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Pushdown Automata

The PDA is an automaton equivalent to 
the CFG in language-defining power.
Only the nondeterministic PDA defines all 

the CFL’s.
But the deterministic version models 

parsers.
Most programming languages have 

deterministic PDA’s.
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Intuition: PDA

 Think of an ε-NFA with the additional 
power that it can manipulate a stack.

 Its moves are determined by:
1. The current state (of its “NFA”),
2. The current input symbol (or ε), and 

3. The current symbol on top of its stack.
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Intuition: PDA – (2)

 Being nondeterministic, the PDA can 
have a choice of next moves.

 In each choice, the PDA can:
1. Change state, and also
2. Replace the top symbol on the stack by a 

sequence of zero or more symbols.
 Zero symbols = “pop.”
 Many symbols = sequence of “pushes.”
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PDA Formalism

 A PDA is described by:
1. A finite set of states (Q, typically).
2. An input alphabet (Σ, typically).
3. A stack alphabet (Γ, typically).
4. A transition function (δ, typically).

5. A start state (q0, in Q, typically).
6. A start symbol (Z0, in Γ, typically).
7. A set of final states (F ⊆ Q, typically).
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Conventions

a, b, … are input symbols.
 But sometimes we allow ε as a possible 

value.

…, X, Y, Z are stack symbols.
…, w, x, y, z are strings of input 

symbols.
, ,… are strings of stack symbols.
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The Transition Function

 Takes three arguments:
1. A state, in Q.
2. An input, which is either a symbol in Σ or 
ε.

3. A stack symbol in Γ.
 δ(q, a, Z) is a set of zero or more 

actions  of the form (p, ).
 p is a state;  is a string of stack symbols.
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Actions of the PDA

 If δ(q, a, Z) contains (p, ) among its 
actions, then one thing the PDA can 
do in state q, with a at the front of 
the input, and Z on top of the stack is:

1. Change the state to p.
2. Remove a from the front of the input 

(but a may be ε).
3. Replace Z on the top of the stack by .
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Example: PDA

Design a PDA to accept {0n1n | n > 1}.
The states:
 q = start state.  We are in state q if we 

have seen only 0’s so far.
 p = we’ve seen at least one 1 and may 

now proceed only if the inputs are 1’s.
 f = final state; accept.
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Example: PDA – (2)

The stack symbols:
 Z0 = start symbol.  Also marks the bottom 

of the stack, so we know when we have 
counted the same number of 1’s as 0’s.
 X = marker, used to count the number of 

0’s seen on the input.
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Example: PDA – (3)

The transitions:
 δ(q, 0, Z0) = {(q, XZ0)}.
 δ(q, 0, X) = {(q, XX)}.  These two rules 

cause one X to be pushed onto the stack 
for each 0 read from the input.
 δ(q, 1, X) = {(p, ε)}.  When we see a 1, 

go to state p and pop one X.
 δ(p, 1, X) = {(p, ε)}. Pop one X per 1.
 δ(p, ε, Z0) = {(f, Z0)}. Accept at bottom.
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Actions of the Example PDA

q

0 0 0 1 1 1

Z0
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Actions of the Example PDA

q

0 0 1 1 1

X
Z0
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Actions of the Example PDA

q

0 1 1 1

X
X
Z0
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Actions of the Example PDA

q

1 1 1

X
X
X
Z0
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Actions of the Example PDA

p

1 1

X
X
Z0
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Actions of the Example PDA

p

1

X
Z0



18

Actions of the Example PDA

p

Z0



19

Actions of the Example PDA

f

Z0
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Instantaneous Descriptions

 We can formalize the pictures just 
seen with an instantaneous 
description (ID).

