Decision Properties of Regular
Languages

General Discussion of “Properties”
The Pumping Lemma
Membership, Emptiness, Etc.

Properties of Language Classes

&® A /anguage class is a set of
languages.

+ We have one example: the regular
languages.

+ We’'ll see many more in this class.
€ Language classes have two important
kinds of properties:
1. Decision properties.
2. Closure properties.

Representation of Languages

@ Representations can be formal or informal.

¢ (formal): represent a language by
a RE or DFA defining It.
¢ . (informal): a logical or prose

statement about its strings:
+ {0"1" | nIs a nonnegative integer}

* “The set of strings consisting of some number of
O’s followed by the same number of 1's.”

Decision Properties

&® A decision property for a class of
languages Is an algorithm that takes a
formal description of a language (e.g., a
DFA) and tells whether or not some
property holds.

4 . Is language L empty?

Subtle Point: Representation

Matters

€ You might imagine that the language is

C

described informally, so Iif my

escription Is “the empty language”

t

nen yes, otherwise no.

€ But the representation is a DFA (or a
RE that you will convert to a DFA).

@ Can you tell if L(A) = & for DFA A?

Why Decision Properties?

¥ \When we talked about protocols
represented as DFA’s, we noted that
Important properties of a good protocol
were related to the language of the DFA.

4 . “Does the protocol terminate?”
= “Is the language finite?”
4 . “Can the protocol fail?” = “Is

the language nonempty?”

Why Decision Properties — (2)

€ \We might want a “smallest”
representation for a language, e.d., a
minimum-state DFA or a shortest RE.

@ If you can't decide “Are these two
languages the same?”
¢+ |.e., do two DFA’s define the same
language?

You can't find a “smallest.”

Closure Properties

® A closure property of a language class
says that given languages in the class,
an operator (e.g., union) produces
another language In the same class.

4 . the reqgular languages are
obviously closed under union,
concatenation, and (Kleene) closure.

+ Use the RE representation of languages.

Why Closure Properties?

. Helps construct representations.
. Helps show (informally described)

anguages not to be in the class.

. Use of Closure Property

€ We can easily prove L, = {0"1" | n > 0}
IS not a regular language.
@ L, = the set of strings with an =

number of 0's and 1’s isn’t either, but
that fact is trickier to prove.

® Regular languages are closed under .

@ If L, were regular, then L, N\L(0*1*) =
L, would be, but it isn’t.

10

The Membership Question

@ Our first decision property is the
guestion: “Is string w In regular
language L?”

@® Assume L is represented by a DFA A.

€ Simulate the action of A on the
seguence of input symbols forming w.

11

. Testing Membership

Q 1011
....... o
- symbol :
0 0,1
1
o= 'S
Start 0

. state 12

. Testing Membership

. state 13

Start

. Testing Membership

01011

symbol :
0 0,1
1
)L o)
0

. state 14

. Testing Membership

. state 15

Start

. Testing Membership

01011

symbol :
0 0,1
1
)L o)
0

. state 16

Start

. Testing Membership

01011,
....... NeXt,
 symbo ;
0 0,1
1
w) e
) :

. State 17

What If the Regular Language
Is not Represented by a DFA?

® There is a circle of conversions from
one form to another:

RE

p

e-NFA

N

DFA

N

NFA

/

18

The Emptiness Problem

€ Given a regular language, does the
language contain any string at all.

€ Assume representation is DFA.
@ Construct the transition graph.

€ Compute the set of states reachable
from the start state.

@ If any final state is reachable, then yes,
else no.

19

The Infiniteness Problem

@ Is a given regular language infinite?
& Start with a DFA for the language.

¢ . if the DFA has n states, and
the language contains any string of
length 7 or more, then the language Is
Infinite.

Otherwise, the language is surely finite.
* Limited to strings of length n7 or less.

20

Proof of

@ If an n-state DFA accepts a string w of
length 7 or more, then there must be a
state that appears twice on the path
labeled w from the start state to a final
state.

® Because there are at least n+1 states
along the path.

21

Proof — (2)

W = Xyz

: —QO

Then xy'z is in the language for all i > 0.

Since y Is not €, we see an Iinfinite
number of strings in L.

22

Infiniteness — Continued

€ \We do not yet have an algorithm.

@ There are an infinite number of strings
of length > n, and we can’t test them
all.

4 . if there is a string of
length > n (= number of states) in L,
then there Is a string of length between
n and 2n-1.

