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Decision Properties of Regular 
Languages

General Discussion of “Properties”
The Pumping Lemma

Membership, Emptiness, Etc.
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Properties of Language Classes

 A language class is a set of 
languages.
 We have one example: the regular 

languages.
 We’ll see many more in this class.

 Language classes have two important 
kinds of properties:

1. Decision properties.
2. Closure properties.
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Representation of Languages

Representations can be formal or informal.
Example (formal): represent a language by 

a RE or DFA defining it.
Example: (informal): a logical or prose 

statement about its strings:
 {0n1n | n is a nonnegative integer}
 “The set of strings consisting of some number of 

0’s followed by the same number of 1’s.”
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Decision Properties

A decision property for a class of 
languages is an algorithm that takes a 
formal description of a language (e.g., a 
DFA) and tells whether or not some 
property holds.
Example: Is language L empty?
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Subtle Point: Representation 
Matters

You might imagine that the language is 
described informally, so if my 
description is “the empty language” 
then yes, otherwise no.
But the representation is a DFA (or a 

RE that you will convert to a DFA).
Can you tell if L(A) =  for DFA A?
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Why Decision Properties?

When we talked about protocols 
represented as DFA’s, we noted that 
important properties of a good protocol 
were related to the language of the DFA.
Example: “Does the protocol terminate?” 

= “Is the language finite?”
Example: “Can the protocol fail?” = “Is 

the language nonempty?”
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Why Decision Properties – (2)

We might want a “smallest” 
representation for a language, e.g., a 
minimum-state DFA or a shortest RE.
If you can’t decide “Are these two 

languages the same?”
 I.e., do two DFA’s define the same 

language?

You can’t find a “smallest.”
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Closure Properties

A closure property of a language class 
says that given languages in the class, 
an operator (e.g., union) produces 
another language in the same class.
Example: the regular languages are 

obviously closed under union, 
concatenation, and (Kleene) closure.
 Use the RE representation of languages.
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Why Closure Properties?

1. Helps construct representations.
2. Helps show (informally described) 

languages not to be in the class.
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Example: Use of Closure Property

We can easily prove L1 = {0n1n | n > 0} 
is not a regular language.
L2 = the set of strings with an = 

number of 0’s and 1’s isn’t either, but 
that fact is trickier to prove.
Regular languages are closed under .
If L2 were regular, then L2 L(0*1*) = 

L1 would be, but it isn’t.
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The Membership Question

Our first decision property is the 
question: “is string w in regular 
language L?”
Assume L is represented by a DFA A.
Simulate the action of A on the 

sequence of input symbols forming w.
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Example: Testing Membership

Start

1

0

A CB
1

0 0,1

0 1 0 1 1

Next
symbol

Current
state



13

Example: Testing Membership

Start

1

0

A CB
1

0 0,1

0 1 0 1 1

Next
symbol

Current
state



14

Example: Testing Membership

Start

1

0

A CB
1

0 0,1

0 1 0 1 1

Next
symbol

Current
state



15

Example: Testing Membership

Start

1

0

A CB
1

0 0,1

0 1 0 1 1

Next
symbol

Current
state



16

Example: Testing Membership

Start

1

0

A CB
1

0 0,1

0 1 0 1 1

Next
symbol

Current
state



17

Example: Testing Membership

Start

1

0

A CB
1

0 0,1

0 1 0 1 1

Next
symbol

Current
state



18

What if the Regular Language 
Is not Represented by a DFA?

There is a circle of conversions from 
one form to another:

RE

DFA

NFA

ε-NFA



19

The Emptiness Problem

Given a regular language, does the 
language contain any string at all.
Assume representation is DFA.
Construct the transition graph.
Compute the set of states reachable 

from the start state.
If any final state is reachable, then yes, 

else no.
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The Infiniteness Problem

Is a given regular language infinite?
Start with a DFA for the language.
Key idea: if the DFA has n states, and 

the language contains any string of 
length n or more, then the language is 
infinite.
Otherwise, the language is surely finite.
 Limited to strings of length n or less. 
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Proof of Key Idea

If an n-state DFA accepts a string w of 
length n or more, then there must be a 
state that appears twice on the path 
labeled w from the start state to a final 
state.
Because there are at least n+1 states 

along the path.
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Proof – (2)

w = xyz

x
y

z

Then xyiz is in the language for all i > 0.

Since y is not ε, we see an infinite
number of strings in L.
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Infiniteness – Continued

We do not yet have an algorithm.
There are an infinite number of strings 

of length > n, and we can’t test them 
all.
Second key idea: if there is a string of 

length > n (= number of states) in L, 
then there is a string of length between 
n and 2n-1.



