Pushdown Automata

Definition

Moves of the PDA

Languages of the PDA

Deterministic PDA's

Pushdown Automata

- The PDA is an automaton equivalent to the CFG in language-defining power.
- Only the nondeterministic PDA defines all the CFL's.
- But the deterministic version models parsers.
 - Most programming languages have deterministic PDA's.

Intuition: PDA

- Think of an ϵ -NFA with the additional power that it can manipulate a stack.
- Its moves are determined by:
 - 1. The current state (of its "NFA"),
 - 2. The current input symbol (or ϵ), and
 - 3. The current symbol on top of its stack.

Intuition: PDA – (2)

- Being nondeterministic, the PDA can have a choice of next moves.
- In each choice, the PDA can:
 - 1. Change state, and also
 - Replace the top symbol on the stack by a sequence of zero or more symbols.
 - Zero symbols = "pop."
 - Many symbols = sequence of "pushes."

PDA Formalism

- A PDA is described by:
 - 1. A finite set of *states* (Q, typically).
 - 2. An *input alphabet* (Σ , typically).
 - 3. A *stack alphabet* (Γ, typically).
 - 4. A *transition function* (δ , typically).
 - 5. A *start state* $(q_0, in Q, typically)$.
 - 6. A *start symbol* $(Z_0, in \Gamma, typically)$.
 - 7. A set of *final states* ($F \subseteq Q$, typically).

Conventions

- a, b, ... are input symbols.
 - ◆ But sometimes we allow ∈ as a possible value.
- ..., X, Y, Z are stack symbols.
- ..., w, x, y, z are strings of input symbols.
- $\bullet \alpha$, β ,... are strings of stack symbols.

The Transition Function

- Takes three arguments:
 - 1. A state, in Q.
 - An input, which is either a symbol in Σ or ∈.
 - 3. A stack symbol in Γ.
- \bullet $\delta(q, a, Z)$ is a set of zero or more actions of the form (p, α) .
 - p is a state; α is a string of stack symbols.

Actions of the PDA

- If $\delta(q, a, Z)$ contains (p, α) among its actions, then one thing the PDA can do in state q, with a at the front of the input, and Z on top of the stack is:
 - 1. Change the state to p.
 - 2. Remove a from the front of the input (but a may be ϵ).
 - 3. Replace Z on the top of the stack by α .

Example: PDA

- ♦ Design a PDA to accept $\{0^n1^n \mid n \ge 1\}$.
- The states:
 - q = start state. We are in state q if we have seen only 0's so far.
 - p = we've seen at least one 1 and may now proceed only if the inputs are 1's.
 - f = final state; accept.

Example: PDA – (2)

- The stack symbols:
 - Z₀ = start symbol. Also marks the bottom of the stack, so we know when we have counted the same number of 1's as 0's.
 - X = marker, used to count the number of 0's seen on the input.

Example: PDA – (3)

- The transitions:
 - $\delta(q, 0, Z_0) = \{(q, XZ_0)\}.$
 - δ(q, 0, X) = {(q, XX)}. These two rules cause one X to be pushed onto the stack for each 0 read from the input.
 - $\delta(q, 1, X) = \{(p, \epsilon)\}$. When we see a 1, go to state p and pop one X.
 - $\delta(p, 1, X) = \{(p, \epsilon)\}$. Pop one X per 1.
 - $\delta(p, \epsilon, Z_0) = \{(f, Z_0)\}$. Accept at bottom.

Instantaneous Descriptions

- We can formalize the pictures just seen with an *instantaneous* description (ID).
- \bullet A ID is a triple (q, w, α), where:
 - 1. q is the current state.
 - 2. w is the remaining input.
 - 3. α is the stack contents, top at the left.

The "Goes-To" Relation

- ◆To say that ID I can become ID J in one move of the PDA, we write I+J.
- Formally, (q, aw, Xα) ⊦ (p, w, βα) for any w and α, if δ(q, a, X) contains (p, β).
- ◆Extend + to +*, meaning "zero or more moves," by:
 - ◆ Basis: I+*I.
 - ◆ Induction: If I+*J and J+K, then I+*K.