 A ID is a triple (q, w, ), where:
1. q is the current state.
2. w is the remaining input.
3.  is the stack contents, top at the left.
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The “Goes-To” Relation

To say that ID I can become ID J in one 
move of the PDA, we write I⊦J.
Formally, (q, aw, X)⊦(p, w, ) for any 

w and , if δ(q, a, X) contains (p, ).
Extend ⊦ to ⊦*, meaning “zero or more 

moves,” by:
 Basis: I⊦*I.
 Induction: If I⊦*J and J⊦K, then I⊦*K.
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Example: Goes-To

Using the previous example PDA, we 
can describe the sequence of moves by: 
(q, 000111, Z0)⊦(q, 00111, XZ0)⊦             
(q, 0111, XXZ0)⊦(q, 111, XXXZ0)⊦   
(p, 11, XXZ0)⊦(p, 1, XZ0)⊦(p, ε, Z0)⊦ 
(f, ε, Z0)
Thus, (q, 000111, Z0)⊦*(f, ε, Z0).

What would happen on input 0001111?
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Answer

(q, 0001111, Z0)⊦(q, 001111, XZ0)⊦             
(q, 01111, XXZ0)⊦(q, 1111, XXXZ0)⊦           
(p, 111, XXZ0)⊦(p, 11, XZ0)⊦(p, 1, Z0)⊦       
(f, 1, Z0)
Note the last ID has no move.
0001111 is not accepted, because the 

input is not completely consumed.

Legal because a PDA can use
ε input even if input remains.
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Aside: FA and PDA Notations

We represented moves of a FA by an 
extended δ, which did not mention the 
input yet to be read.
We could have chosen a similar 

notation for PDA’s, where the FA state 
is replaced by a state-stack 
combination, like the pictures just 
shown.
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FA and PDA Notations – (2)

Similarly, we could have chosen a FA 
notation with ID’s.
 Just drop the stack component.

Why the difference?  My theory:
FA tend to model things like protocols, 

with indefinitely long inputs.
PDA model parsers, which are given a 

fixed program to process.
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Language of a PDA

The common way to define the 
language of a PDA is by final state.
If P is a PDA, then L(P) is the set of 

strings w such that (q0, w, Z0) ⊦*       
(f, ε, ) for final state f and any .
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Language of a PDA – (2)

Another language defined by the same 
PDA is by empty stack.
If P is a PDA, then N(P) is the set of 

strings w such that (q0, w, Z0) ⊦*       
(q, ε, ε) for any state q.
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Equivalence of Language 
Definitions

1. If L = L(P), then there is another PDA 
P’ such that L = N(P’).

2. If L = N(P), then there is another PDA 
P’’ such that L = L(P’’).
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Proof: L(P) -> N(P’) Intuition

 P’ will simulate P.
 If P accepts, P’ will empty its stack.
 P’ has to avoid accidentally emptying 

its stack, so it uses a special bottom-
marker to catch the case where P 
empties its stack without accepting.
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Proof: L(P) -> N(P’)

 P’ has all the states, symbols, and 
moves of P, plus:

1. Stack symbol X0, used to guard the stack 
bottom against accidental emptying.

2. New start state s and “erase” state e.
3. δ(s, ε, X0) = {(q0, Z0X0)}.  Get P started.
4. δ(f, ε, X) = δ(e, ε, X) = {(e, ε)} for any 

final state f of P and any stack symbol X.
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Proof: N(P) -> L(P’’) Intuition

 P” simulates P.
 P” has a special bottom-marker to 

catch the situation where P empties its 
stack.

 If so, P” accepts.
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Proof: N(P) -> L(P’’)

 P’’ has all the states, symbols, and 
moves of P, plus:

1. Stack symbol X0, used to guard the stack 
bottom.

2. New start state s and final state f.
3. δ(s, ε, X0) = {(q0, Z0X0)}.  Get P started.
4. δ(q, ε, X0) = {(f, ε)} for any state q of P. 
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Deterministic PDA’s

To be deterministic, there must be at 
most one choice of move for any state 
q, input symbol a, and stack symbol X.
In addition, there must not be a choice 

between using input ε or real input.
Formally, δ(q, a, X) and δ(q, ε, X) 

cannot both be nonempty.


