

1. Check that w is a valid TM code.
 If not, then its language is empty, so w is in Ld.

2. If valid, use the hypothetical algorithm to 
decide whether w111w is in Lu.

3. If so, then w is not in Ld; else it is.
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Proof – (3)

But we already know there is no 
algorithm for Ld.
Thus, our assumption that there was an 

algorithm for Lu is wrong.
Lu is RE, but not recursive.
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Bullseye Picture

Decidable
problems =
Recursive
languages

Recursively
enumerable
languages

Not recursively
enumerable
languages Ld

Lu

All these are
undecidable


