
1

More NP-Complete Problems

NP-Hard Problems
Tautology Problem

Node Cover
Knapsack



2

Next Steps

We can now reduce 3SAT to a large 
number of problems, either directly or 
indirectly.
Each reduction must be polytime.
Usually we focus on length of the 

output from the transducer, because 
the construction is easy.
But key issue: must be polytime.



3

Next Steps – (2)

Another essential part of an NP-
completeness proof is showing the 
problem is in NP.
Sometimes, we can only show a 

problem NP-hard = “if the problem is in 
P, then P = NP,” but the problem may 
not be in NP.



4

Example: NP-Hard Problem

The Tautology Problem is: given a 
Boolean formula, is it satisfied by all
truth assignments?
 Example: x + -x + yz

Not obviously in NP, but it’s 
complement is.
 Guess a truth assignment; accept if that 

assignment doesn’t satisfy the formula.



5

Key Point Regarding Tautology

An NTM can guess a truth assignment 
and decide whether formula F is 
satisfied by that assignment in 
polytime.
But if the NTM accepts when it guesses 

a satisfying assignment, it will accept F 
whenever F is in SAT, not Tautology.



6

Co-NP

A problem/language whose complement is 
in NP is said to be in Co-NP.
Note: P is closed under complementation.
Thus, P  Co-NP.
Also, if P = NP, then P = NP = Co-NP.



7

Tautology is NP-Hard

While we can’t prove Tautology is in 
NP, we can prove it is NP-hard.
Suppose we had a polytime algorithm 

for Tautology.
Take any Boolean formula F and 

convert it to -(F).
 Obviously linear time.



8

Tautology is NP-Hard – (2)

F is satisfiable if and only -(F) is not a 
tautology.
Use the hypothetical polytime algorithm 

for Tautology to test if -(F) is a 
tautology.
Say “yes, F is in SAT” if -(F) is not a 

tautology and say “no” otherwise.
Then SAT would be in P, and P = NP.



9

Historical Comments

There were actually two notions of “NP-
complete” that differ subtlely.
 And only if P  NP.

Steve Cook, in his 1970 paper, was 
really concerned with the question “why 
is Tautology hard?”
 Remember: theorems are really logical 

tautologies.



10

History – (2)

Cook used “if problem X is in P, then P
= NP” as the definition of “X is NP-
hard.”
 Today called Cook completeness.

In 1972, Richard Karp wrote a paper 
showing many of the key problems in 
Operations Research to be NP-
complete.



11

History – (3)

Karp’s paper moved “NP-completeness” 
from a concept about theorem proving 
to an essential for any study of 
algorithms.
But Karp used the definition of NP-

completeness “exists a polytime 
reduction,” as we have.
 Called Karp completeness.



12

Cook Vs. Karp Completeness

In practice, there is very little difference.
Biggest difference: for Tautology, Cook 

lets us flip the answer after a polytime 
reduction.
In principle, Cook completeness could be 

much more powerful, or (if P = NP) 
exactly the same.



13

Cook Vs. Karp – (2)

But there is one important reason we 
prefer Karp-completeness.
Suppose I had an algorithm for some 

NP-complete problem that ran in time 
O(nlog n).
 A function that is bigger than any 

polynomial, yet smaller than the 
exponentials like 2n.



14

Cook Vs. Karp – (3)

If “NP-complete is Karp-completeness, 
I can conclude that all of NP can be 
solved in time O(nf(n)), where f(n) is 
some function of the form c logkn.
 Still faster than any exponential, and faster 

than we have a right to expect.

But if I use Cook-completeness, I 
cannot say anything of this type.



15

The Node Cover Problem

Given a graph G, we say N is a node 
cover for G if every edge of G has at 
least one end in N.
The problem Node Cover is: given a 

graph G and a “budget” k, does G have 
a node cover of k or fewer nodes?



