Pushdown Automata

Definition
Moves of the PDA
Languages of the PDA
Deterministic PDA’s



Pushdown Automata

€ The PDA is an automaton equivalent to
the CFG In language-defining power.

€ Only the nondeterministic PDA defines all
the CFL’s.

& But the deterministic version models

parsers.

* Most programming languages have
deterministic PDA’s.



Intuition: PDA

€ Think of an e-NFA with the additional
power that it can manipulate a stack.

€ Its moves are determined by:

1. The current state (of its “NFA”),
2. The current input symbol (or €), and

The current symbol on top of its stack.




Intuition: PDA — (2)

€ Being nondeterministic, the PDA can
have a choice of next moves.

€ In each choice, the PDA can:
1. Change state, and also

2. Replace the top symbol on the stack by a
sequence of zero or more symbols.
€ Zero symbols = “pop.”
€ Many symbols = sequence of “pushes.”



PDA Formalism

€ A PDA is described by:

A finite set of stafes (Q, typically).

An /nput alphabet (2, typically).

A stack alphabet (I', typically).

A transition function (0, typically).

A start state (q,, In Q, typically).

A start symbol (Z,, In ', typically).

A set of final states (F < Q, typically).

BN 0 D



Conventions

€43, b, ... are input symbols.
* But sometimes we allow € as a possible
value.

® ... X, Y, Z are stack symbols.

®....w, X, YV, z are strings of input
symbols.

® ., [3,... are strings of stack symbols.



The Transition Function

€ Takes three arguments:

1. A state, in Q.

2. An Input, which is either a symbol in 2 or
€.

3. A stack symbol in T.

® 0°(q, a, 2) is a set of zero or more
actions of the form (p, o).
¢ pis a state; a Is a string of stack symbols.

7



Actions of the PDA

€ If 0(q, a, 2) contains (p, a) among its
actions, then one thing the PDA can
do In state q, with a at the front of
the Iinput, and Z on top of the stack Is:
1. Change the state to p.

2. Remove a from the front of the input
(but a may be €).

3. Replace Z on the top of the stack by a.



: PDA

® Design a PDA to accept {0"1" | n > 1}.
@ The states:

¢ g = start state. We are in state ¢ If we
have seen only O’s so far.

* p = we've seen at least one 1 and may
now proceed only If the Iinputs are 1's.

* f = final state; accept.



: PDA — (2)

@ The stack symbols:

* Z, = start symbol. Also marks the bottom
of the stack, so we know when we have
counted the same number of 1's as O’s.

+ X = marker, used to count the number of
O’'s seen on the input.

10



- PDA — (3)

@ The transitions:
*0(q, 0, Zy) = {(a, XZy)}.
* 0(q, 0, X) = {(q, XX)}. These two rules

cause one X to be pushed onto the stack
for each O read from the input.

*0(q, 1, X) = {(p, €)}. When we see a 1,
go to state p and pop one X.

*0(p, 1, X) = {(p, €)}. Pop one X per 1.

*0(p, €, Z,) = {(f, Z,)}. Accept at bottom.

11



Actions of the

00111

T
g
|

0

PDA

12



Actions of the

PDA

13



PDA

Actions of the

0111

o
——» X X N

14



PDA

Actions of the

111

|, X X XN

15



Actions of the

1

NXX «<— ©—w —FP

PDA

16



Actions of the

?
P
|

0

PDA

17



Actions of the

N «—W o —

PDA

18



Actions of the

N «—— —4 [(—»

PDA

19



Instantaneous Descriptions

€ We can formalize the pictures just
seen with an /nstantaneous
description (1D).
€ A D is atriple (g, w, o), where:
1. g Is the current state.
2. W Is the remaining input.
3. o Is the stack contents, top at the left.

20



The “Goes-To” Relation

€ To say that ID | can become ID J in one
move of the PDA, we write |+J.

@ Formally, (g, aw, Xa)r(p, w, Ba) for any
w and a, if 0(q, a, X) contains (p, B).
@®Extend + to +*, meaning “zero or more
moves,” by:
* Basis: 1+*1.
¢ Induction: If IF*J and J+-K, then I+*K.

21



- Goes-To

# Using the previous example PDA, we

can describe the sequence of moves by:
(g, 000111, Z,)+(q, 00111, XZ,)+

(9, 0111, XXZo)F(q, 111, XXXZ,)F
(p, 11, XXZ)F(p, 1, XZ)F(p, €, Zo)F
(f, €, Z,)

€®Thus, (g, 000111, Zy)r*(f, €, Z,).
€ \What would happen on input 00011117

22



Answer

@ (g, 0001111, Z,)F(q, 001111, XZ,)*
(q, 01111, XXZ)F(qg, 1111, XXXZ,)F
(p, 111, XXZ )+ (p, 11, XZ)*+(p, 1, Zy)*+
(f, 1, Z,)

€ Note the last ID has no move.

€0001111 is accepted, because the
Input Is not completely consumed.

23



Aside: FA and PDA Notations

& \We represented moves of a FA by an
extended o, which did not mention the

Input yet to be read.

€ \We could have chosen a similar
notation for PDA’s, where the FA state
IS replaced by a state-stack
combination, like the pictures just
shown.

24



FA and PDA Notations — (2)

# Similarly, we could have chosen a FA
notation with ID’s.

¢ Just drop the stack component.

€ Why the difference? My theory:

€ FA tend to model things like protocols,
with indefinitely long inputs.

€ PDA model parsers, which are given a
fixed program to process.

25



Language of a PDA

€ The common way to define the
language of a PDA Is by final state.

@ If P is a PDA, then L(P) is the set of
strings w such that (q,, w, Z,) +*
(f, €, a) for final state f and any o.

26



Language of a PDA — (2)

€ Another language defined by the same
PDA Is by empty stack.

@ 1f P is a PDA, then N(P) is the set of
strings w such that (gg, w, Zy) +*

(9, €, €) for any state (.

27



Equivalence of Language
Definitions

. If L = L(P), then there is another PDA
P’ such that L = N(P’).
. If L = N(P), then there is another PDA
P” such that L = L(P”).

28



Proof: L(P) -> N(P’) Intuition

€ P’ will simulate P.
€ If P accepts, P’ will empty its stack.

€ P’ has to avoid accidentally emptying
Its stack, so It uses a special bottom-
marker to catch the case where P
empties its stack without accepting.

29



Proof: L(P) -> N(P’)

€ P’ has all the states, symbols, and
moves of P, plus:

1. Stack symbol X,, used to guard the stack
bottom against accidental emptying.

2. New start state s and “erase” state e.

. 0(s, €, Xp) = {(qq, ZyX,)}- Get P started.

4. o(f, €, X) = 0(e, €, X) = {(e, €)} for any
final state f of P and any stack symbol X.

W

30



Proof: N(P) -> L(P”) Intuition

€ P” simulates P.

€ P” has a special bottom-marker to
catch the situation where P empties its

stack.
€ If so, P” accepts.

31



Proof: N(P) -> L(P")

€ P” has all the states, symbols, and
moves of P, plus:

1. Stack symbol X,, used to guard the stack
bottom.

2. New start state s and final state f.
. 0(s, €, Xp) = {(qq, ZyX,)}- Get P started.

4. 8(q, €, X,) = {(f, €)} for any state q of P.

W

32



Deterministic PDA’s

€ To be deterministic, there must be at
most one choice of move for any state
g, Input symbol &, and stack symbol X.

€ In addition, there must not be a choice
between using input € or real input.

& Formally, 0(q, a, X) and d(q, €, X)
cannot both be nonempty.

33



