
1

Properties of Context-Free
Languages

Decision Properties
Closure Properties

2

Summary of Decision Properties

 As usual, when we talk about “a CFL”
we really mean “a representation for
the CFL, e.g., a CFG or a PDA
accepting by final state or empty stack.

 There are algorithms to decide if:
1. String w is in CFL L.
2. CFL L is empty.
3. CFL L is infinite.

3

Non-Decision Properties

Many questions that can be decided for
regular sets cannot be decided for CFL’s.
Example: Are two CFL’s the same?
Example: Are two CFL’s disjoint?
 How would you do that for regular languages?

Need theory of Turing machines and
decidability to prove no algorithm exists.

4

Testing Emptiness

We already did this.
We learned to eliminate variables that

generate no terminal string.
If the start symbol is one of these, then

the CFL is empty; otherwise not.

5

Testing Membership

Want to know if string w is in L(G).
Assume G is in CNF.
 Or convert the given grammar to CNF.
 w = ε is a special case, solved by testing if

the start symbol is nullable.

Algorithm (CYK) is a good example of
dynamic programming and runs in time
O(n3), where n = |w|.

6

CYK Algorithm

Let w = a1…an.
We construct an n-by-n triangular array

of sets of variables.
Xij = {variables A | A =>* ai…aj}.
Induction on j–i+1.
 The length of the derived string.

Finally, ask if S is in X1n.

7

CYK Algorithm – (2)

Basis: Xii = {A | A -> ai is a
production}.
Induction: Xij = {A | there is a

production A -> BC and an integer k,
with i < k < j, such that B is in Xik and C
is in Xk+1,j.

8

Example: CYK Algorithm
Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b

String w = ababa

X11={A,C} X22={B,C} X33={A,C} X44={B,C} X55={A,C}

X12={B,S} X23={A} X34={B,S} X45={A}

9

Example: CYK Algorithm
Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b

String w = ababa

X11={A,C} X22={B,C} X33={A,C} X44={B,C} X55={A,C}

X12={B,S} X23={A} X34={B,S} X45={A}

X13={} Yields nothing

10

Example: CYK Algorithm
Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b

String w = ababa

X11={A,C} X22={B,C} X33={A,C} X44={B,C} X55={A,C}

X12={B,S} X23={A} X34={B,S} X45={A}

X13={A} X24={B,S} X35={A}

11

Example: CYK Algorithm
Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b

String w = ababa

X11={A,C} X22={B,C} X33={A,C} X44={B,C} X55={A,C}

X12={B,S} X23={A} X34={B,S} X45={A}

X13={A} X24={B,S} X35={A}

X14={B,S}

12

Example: CYK Algorithm
Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b

String w = ababa

X11={A,C} X22={B,C} X33={A,C} X44={B,C} X55={A,C}

X12={B,S} X23={A} X34={B,S} X45={A}

X13={A} X24={B,S} X35={A}

X14={B,S} X25={A}

X15={A}

13

Testing Infiniteness

The idea is essentially the same as for
regular languages.
Use the pumping lemma constant n.
If there is a string in the language of

length between n and 2n-1, then the
language is infinite; otherwise not.
Let’s work this out in class.

14

Closure Properties of CFL’s

CFL’s are closed under union,
concatenation, and Kleene closure.
Also, under reversal, homomorphisms

and inverse homomorphisms.
But not under intersection or

difference.

15

Closure of CFL’s Under Union

Let L and M be CFL’s with grammars G
and H, respectively.
Assume G and H have no variables in

common.
 Names of variables do not affect the

language.

Let S1 and S2 be the start symbols of G
and H.

16

Closure Under Union – (2)

Form a new grammar for L  M by
combining all the symbols and
productions of G and H.
Then, add a new start symbol S.
Add productions S -> S1 | S2.

17

Closure Under Union – (3)

In the new grammar, all derivations
start with S.
The first step replaces S by either S1 or

S2.
In the first case, the result must be a

string in L(G) = L, and in the second
case a string in L(H) = M.

18

Closure of CFL’s Under
Concatenation

Let L and M be CFL’s with grammars G
and H, respectively.
Assume G and H have no variables in

common.
Let S1 and S2 be the start symbols of G

and H.

19

Closure Under Concatenation – (2)

Form a new grammar for LM by
starting with all symbols and
productions of G and H.
Add a new start symbol S.
Add production S -> S1S2.
Every derivation from S results in a

string in L followed by one in M.