23

Proof of 2nd

® Remember: (X :@ 2N

€ We can choose y to be the first cycle
on the path.

€50 |xy| < n; in particular, 1 < |y|] < n.

@€ Thus, if w is of length 2n or more,
there Is a shorter string in L that Is still
of length at least n.

@ Keep shortening to reach [n, 2n-1].

24

Completion of Infiniteness
Algorithm

@ Test for membership all strings of length
between n and 2n-1.

¢+ |If any are accepted, then infinite, else finite.
@ A terrible algorithm.

& Better: find cycles between the start
state and a final state.

25

Finding Cycles

. Eliminate states not reachable from

the start state.

. Eliminate states that do not reach a

final state.

. Test If the remalining transition graph
has any cycles.

26

The Pumping Lemma

€ We have, almost accidentally, proved a
statement that Is quite useful for showing
certain languages are not regular.

& Called the pumping lemma for reqular
/anguages.

27

Statement of the Pumping Lemma

Number of
For every regular language L states of

. . DFA for L
There Is an integer n, such that g
For every string w in L of length > n
We can write w = Xxyz such that:

1. |xy| <n. \

Labels along
2. |yl = 0. first cycle on

3. Foralli>0, xyzisinL. pathlabeledw

28

. Use of Pumping Lemma

€ \We have claimed {01k | k > 1} is not a
regular language.

® Suppose it were. Then there would be
an associated n for the pumping lemma.

®Let w = 0"1". We can write w = xyz,
where x and y consist of 0’'s, and y = €.

€ But then xyyz would be in L, and this
string has more O’s than 1’s.

29

Decision

Property: Equivalence

€ Given regular languages L and M, is

L = M?
@ Algorithm

Involves constructing the

oroaduct DFA from DFA’s for L and M.

® Let these
and R, res

®Product D

DFA’s have sets of states Q
nectively.

~A has set of states Q x R.

* |.e., pairs [q, r] withgin Q, rinR.

30

Product DFA — Continued

& Start state = [q,, r,] (the start states of
the DFA’s for L, M).

& Transitions: o([q,r], a) =
[0,(0,a), Oy(r,a)]

* 0., Oy are the transition functions for the
DFA’s of L, M.

* That Is, we simulate the two DFA’s in the
two state components of the product DFA.

31

- Product DFA

0

B

1| |1 1 0
0

Bl (0D

32

Equivalence Algorithm

€ Make the final states of the product
DFA be those states [q, r] such that
exactly one of g and r is a final state of
Its own DFA.

€ Thus, the product accepts w iff w is in
exactly one of L and M.

33

. Equivalence

0 ‘ 0
9 WA O @

0,1 1 1

1
0
0
o B @

34

Equivalence Algorithm — (2)

€ The product DFA’s language is empty
iff L = M.
€ But we already have an algorithm to

test whether the language of a DFA is
empty.

35

Decision Property: Containment

€ Given regular languages L and M, is
L < M?

@ Algorithm also uses the product
automaton.

How do you define the final states [q, r]
of the product so Its language Is empty
iff L c M?

. g Is final; r Is not.

36

- Containment
O
AC)—[ADD

1) |1

Note: the only final state
IS unreachable, so
containment holds.

37

The Minimum-State DFA for a
Regular Language

@ In principle, since we can test for
equivalence of DFA’s we can, given a
DFA A find the DFA with the fewest
states accepting L(A).

& Test all smaller DFA’s for equivalence
with A.

€ But that's a terrible algorithm.

38

Efficient State Minimization

Construct a table with all pairs of
states.

@ If you find a string that aistinguishes
two states (takes exactly one to an
accepting state), mark that pair.

@ Algorithm is a recursion on the length
of the shortest distinguishing string.

39

State Minimization — (2)

& Basis: Mark a pair if exactly one is a final
state.

@ Induction: mark [q, r] if there is some
input symbol a such that [0(q,a), o(r,a)]
IS marked.

@ After no more marks are possible, the
unmarked pairs are equivalent and can
be merged into one state.

40

Transitivity of “Indistinguishable”

@ If state p is indistinguishable from q,
and g Is indistinguishable from r, then p
IS Indistinguishable from r.

@ Proof: The outcome (accept or don't) of
p and g on Iinput w Is the same, and the
outcome of g and r on w Is the same,
then likewise the outcome of p and r.

41

Constructing the Minimum-
State DFA

@ Suppose q,,...,q, are indistinguishable
states.

® Replace them by one state g.