Example: Goes-To

- ◆Using the previous example PDA, we can describe the sequence of moves by: $(q, 000111, Z_0) \vdash (q, 00111, XZ_0) \vdash (q, 0111, XXZ_0) \vdash (q, 111, XXXZ_0) \vdash (p, 11, XXZ_0) \vdash (p, 11, XXZ_0) \vdash (p, 11, XZ_0) \vdash (p, \epsilon, Z_0) \vdash (f, \epsilon, Z_0)$
- ♦ Thus, (q, 000111, Z_0) + * (f, ε, Z_0).
- ◆What would happen on input 0001111?

Answer

Legal because a PDA can use ε input even if input remains.

- $(q, 0001111, Z_0) \vdash (q, 001111, XZ_0) \vdash (q, 01111, XXZ_0) \vdash (q, 1111, XXXZ_0) \vdash (p, 111, XXZ_0) \vdash (p, 111, XXZ_0) \vdash (p, 11, Z_0) \vdash (f, 1, Z_0)$
- Note the last ID has no move.
- •0001111 is not accepted, because the input is not completely consumed.

Aside: FA and PDA Notations

- We represented moves of a FA by an extended δ , which did not mention the input yet to be read.
- We could have chosen a similar notation for PDA's, where the FA state is replaced by a state-stack combination, like the pictures just shown.

FA and PDA Notations – (2)

- Similarly, we could have chosen a FA notation with ID's.
 - Just drop the stack component.
- Why the difference? My theory:
- ◆FA tend to model things like protocols, with indefinitely long inputs.
- PDA model parsers, which are given a fixed program to process.

Language of a PDA

- ◆The common way to define the language of a PDA is by *final state*.
- ♦ If P is a PDA, then L(P) is the set of strings w such that (q_0, w, Z_0) +* (f, ∈, α) for final state f and any α.

Language of a PDA – (2)

- Another language defined by the same PDA is by *empty stack*.
- ♦ If P is a PDA, then N(P) is the set of strings w such that (q_0, w, Z_0) +* (q, ε, ε) for any state q.

Equivalence of Language Definitions

- 1. If L = L(P), then there is another PDA P' such that L = N(P').
- 2. If L = N(P), then there is another PDA P'' such that L = L(P'').

Proof: L(P) -> N(P') Intuition

- P' will simulate P.
- If P accepts, P' will empty its stack.
- P' has to avoid accidentally emptying its stack, so it uses a special bottommarker to catch the case where P empties its stack without accepting.

Proof: L(P) -> N(P')

- P' has all the states, symbols, and moves of P, plus:
 - 1. Stack symbol X₀, used to guard the stack bottom against accidental emptying.
 - 2. New start state s and "erase" state e.
 - 3. $\delta(s, \epsilon, X_0) = \{(q_0, Z_0X_0)\}$. Get P started.
 - 4. $\delta(f, \epsilon, X) = \delta(e, \epsilon, X) = \{(e, \epsilon)\}$ for any final state f of P and any stack symbol X.

Proof: N(P) -> L(P") Intuition

- P" simulates P.
- P" has a special bottom-marker to catch the situation where P empties its stack.
- If so, P" accepts.

Proof: $N(P) \rightarrow L(P'')$

- P" has all the states, symbols, and moves of P, plus:
 - 1. Stack symbol X₀, used to guard the stack bottom.
 - 2. New start state s and final state f.
 - 3. $\delta(s, \epsilon, X_0) = \{(q_0, Z_0X_0)\}$. Get P started.
 - 4. $\delta(q, \epsilon, X_0) = \{(f, \epsilon)\}$ for any state q of P.

Deterministic PDA's

- ◆To be deterministic, there must be at most one choice of move for any state q, input symbol a, and stack symbol X.
- ◆In addition, there must not be a choice between using input ∈ or real input.
- Formally, $\delta(q, a, X)$ and $\delta(q, \epsilon, X)$ cannot both be nonempty.