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Normal Forms for CFG’s

Eliminating Useless Variables
Removing Epsilon

Removing Unit Productions
Chomsky Normal Form
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Variables That Derive Nothing

Consider: S -> AB, A -> aA | a, B -> AB
Although A derives all strings of a’s, B 

derives no terminal strings (can you 
prove this fact?).
Thus, S derives nothing, and the 

language is empty.
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Testing Whether a Variable 
Derives Some Terminal String
Basis: If there is a production A -> w, 

where w has no variables, then A 
derives a terminal string.
Induction: If there is a production       

A -> , where  consists only of 
terminals and variables known to derive 
a terminal string, then A derives a 
terminal string. 
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Testing – (2)

Eventually, we can find no more 
variables.
An easy induction on the order in which 

variables are discovered shows that 
each one truly derives a terminal string.
Conversely, any variable that derives a 

terminal string will be discovered by this 
algorithm.
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Proof of Converse

The proof is an induction on the height 
of the least-height parse tree by which 
a variable A derives a terminal string.
Basis: Height = 1.  Tree looks like:
Then the basis of the algorithm

tells us that A will be discovered.

A

a1 an. . .
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Induction for Converse

Assume IH for parse trees of height < 
h, and suppose A derives a terminal 
string via a parse tree of height h:
By IH, those Xi’s that are

variables are discovered.
Thus, A will also be discovered, 

because it has a right side of terminals 
and/or discovered variables.

A

X1 Xn. . .

w1 wn
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Algorithm to Eliminate 
Variables That Derive Nothing

1. Discover all variables that derive 
terminal strings.

2. For all other variables, remove all 
productions in which they appear 
either on the left or the right.
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Example: Eliminate Variables

S -> AB | C, A -> aA | a, B -> bB, C -> c
 Basis: A and C are identified because 

of A -> a and C -> c.
 Induction: S is identified because of   

S -> C.
 Nothing else can be identified.
 Result: S -> C, A -> aA | a, C -> c
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Unreachable Symbols

Another way a terminal or variable 
deserves to be eliminated is if it cannot 
appear in any derivation from the start 
symbol.
Basis: We can reach S (the start symbol).
Induction: if we can reach A, and there is 

a production A -> , then we can reach all 
symbols of .
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Unreachable Symbols – (2)

Easy inductions in both directions show 
that when we can discover no more 
symbols, then we have all and only the 
symbols that appear in derivations from S.
Algorithm: Remove from the grammar all 

symbols not discovered reachable from S 
and all productions that involve these 
symbols. 
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Eliminating Useless Symbols

 A symbol is useful if it appears in 
some derivation of some terminal 
string from the start symbol.

 Otherwise, it is useless.
Eliminate all useless symbols by:

1. Eliminate symbols that derive no terminal 
string.

2. Eliminate unreachable symbols.
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Example: Useless Symbols – (2)

S -> AB, A -> C, C -> c, B -> bB
If we eliminated unreachable symbols 

first, we would find everything is 
reachable.
A, C, and c would never get eliminated.
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Why It Works

After step (1), every symbol remaining 
derives some terminal string.
After step (2) the only symbols 

remaining are all derivable from S.
In addition, they still derive a terminal 

string, because such a derivation can 
only involve symbols reachable from S.
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Epsilon Productions

We can almost avoid using productions of 
the form A -> ε (called ε-productions ).
 The problem is that ε cannot be in the 

language of any grammar that has no ε–
productions.

Theorem: If L is a CFL, then L-{ε} has a 
CFG with no ε-productions.
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Nullable Symbols

To eliminate ε-productions, we first 
need to discover the nullable variables
= variables A such that A =>* ε.
Basis: If there is a production A -> ε, 

then A is nullable.
Induction: If there is a production       

A -> , and all symbols of  are 
nullable, then A is nullable.



16

Example: Nullable Symbols

S -> AB, A -> aA | ε, B -> bB | A
Basis: A is nullable because of A -> ε.
Induction: B is nullable because of      

B -> A.
Then, S is nullable because of S -> AB.
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Proof of Nullable-Symbols 
Algorithm

The proof that this algorithm finds all 
and only the nullable variables is very 
much like the proof that the algorithm 
for symbols that derive terminal strings 
works.
Do you see the two directions of the 

proof?
On what is each induction?
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Eliminating ε-Productions

Key idea: turn each production            
A -> X1…Xn into a family of productions.
For each subset of nullable X’s, there is 

one production with those eliminated 
from the right side “in advance.”
 Except, if all X’s are nullable, do not make 

a production with ε as the right side.
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Example: Eliminating ε-
Productions

S -> ABC, A -> aA | ε, B -> bB | ε, C -> ε
A, B, C, and S are all nullable.
New grammar:

S -> ABC | AB | AC | BC | A | B | C
A -> aA | a
B -> bB | b

Note: C is now useless.
Eliminate its productions.
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Why it Works

 Prove that for all variables A:
1. If w  ε and A =>*old w, then A =>*new w.
2. If A =>*new w then w  ε and A =>*old w.