€ Then o(q,, a),..., 0(q,, a) are all
Indistinguishable states.

. . otherwise, we should have
marked at least one more pair.

& Let 0(q, a) = the representative state
for that group.

42

- State Minimization

r b r b
— {1} {2,4y | {5} — ABIC
{2,4} |{2,4,6,8} {1,3,5,7} BIDIE ere itis
{5} |{2.4,6,8} {1.3,7,9} CD\F e
{2,4,6,8} | {2,4,6,8}{1,3,5,7,9} DDIG onvenient
{1,3,5,7} 1 {2,4,6,8}/{1,3,5,7,9} *EB g state names
* {1,3,7,9} 1{2,4,6,8} {5} .abla
* {1,3,5,7,9}|{2,4,6,8}/{1,3,5,7,9}

Remember this DFA? It was constructed for the
chessboard NFA by the subset construction.

43

*

O MmO @ X

OO0 gO0OQ0gOom-—=

OO TmOoc

— Continued

MmO W™ >

E D C B

X X X X x@©
X X X X X T

Start with marks for
the pairs with one of
the final states F or G.

44

* %

O MmO @ X

OO 0O gUOO0Oom-

OO TmOoc

— Continued

MmO W™ >

E D C B

X X X X x@©
X X X X X T

Input r gives no help,
because the pair [B, D]
IS not marked. e

*

O MmO @ X

OO0 gO0OQ0gOom-—=

OO0 TmOoT

— Continued

MmO m >
X X X X x x@®
X X X X X7
X X m
x x U
X X O

But input b distinguishes {A,B,F}

from {C,D,E,G}. For example, [A, C]

gets marked because [C, F] is marked.
4

6

*

O MmO @ X

OO0 gO0OQ0gOom-—=

OO0 TmOoT

— Continued

MmO m >
X X X X x x@®
X X X X X7
X X XM
< x xU
X X O

[C, D] and [C, E] are marked
because of transitions on b to
marked pair [F, G].

47

— Continued

r |b G FEDTCB

ABIC A X X X X X X

BID |E B X X X X X

CID|F C X X X X

DD|G D X X

EID |G E X X
+FD |C F X
+xGD|G

[A, B] Is marked [D, E] can never be marked,

because of transitions on r because on both inputs they

to marked pair [B, D]. go to the same state. |,

— Concluded

49

o X

O X X

L X X X

LL X X X X X

< m OO W L

<

LL

()

()

o

@©

o

i

£

B E

w <

o0 I uwO 0O - £

c

w0 T I L T L nakn_Hb

<< m QO I i O A +

H X X %nb

8 5

ocoww Oo O w%

N YaYalaNaWala o o
<< moOAOQOwWwwao
; X X

Eliminating Unreachable States

€ Unfortunately, combining
Indistinguishable states could leave us
with unreachable states in the
“minimum-state” DFA.

® Thus, before or after, remove states
that are not reachable from the start
state.

50

Clincher

€ \We have combined states of the given
DFA wherever possible.

@ Could there be another, completely
unrelated DFA with fewer states?

®No. The proof involves minimizing the
DFA we derived with the hypothetical
better DFA.

51

Proof: No Unrelated, Smaller DFA

@ Let A be our minimized DFA; let B be a
smaller equivalent.

® Consider an automaton with the states of
A and B combined.

& Use “distinguishable” in its contrapositive
form:

+ |f states g and p are indistinguishable, so are
o(q, a) and d(p, a).

52

Inferring Indistinguishabllity

a b
Qo ———>Qq ——
5/ o »

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
o*
.

Start states
of A and B Must be * Must be *

Indistinguishable indistinguishable indistinguishable
because L(A)

= L(B).

53

Inductive Hypothesis

&®Every state q of A is indistinguishable
from some state of B.

® Induction is on the length of the
shortest string taking you from the start
state of A to Q.

54

Proof — (2)

&® Basis: Start states of A and B are

Indistinguisha
€ Induction: Su

0

0

e, because L(A) = L(B).

nose W = Xa IS a shortest

string getting A to state @.

@By the IH, x gets A to some state r that is
Indistinguishable from some state p of B.

€ Then d(r, a) = g is indistinguishable from

o(p, a).

55

Proof — (3)

® However, two states of A cannot be
iIndistinguishable from the same state of
B, or they would be indistinguishable
from each other.

+ Violates transitivity of “indistinguishable.”

€ Thus, B has at least as many states as
A.

56