16

Example: Node Cover

A C

E F

DB

One possible node cover
of size 3: {B, C, E}



17

NP-Completeness of Node Cover

Reduction from 3SAT.
For each clause (X+Y+Z) construct a 

“column” of three nodes, all connected 
by vertical edges.
Add a horizontal edge between nodes 

that represent any variable and its 
negation.
Budget = twice the number of clauses.



18

Example: The Reduction to 
Node Cover

(x + y + z)(-x + -y + -z)(x + -y +z)(-x + y + -z)

x

z

y

-x

-z

-y

x

z

-y

-x

-z

y

Budget
= 8



19

Example: Reduction – (2)

A node cover must have at least two 
nodes from every column, or some 
vertical edge is not covered.
Since the budget is twice the number 

of columns, there must be exactly two 
nodes in the cover from each column.
Satisfying assignment corresponds to 

the node in each column not selected.



20

Example: Reduction – (3)
(x + y + z)(-x + -y + -z)(x + -y +z)(-x + y + -z)
Truth assignment: x = y = T; z = F

x

z

y

-x

-z

-y

x

z

-y

-x

-z

y

Pick a true node in each column



21

Example: Reduction – (4)
(x + y + z)(-x + -y + -z)(x + -y +z)(-x + y + -z)
Truth assignment: x = y = T; z = F

x

z

y

-x

-z

-y

x

z

-y

-x

-z

y

The other nodes form a node cover



22

Proof That the Reduction Works

 The reduction is clearly polytime.
 Need to show:
 If we construct from 3SAT instance F a 

graph G and a budget k, then G has a 
node cover of size k if and only if F is 
satisfiable.



23

Proof: If

Suppose we have a satisfying 
assignment A for F.
For each clause of F, pick one of its 

three literals that A makes true.
Put in the node cover the two nodes for 

that clause that do not correspond to 
the selected literal.
Total = k nodes – meets budget.



24

Proof: If – (2)

The selected nodes cover all vertical edges.
Why?  Any two nodes for a clause cover the 

triangle of vertical edges for that clause.

Horizontal edges are also covered.
 A horizontal edge connects nodes for some x 

and -x.
 One is false in A and therefore its node must be 

selected for the node cover.



25

Proof: Only If

Suppose G has a node cover with at 
most k nodes.
One node cannot cover the vertical 

edges of any column, so each column 
has exactly 2 nodes in the cover.
Construct a satisfying assignment for F 

by making true the literal for any node 
not in the node cover.



26

Proof: Only If – (2)

Worry: What if there are unselected 
nodes corresponding to both x and -x?
 Then we would not have a truth 

assignment.

But there is a horizontal edge between 
these nodes.
Thus, at least one is in the node cover.



27

Optimization Problems

NP-complete problems are always 
yes/no questions.
In practice, we tend to want to solve 

optimization problems, where our task 
is to minimize (or maximize) a 
parameter subject to some constraints.



28

Example: Optimization Problem

People who care about node covers 
would ask:
 Given this graph, what is the smallest 

number of nodes I can pick to form a node 
cover?

If I can solve that problem in polytime, 
then I can solve the yes/no version.



29

Example – Continued

Polytime algorithm: given graph G and 
budget k, solve the optimization 
problem for G.
If the smallest node cover for G is of 

size k or less, answer “yes’; otherwise 
answer “no.”



30

Optimization Problems – (2)

Optimization problems are never, 
strictly speaking, in NP.
 They are not yes/no.

But there is a Cook reduction from the 
yes/no version to the optimization 
version.



31

Optimization Problems – (3)

That is enough to show that if the 
optimization version of an NP-complete 
problem can be solved in polytime, then 
P = NP.
 A strong argument that you cannot solve 

the optimization version of an NP-complete 
problem in polytime.



32

The Knapsack Problem

We shall prove NP-complete a version 
of Knapsack with a budget:
 Given a list L of integers and a budget k, is 

there a subset of L whose sum is exactly k?

Later, we’ll reduce this version of 
Knapsack to our earlier one: given an 
integer list L, can we divide it into two 
equal parts?



33

Knapsack is in NP

Guess a subset of the list L.
Add ‘em up.
Accept if the sum is k.