20

Closure Under Star

Let L have grammar G, with start symbol S1.
Form a new grammar for L* by introducing

to G a new start symbol S and the
productions S -> S1S | ε.
A rightmost derivation from S generates a

sequence of zero or more S1’s, each of
which generates some string in L.

21

Closure of CFL’s Under
Reversal

If L is a CFL with grammar G, form a
grammar for LR by reversing the right
side of every production.
Example: Let G have S -> 0S1 | 01.
The reversal of L(G) has grammar

S -> 1S0 | 10.

22

Closure of CFL’s Under
Homomorphism

Let L be a CFL with grammar G.
Let h be a homomorphism on the

terminal symbols of G.
Construct a grammar for h(L) by

replacing each terminal symbol a by
h(a).

23

Example: Closure Under
Homomorphism

G has productions S -> 0S1 | 01.
h is defined by h(0) = ab, h(1) = ε.
h(L(G)) has the grammar with

productions S -> abS | ab.

24

Closure of CFL’s Under
Inverse Homomorphism

Here, grammars don’t help us.
But a PDA construction serves nicely.
Intuition: Let L = L(P) for some PDA P.
Construct PDA P’ to accept h-1(L).
P’ simulates P, but keeps, as one

component of a two-component state a
buffer that holds the result of applying
h to one input symbol.

25

Architecture of P’

Buffer

State of P

Input: 0 0 1 1
h(0)

Stack
of P

Read first remaining
symbol in buffer as
if it were input to P.

26

Formal Construction of P’

 States are pairs [q, b], where:
1. q is a state of P.
2. b is a suffix of h(a) for some symbol a.
 Thus, only a finite number of possible values

for b.

 Stack symbols of P’ are those of P.
 Start state of P’ is [q0 ,ε].

27

Construction of P’ – (2)

Input symbols of P’ are the symbols to
which h applies.
Final states of P’ are the states [q, ε]

such that q is a final state of P.

28

Transitions of P’

1. δ’([q, ε], a, X) = {([q, h(a)], X)} for
any input symbol a of P’ and any stack
symbol X.
 When the buffer is empty, P’ can reload it.

2. δ’([q, bw], ε, X) contains ([p, w], ) if
δ(q, b, X) contains (p, ), where b is
either an input symbol of P or ε.
 Simulate P from the buffer.

29

Proving Correctness of P’

We need to show that L(P’) = h-1(L(P)).
Key argument: P’ makes the transition

([q0, ε], w, Z0)⊦*([q, x], ε, )
if and only if P makes transition
(q0, y, Z0) ⊦*(q, ε, ), h(w) = yx, and x
is a suffix of the last symbol of w.
Proof in both directions is an induction

on the number of moves made.

30

Nonclosure Under Intersection

Unlike the regular languages, the class
of CFL’s is not closed under .
We know that L1 = {0n1n2n | n > 1} is

not a CFL (use the pumping lemma).
However, L2 = {0n1n2i | n > 1, i > 1} is.
 CFG: S -> AB, A -> 0A1 | 01, B -> 2B | 2.

So is L3 = {0i1n2n | n > 1, i > 1}.
But L1 = L2  L3.

31

Nonclosure Under Difference

We can prove something more general:
 Any class of languages that is closed under

difference is closed under intersection.

Proof: L  M = L – (L – M).
Thus, if CFL’s were closed under

difference, they would be closed under
intersection, but they are not.

32

Intersection with a Regular
Language

Intersection of two CFL’s need not be
context free.
But the intersection of a CFL with a

regular language is always a CFL.
Proof involves running a DFA in parallel

with a PDA, and noting that the
combination is a PDA.
 PDA’s accept by final state.

33

DFA and PDA in Parallel

DFA

PDA

S
t
a
c
k

Input Accept
if both
accept

Looks like the
state of one PDA

34

Formal Construction

Let the DFA A have transition function δA.
Let the PDA P have transition function δP.

States of combined PDA are [q,p], where
q is a state of A and p a state of P.
δ([q,p], a, X) contains ([δA(q,a),r], ) if
δP(p, a, X) contains (r, ).
 Note a could be , in which case δA(q,a) = q.

35

Formal Construction – (2)

Accepting states of combined PDA are
those [q,p] such that q is an accepting
state of A and p is an accepting state of
P.
Easy induction: ([q0,p0], w, Z0)⊦*

([q,p], , ) if and only if δA(q0,w) = q
and in P: (p0, w, Z0)⊦*(p, , ).