24

Proof of 2nd Key Idea

Remember:
We can choose y to be the first cycle 

on the path.
So |xy| < n; in particular, 1 < |y| < n.
Thus, if w is of length 2n or more, 

there is a shorter string in L that is still 
of length at least n.
Keep shortening to reach [n, 2n-1].

x
y

z
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Completion of Infiniteness 
Algorithm

Test for membership all strings of length 
between n and 2n-1.
 If any are accepted, then infinite, else finite.

A terrible algorithm.
Better: find cycles between the start 

state and a final state.
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Finding Cycles

1. Eliminate states not reachable from 
the start state.

2. Eliminate states that do not reach a 
final state.

3. Test if the remaining transition graph 
has any cycles.
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The Pumping Lemma

We have, almost accidentally, proved a 
statement that is quite useful for showing 
certain languages are not regular.
Called the pumping lemma for regular 

languages.
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Statement of the Pumping Lemma

For every regular language L
There is an integer n, such that

For every string w in L of length > n
We can write w = xyz such that:

1. |xy| < n.
2. |y| > 0.
3. For all i > 0, xyiz is in L.

Number of
states of
DFA for L

Labels along
first cycle on
path labeled w
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Example: Use of Pumping Lemma

We have claimed {0k1k | k > 1} is not a 
regular language.
Suppose it were.  Then there would be 

an associated n for the pumping lemma.
Let w = 0n1n.  We can write w = xyz, 

where x and y consist of 0’s, and y  ε.
But then xyyz would be in L, and this 

string has more 0’s than 1’s.
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Decision Property: Equivalence

Given regular languages L and M, is     
L = M?
Algorithm involves constructing the 

product DFA from DFA’s for L and M.
Let these DFA’s have sets of states Q 

and R, respectively.
Product DFA has set of states Q  R.
 I.e., pairs [q, r] with q in Q, r in R.
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Product DFA – Continued

Start state = [q0, r0] (the start states of 
the DFA’s for L, M).
Transitions: δ([q,r], a) =            

[δL(q,a), δM(r,a)]
 δL, δM are the transition functions for the 

DFA’s of L, M.
 That is, we simulate the two DFA’s in the 

two state components of the product DFA.
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Example: Product DFA
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0
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1

0

1

0
1

[B,D]

0

1
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Equivalence Algorithm

Make the final states of the product 
DFA be those states [q, r] such that 
exactly one of q and r is a final state of 
its own DFA.
Thus, the product accepts w iff w is in 

exactly one of L and M.
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Example: Equivalence
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Equivalence Algorithm – (2)

The product DFA’s language is empty 
iff L = M.
But we already have an algorithm to 

test whether the language of a DFA is 
empty.
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Decision Property: Containment 

Given regular languages L and M, is   
L  M?
Algorithm also uses the product 

automaton.
How do you define the final states [q, r] 

of the product so its language is empty 
iff L  M?

Answer: q is final; r is not.
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Example: Containment

A

C

B

D

0
1

0, 1

1

1

0
0

[A,C] [A,D]
0

[B,C]

1

0

1

0
1

[B,D]

0

1

Note: the only final state
is unreachable, so
containment holds.
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The Minimum-State DFA for a 
Regular Language

In principle, since we can test for 
equivalence of DFA’s we can, given a 
DFA A find the DFA with the fewest 
states accepting L(A).
Test all smaller DFA’s for equivalence 

with A.
But that’s a terrible algorithm.
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Efficient State Minimization

Construct a table with all pairs of 
states.
If you find a string that distinguishes

two states (takes exactly one to an 
accepting state), mark that pair.
Algorithm is a recursion on the length 

of the shortest distinguishing string.
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State Minimization – (2)

Basis: Mark a pair if exactly one is a final 
state.
Induction: mark [q, r] if there is some 

input symbol a such that [δ(q,a), δ(r,a)] 
is marked.
After no more marks are possible, the 

unmarked pairs are equivalent and can 
be merged into one state.
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Transitivity of “Indistinguishable”

If state p is indistinguishable from q, 
and q is indistinguishable from r, then p 
is indistinguishable from r.
Proof: The outcome (accept or don’t) of 

p and q on input w is the same, and the 
outcome of q and r on w is the same, 
then likewise the outcome of p and r.
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Constructing the Minimum-
State DFA

Suppose q1,…,qk are indistinguishable 
states.
Replace them by one state q.
Then δ(q1, a),…, δ(qk, a) are all 

indistinguishable states.
 Key point: otherwise, we should have 

marked at least one more pair.
Let δ(q, a) = the representative state 

for that group.
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Example: State Minimization
r b