 Then, letting A be the start symbol 
proves that L(new) = L(old) – {ε}.

 (1) is an induction on the number of 
steps by which A derives w in the old 
grammar.



21

Proof of 1 – Basis

If the old derivation is one step, then 
A -> w must be a production.
Since w  ε, this production also 

appears in the new grammar.
Thus, A =>new w.
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Proof of 1 – Induction

Let A =>*old w be an n-step derivation, 
and assume the IH for derivations of 
less than n steps.
Let the first step be A =>old X1…Xn.
Then w can be broken into w = w1…wn,
where Xi =>*old wi, for all i, in fewer 

than n steps. 
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Induction – Continued

By the IH, if wi  ε, then Xi =>*new wi.

Also, the new grammar has a 
production with A on the left, and just 
those Xi’s on the right such that wi  ε.
 Note: they all can’t be ε, because w  ε.

Follow a use of this production by the 
derivations Xi =>*new wi to show that A 
derives w in the new grammar.
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Proof of Converse

We also need to show part (2) – if w is 
derived from A in the new grammar, 
then it is also derived in the old.
Induction on number of steps in the 

derivation.
We’ll leave the proof for reading in the 

text.
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Unit Productions

A unit production is one whose right 
side consists of exactly one variable.
These productions can be eliminated.
Key idea: If A =>* B by a series of unit 

productions, and B ->  is a non-unit-
production, then add production A -> .
Then, drop all unit productions.
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Unit Productions – (2)

Find all pairs (A, B) such that A =>* B 
by a sequence of unit productions only.
Basis: Surely (A, A).
Induction: If we have found (A, B), and 

B -> C is a unit production, then add 
(A, C).
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Proof That We Find Exactly 
the Right Pairs

By induction on the order in which pairs 
(A, B) are found, we can show A =>* B 
by unit productions.
Conversely, by induction on the number 

of steps in the derivation by unit 
productions of A =>* B, we can show 
that the pair (A, B) is discovered.
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Proof The the Unit-Production-
Elimination Algorithm Works

Basic idea: there is a leftmost 
derivation A =>*lm w in the new 
grammar if and only if there is such a 
derivation in the old.
A sequence of unit productions and a 

non-unit production is collapsed into a 
single production of the new grammar.
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Cleaning Up a Grammar

 Theorem: if L is a CFL, then there is a 
CFG for L – {ε} that has:

1. No useless symbols.
2. No ε-productions.

3. No unit productions.

 I.e., every right side is either a single 
terminal or has length > 2.
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Cleaning Up – (2)

 Proof: Start with a CFG for L.
 Perform the following steps in order:

1. Eliminate ε-productions.

2. Eliminate unit productions.
3. Eliminate variables that derive no 

terminal string.
4. Eliminate variables not reached from the 

start symbol. Must be first.  Can create
unit productions or useless
variables.
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Chomsky Normal Form

 A CFG is said to be in Chomsky 
Normal Form if every production is of 
one of these two forms:

1. A -> BC (right side is two variables).
2. A -> a (right side is a single terminal).

 Theorem: If L is a CFL, then L – {ε} 
has a CFG in CNF.
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Proof of CNF Theorem

Step 1: “Clean” the grammar, so every 
production right side is either a single 
terminal or of length at least 2.
Step 2: For each right side  a single 

terminal, make the right side all variables.
 For each terminal a create new variable Aa

and production Aa -> a.
 Replace a by Aa in right sides of length > 2.
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Example: Step 2

Consider production A -> BcDe.
We need variables Ac and Ae. with 

productions Ac -> c and Ae -> e.
 Note: you create at most one variable for 

each terminal, and use it everywhere it is 
needed.

Replace A -> BcDe by A -> BAcDAe.
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CNF Proof – Continued

Step 3: Break right sides longer than 2 
into a chain of productions with right 
sides of two variables.
Example: A -> BCDE is replaced by     

A -> BF, F -> CG, and G -> DE.
 F and G must be used nowhere else.
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Example of Step 3 – Continued

Recall A -> BCDE is replaced by          
A -> BF, F -> CG, and G -> DE.
In the new grammar, A => BF => BCG 

=> BCDE.
More importantly: Once we choose to 

replace A by BF, we must continue to 
BCG and BCDE.
 Because F and G have only one production.
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CNF Proof – Concluded

We must prove that Steps 2 and 3 
produce new grammars whose 
languages are the same as the previous 
grammar.
Proofs are of a familiar type and involve 

inductions on the lengths of derivations.