34

Polytime Reduction of 3SAT to 
Knapsack

Given 3SAT instance F, we need to 
construct a list L and a budget k.
Suppose F has c clauses and v 

variables.
L will have base-32 integers of length 

c+v, and there will be 3c+2v of them.



35

Picture of Integers for Literals

cv
i

1

1 in i-th position
if this integer is
for xi or -xi.

1    1  1        1    11

1’s in all positions
such that this literal
makes the clause true.

All other positions are 0.



36

Pictures of Integers for Clauses

5

6

7

i

For the i-th clause



37

Example: Base-32 Integers

(x + y + z)(x + -y + -z)
c = 2; v = 3.
Assume x, y, z are variables 1, 2, 3, 

respectively.
Clauses are 1, 2 in order given.



38

Example: (x + y + z)(x + -y + -z)

For x:  00111
For -x: 00100
For y:  01001
For -y: 01010
For z:  10001
For -z: 10010

For first clause: 
00005, 00006, 
00007

For second clause: 
00050, 00060, 
00070



39

The Budget

k = 8(1+32+322+…+32c-1) + 
32c(1+32+322+…+32v-1)
That is, 8 for the position of each clause 

and 1 for the position of each variable.
Key Point: Base-32 is high enough that 

there can be no carries between 
positions.



40

Key Point: Details

Among all the integers, the sum of 
digits in the position for a variable is 2.
And for a clause, it is 1+1+1+5+6+7 = 

21.
 1’s for the three literals in the clause; 5, 6, 

and 7 for the integers for that clause.

Thus, the budget must be satisfied on a 
digit-by-digit basis.



41

Key Point: Concluded

Thus, if a set of integers matches the 
budget, it must include exactly one of 
the integers for x and -x.
For each clause, at least one of the 

integers for literals must have a 1 there, 
so we can choose either 5, 6, or 7 to 
make 8 in that position.



42

Proof the Reduction Works

Each integer can be constructed from 
the 3SAT instance F in time proportional 
to its length.
 Thus, reduction is O(n2).

If F is satisfiable, take a satisfying 
assignment A.
Pick integers for those literals that A 

makes true.



43

Proof the Reduction Works – (2)

The selected integers sum to between 
1 and 3 in the digit for each clause.
For each clause, choose the integer 

with 5, 6, or 7 in that digit to make a 
sum of 8.
These selected integers sum to exactly 

the budget.



44

Proof: Converse

We must also show that a sum of 
integers equal to the budget k implies F 
is satisfiable.
In each digit for a variable x, either the 

integer for x or the digit for -x, but not 
both is selected.
 let truth assignment A make this literal true.



45

Proof: Converse – (2)

In the digits for the clauses, a sum of 8 
can only be achieved if among the 
integers for the variables, there is at 
least one 1 in that digit.
Thus, truth assignment A makes each 

clause true, so it satisfies F.



46

The Partition-Knapsack Problem

This problem is what we originally 
referred to as “knapsack.”
Given a list of integers L, can we 

partition it into two disjoint sets whose 
sums are equal?
Partition-Knapsack is NP-complete; 

reduction from Knapsack.



47

Reduction of Knapsack to 
Partition-Knapsack

Given instance (L, k) of Knapsack, compute 
the sum s of all the integers in L.
 Linear in input size.

Output is L followed by two integers: s and 
2k.
Example: L = 3, 4, 5, 6; k = 7.
 Partition-Knapsack instance = 3, 4, 5, 6, 14, 18.

Solution Solution



48

Proof That Reduction Works

The sum of all integers in the output 
instance is 2(s+k).
 Thus, the two partitions must each sum to 

s+k.

If the input instance has a subset of L 
that sums to k, then pick it plus the 
integer s to solve the output instance.



49

Proof: Converse

Suppose the output instance of Partition-
Knapsack has a solution.
The integers s and 2k cannot be in the 

same partition.
 Because their sum is more than half 2(s+k).

Thus, the subset of L that is in the 
partition with s sums to k.
 Thus, it solves the Knapsack instance.


