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Introduction to Finite 
Automata

Languages
Deterministic Finite Automata
Representations of Automata
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Alphabets

An alphabet is any finite set of 
symbols.
Examples: ASCII, Unicode, {0,1} 

(binary alphabet ), {a,b,c}.
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Strings

The set of strings over an alphabet Σ is 
the set of lists, each element of which is 
a member of Σ.
 Strings shown with no commas, e.g., abc.

Σ* denotes this set of strings.
ε stands for the empty string (string of 

length 0).
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Example: Strings

{0,1}* = {ε, 0, 1, 00, 01, 10, 11, 000, 
001, . . . }
Subtlety: 0 as a string, 0 as a symbol 

look the same.
 Context determines the type.
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Languages

A language is a subset of Σ* for some 
alphabet Σ.

Example: The set of strings of 0’s and 
1’s with no two consecutive 1’s.
L = {ε, 0, 1, 00, 01, 10, 000, 001, 010, 

100, 101, 0000, 0001, 0010, 0100, 
0101, 1000, 1001, 1010, . . . }

Hmm… 1 of length 0, 2 of length 1, 3, of length 2, 5 of length
3, 8 of length 4.  I wonder how many of length 5?
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Deterministic Finite Automata

 A formalism for defining languages, 
consisting of:

1. A finite set of states (Q, typically).
2. An input alphabet (Σ, typically).
3. A transition function (δ, typically).

4. A start state (q0, in Q, typically).
5. A set of final states (F ⊆ Q, typically).
 “Final” and “accepting” are synonyms.
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The Transition Function

Takes two arguments: a state and an 
input symbol.
δ(q, a) = the state that the DFA goes 

to when it is in state q and input a is 
received.
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Graph Representation of DFA’s 

Nodes = states.
Arcs represent transition function.
 Arc from state p to state q labeled by all 

those input symbols that have transitions 
from p to q.

Arrow labeled “Start” to the start state.
Final states indicated by double circles.
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Example: Graph of a DFA

Start

1

0

A CB
1

0 0,1

Previous
string OK,
does not
end in 1.

Previous
String OK,
ends in a 
single 1.

Consecutive
1’s have
been seen.

Accepts all strings without two consecutive 1’s.
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Alternative Representation: 
Transition Table

0 1

A A B
B A C
C C C

Rows = states

Columns =
input symbols

Final states
starred

*
*Arrow for

start state
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Extended Transition Function

We describe the effect of a string of 
inputs on a DFA by extending δ to a 
state and a string.
Induction on length of string.
Basis: δ(q, ε) = q
Induction: δ(q,wa) = δ(δ(q,w),a)
 w is a string; a is an input symbol.
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Extended δ: Intuition

Convention:
… w, x, y, x are strings.
 a, b, c,… are single symbols.

Extended δ is computed for state q and 
inputs a1a2…an by following a path in 
the transition graph, starting at q and 
selecting the arcs with labels a1, a2,…,an
in turn.
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Example: Extended Delta
0 1

A A B
B A C
C C C

δ(B,011) = δ(δ(B,01),1) = δ(δ(δ(B,0),1),1) =

δ(δ(A,1),1) = δ(B,1) = C
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Delta-hat

In book, the extended δ has a “hat” to 
distinguish it from δ itself.

Not needed, because both agree when 
the string is a single symbol.
δ(q, a) = δ(δ(q, ε), a) = δ(q, a)˄˄

Extended deltas
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Language of a DFA

Automata of all kinds define languages.
If A is an automaton, L(A) is its 

language.
For a DFA A, L(A) is the set of strings 

labeling paths from the start state to a 
final state.
Formally: L(A) = the set of strings w 

such that δ(q0, w) is in F.
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Example: String in a Language

Start

1

0

A CB
1

0 0,1

String 101 is in the language of the DFA below.
Start at A.



17

Example: String in a Language

Start

1

0

A CB
1

0 0,1

Follow arc labeled 1.

String 101 is in the language of the DFA below.
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Example: String in a Language

Start

1

0

A CB
1

0 0,1

Then arc labeled 0 from current state B.

String 101 is in the language of the DFA below.
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Example: String in a Language

Start

1

0

A CB
1

0 0,1

Finally arc labeled 1 from current state A.  Result
is an accepting state, so 101 is in the language.

String 101 is in the language of the DFA below.
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Example – Concluded

The language of our example DFA is:
{w | w is in {0,1}* and w does not have

two consecutive 1’s}

Read a set former as
“The set of strings w…

Such that… These conditions
about w are true.
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Proofs of Set Equivalence

Often, we need to prove that two 
descriptions of sets are in fact the same 
set.
Here, one set is “the language of this 

DFA,” and the other is “the set of 
strings of 0’s and 1’s with no 
consecutive 1’s.”
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Proofs – (2)

 In general, to prove S=T, we need to 
prove two parts: S ⊆ T and T ⊆ S.  
That is:

1. If w is in S, then w is in T.
2. If w is in T, then w is in S.

 As an example, let S = the language 
of our running DFA, and T = “no 
consecutive 1’s.”
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Part 1: S ⊆ T

To prove: if w is accepted by
then w has no consecutive 1’s.
Proof is an induction on length of w.
Important trick: Expand the inductive 

hypothesis to be more detailed than 
you need.