{1}

* {1,3,5,7,9} {2,4,6,8} {1,3,5,7,9}
*   {1,3,7,9} {2,4,6,8}     {5}

{2,4,6,8} {1,3,5,7,9}{2,4,6,8}
{2,4,6,8}  {1,3,7,9}{5}

{2,4} {2,4,6,8}  {1,3,5,7}

{1,3,5,7}

{2,4}       {5}

{2,4,6,8} {1,3,5,7,9}

Remember this DFA? It was constructed for the
chessboard NFA by the subset construction. 

r   b
A B  C
B D  E
C D  F
D D  G
E D  G
F D  C
G D  G

*
*

Here it is
with more
convenient
state names
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Example – Continued

r   b
A B  C
B D  E
C D  F
D D  G
E D  G
F D  C
G D  G

*
*

G   F   E   D   C   B
A
B
C
D
E
F

x

x
x

x
x

x

x
x

x
x

Start with marks for
the pairs with one of
the final states F or G.
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Example – Continued

r   b
A B  C
B D  E
C D  F
D D  G
E D  G
F D  C
G D  G

*
*

G   F   E   D   C   B
A
B
C
D
E
F

x

x
x

x
x

x

x
x

x
x

Input r gives no help,
because the pair [B, D]
is not marked.
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Example – Continued

r   b
A B  C
B D  E
C D  F
D D  G
E D  G
F D  C
G D  G

*
*

G   F   E   D   C   B
A
B
C
D
E
F

x

x
x

x
x

x

x
x

x
x

But input b distinguishes {A,B,F}
from {C,D,E,G}.  For example, [A, C]
gets marked because [C, F] is marked.

x

x x
x

x
x x
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Example – Continued

r   b
A B  C
B D  E
C D  F
D D  G
E D  G
F D  C
G D  G

*
*

G   F   E   D   C   B
A
B
C
D
E
F

x

x
x

x
x

x

x
x

x
x

[C, D] and [C, E] are marked
because of transitions on b to
marked pair [F, G]. 

x

x x
x

x
x x
x x
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Example – Continued

r   b
A B  C
B D  E
C D  F
D D  G
E D  G
F D  C
G D  G

*
*

G   F   E   D   C   B
A
B
C
D
E
F

x

x
x

x
x

x

x
x

x
x

[A, B] is marked
because of transitions on r
to marked pair [B, D]. 

x

x x
x

x
x x
x x

x

[D, E] can never be marked,
because on both inputs they
go to the same state.
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Example – Concluded

r   b
A B  C
B D  E
C D  F
D D  G
E D  G
F D  C
G D  G

*
*

G   F   E   D   C   B
A
B
C
D
E
F

x

x
x

x
x

x

x
x

x
x
x

x x
x

x
x x
x x

x
r   b

A B  C
B H  H
C H  F
H H  G

F H  C
G H  G

*
*

Replace D and E by H.
Result is the minimum-state DFA.



50

Eliminating Unreachable States

Unfortunately, combining 
indistinguishable states could leave us 
with unreachable states in the 
“minimum-state” DFA.
Thus, before or after, remove states 

that are not reachable from the start 
state.
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Clincher

We have combined states of the given 
DFA wherever possible.
Could there be another, completely 

unrelated DFA with fewer states?
No.  The proof involves minimizing the 

DFA we derived with the hypothetical 
better DFA.
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Proof: No Unrelated, Smaller DFA

Let A be our minimized DFA; let B be a 
smaller equivalent.
Consider an automaton with the states of 

A and B combined.
Use “distinguishable” in its contrapositive 

form:
 If states q and p are indistinguishable, so are 
δ(q, a) and δ(p, a).
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Inferring Indistinguishability

q0

p0

Start states
of A and B
indistinguishable
because L(A)
= L(B).

a
q

p
a

Must be
indistinguishable

b
r

s
b

Must be
indistinguishable
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Inductive Hypothesis

Every state q of A is indistinguishable 
from some state of B.
Induction is on the length of the 

shortest string taking you from the start 
state of A to q.
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Proof – (2)

Basis: Start states of A and B are 
indistinguishable, because L(A) = L(B).
Induction: Suppose w = xa is a shortest 

string getting A to state q.
By the IH, x gets A to some state r that is 

indistinguishable from some state p of B.
Then δ(r, a) = q is indistinguishable from    
δ(p, a).
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Proof – (3)

However, two states of A cannot be 
indistinguishable from the same state of 
B, or they would be indistinguishable 
from each other.
 Violates transitivity of “indistinguishable.”

Thus, B has at least as many states as 
A.


