Regular Expressions

Definitions
Equivalence to Finite Automata

RE's: Introduction

- Regular expressions are an algebraic way to describe languages.
- They describe exactly the regular languages.
- If E is a regular expression, then L(E) is the language it defines.
- We'll describe RE's and their languages recursively.

RE's: Definition

- Basis 1: If a is any symbol, then a is a RE, and $L(a) = \{a\}$.
 - Note: {a} is the language containing one string, and that string is of length 1.
- ♦ Basis 2: ϵ is a RE, and $L(\epsilon) = {\epsilon}$.
- ♦ Basis 3: \emptyset is a RE, and L(\emptyset) = \emptyset .

RE's: Definition – (2)

- Induction 1: If E_1 and E_2 are regular expressions, then E_1+E_2 is a regular expression, and $L(E_1+E_2) = L(E_1) \cup L(E_2)$.
- ◆Induction 2: If E_1 and E_2 are regular expressions, then E_1E_2 is a regular expression, and $L(E_1E_2) = L(E_1)L(E_2)$.

Concatenation: the set of strings wx such that w Is in $L(E_1)$ and x is in $L(E_2)$.

RE's: Definition – (3)

◆Induction 3: If E is a RE, then E* is a RE, and L(E*) = (L(E))*.

Closure, or "Kleene closure" = set of strings $w_1w_2...w_n$, for some $n \ge 0$, where each w_i is in L(E).

Note: when n=0, the string is ϵ .

Precedence of Operators

- Parentheses may be used wherever needed to influence the grouping of operators.
- Order of precedence is * (highest), then concatenation, then + (lowest).

Examples: RE's

- \bullet L(**01**) = {01}.
- $\bullet L(01+0) = \{01, 0\}.$
- \bullet L(0(1+0)) = $\{01, 00\}.$
 - Note order of precedence of operators.
- $\bullet L(\mathbf{0}^*) = \{ \epsilon, 0, 00, 000, \dots \}.$
- +L((**0**+**10**)*(ε +**1**)) = all strings of 0's and 1's without two consecutive 1's.

Equivalence of RE's and Automata

- We need to show that for every RE, there is an automaton that accepts the same language.
 - ◆ Pick the most powerful automaton type: the ∈-NFA.
- And we need to show that for every automaton, there is a RE defining its language.
 - Pick the most restrictive type: the DFA.

Converting a RE to an ϵ -NFA

- Proof is an induction on the number of operators (+, concatenation, *) in the RE.
- We always construct an automaton of a special form (next slide).

Form of ∈-NFA's Constructed

RE to ϵ -NFA: Basis

◆Symbol **a**:

◆∈:

♦∅:

RE to ϵ -NFA: Induction 1 – Union

RE to ∈-NFA: Induction 2 – Concatenation

For E₁E₂

RE to ϵ -NFA: Induction 3 – Closure

For E*

DFA-to-RE

- A strange sort of induction.
- States of the DFA are assumed to be 1,2,...,n.
- We construct RE's for the labels of restricted sets of paths.
 - Basis: single arcs or no arc at all.
 - Induction: paths that are allowed to traverse next state in order.

k-Paths

- A k-path is a path through the graph of the DFA that goes though no state numbered higher than k.
- Endpoints are not restricted; they can be any state.

Example: k-Paths

0-paths from 2 to 3: RE for labels = $\mathbf{0}$.

1-paths from 2 to 3: RE for labels = $\mathbf{0}+\mathbf{11}$.

2-paths from 2 to 3: RE for labels = (10)*0+1(01)*1

3-paths from 2 to 3: RE for labels = ??

k-Path Induction

- Let R_{ij}^k be the regular expression for the set of labels of k-paths from state i to state j.
- ♦ Basis: k=0. $R_{ij}^{0} = \text{sum of labels of arc}$ from i to j.
 - Ø if no such arc.
 - But add ϵ if i=j.

Example: Basis

- $R_{12}^{0} = 0.$

k-Path Inductive Case

- A k-path from i to j either:
 - 1. Never goes through state k, or
 - 2. Goes through k one or more times.

$$R_{ij}{}^k = R_{ij}{}^{k-1} + R_{ik}{}^{k-1}(R_{kk}{}^{k-1})^* R_{kj}{}^{k-1}.$$
Goes from Then, from k to jump to through k first time Zero or more times from k to k

Illustration of Induction

Final Step

- The RE with the same language as the DFA is the sum (union) of R_{ii}ⁿ, where:
 - 1. n is the number of states; i.e., paths are unconstrained.
 - 2. i is the start state.
 - 3. j is one of the final states.

Example

- $R_{23}^3 = R_{23}^2 + R_{23}^2(R_{33}^2)^*R_{33}^2 = R_{23}^2(R_{33}^2)^*$
- $R_{23}^2 = (10)^*0 + 1(01)^*1$
- $\bullet R_{33}^2 = 0(01)^*(1+00) + 1(10)^*(0+11)$
- $R_{23}^{3} = [(10)*0+1(01)*1]$ [(0(01)*(1+00) + 1(10)*(0+11))]*

Summary

◆Each of the three types of automata (DFA, NFA, ε-NFA) we discussed, and regular expressions as well, define exactly the same set of languages: the regular languages.

Algebraic Laws for RE's

- Union and concatenation behave sort of like addition and multiplication.
 - + is commutative and associative;
 concatenation is associative.
 - Concatenation distributes over +.
 - Exception: Concatenation is not commutative.

Identities and Annihilators

- $\bullet \varnothing$ is the identity for +.
 - \bullet R + \emptyset = R.
- \bullet ϵ is the identity for concatenation.
 - $\epsilon R = R\epsilon = R$.
- \bullet \varnothing is the annihilator for concatenation.
 - $\bullet \varnothing R = R\varnothing = \varnothing.$