Start

1

0

A CB 1
0 0,1
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The Inductive Hypothesis

1. If δ(A, w) = A, then w has no 
consecutive 1’s and does not end in 1.

2. If δ(A, w) = B, then w has no 
consecutive 1’s and ends in a single 1.

 Basis: |w| = 0; i.e., w = ε.
 (1) holds since ε has no 1’s at all.
 (2) holds vacuously, since δ(A, ε) is not B.

“length of”
Important concept:
If the “if” part of “if..then” is false,
the statement is true.
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Inductive Step

Assume (1) and (2) are true for strings 
shorter than w, where |w| is at least 1.
Because w is not empty, we can write 

w = xa, where a is the last symbol of 
w, and x is the string that precedes.
IH is true for x.

Start

1

0

A CB 1
0 0,1
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Inductive Step – (2)

Need to prove (1) and (2) for w = xa.
(1) for w is: If δ(A, w) = A, then w has no 

consecutive 1’s and does not end in 1.
Since δ(A, w) = A, δ(A, x) must be A or B, 

and a must be 0 (look at the DFA).
By the IH, x has no 11’s.
Thus, w has no 11’s and does not end in 1.

Start

1

0

A CB 1
0 0,1
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Inductive Step – (3)

Now, prove (2) for w = xa: If δ(A, w) = 
B, then w has no 11’s and ends in 1.
Since δ(A, w) = B, δ(A, x) must be A, 

and a must be 1 (look at the DFA).
By the IH, x has no 11’s and does not 

end in 1.
Thus, w has no 11’s and ends in 1.

Start

1

0

A CB 1
0 0,1
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Part 2: T ⊆ S

Now, we must prove: if w has no 11’s, 
then w is accepted by

Contrapositive : If w is not accepted by

then w has 11.

Start

1

0

A CB 1
0 0,1

Start

1

0

A CB 1
0 0,1

Key idea: contrapositive
of “if X then Y” is the
equivalent statement
“if not Y then not X.”

X

Y
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Using the Contrapositive

Every w gets the DFA to exactly one 
state.
 Simple inductive proof based on:

• Every state has exactly one transition on 1, one 
transition on 0.

The only way w is not accepted is if it 
gets to C. 

Start

1

0

A CB 1
0 0,1
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Using the Contrapositive 
– (2)

The only way to get to C [formally: 
δ(A,w) = C] is if w = x1y, x gets to B, 
and y is the tail of w that follows what 
gets to C for the first time.
If δ(A,x) = B then surely x = z1 for 

some z.
Thus, w = z11y and has 11.

Start

1

0

A CB 1
0 0,1



31

Regular Languages

A language L is regular if it is the 
language accepted by some DFA.
 Note: the DFA must accept only the strings 

in L, no others.

Some languages are not regular.
 Intuitively, regular languages “cannot 

count” to arbitrarily high integers.
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Example: A Nonregular Language

L1 = {0n1n | n ≥ 1}

Note: ai is conventional for i a’s.
 Thus, 04 = 0000, e.g.

Read: “The set of strings consisting of 
n 0’s followed by n 1’s, such that n is at 
least 1.
Thus, L1 = {01, 0011, 000111,…}
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Another Example

L2 = {w | w in {(, )}* and w is balanced }
 Note: alphabet consists of the parenthesis 

symbols ’(’ and ’)’.
 Balanced parens are those that can appear 

in an arithmetic expression.
• E.g.: (), ()(), (()), (()()),…
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But Many Languages are 
Regular

Regular Languages can be described in 
many ways, e.g., regular expressions.
They appear in many contexts and 

have many useful properties.
Example: the strings that represent 

floating point numbers in your favorite 
language is a regular language.
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Example: A Regular Language

L3 = { w | w in {0,1}* and w, viewed as a 
binary integer is divisible by 23}
The DFA:
 23 states, named 0, 1,…,22.
 Correspond to the 23 remainders of an 

integer divided by 23.
 Start and only final state is 0.
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Transitions of the DFA for L3

If string w represents integer i, then 
assume δ(0, w) = i%23.

Then w0 represents integer 2i, so we 
want δ(i%23, 0) = (2i)%23.

Similarly: w1 represents 2i+1, so we 
want δ(i%23, 1) = (2i+1)%23.
Example: δ(15,0) = 30%23 = 7; 
δ(11,1) = 23%23 = 0. Key idea: design a DFA

by figuring out what
each state needs to
remember about the past.
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Another Example

L4 = { w | w in {0,1}* and w, viewed as 
the reverse of a binary integer is 
divisible by 23}
Example: 01110100 is in L4, because its 

reverse, 00101110 is 46 in binary.
Hard to construct the DFA.
But theorem says the reverse of a 

regular language is also regular.


