Parse Trees

Definitions
Relationship to Left- and
Rightmost Derivations
Ambiguity in Grammars

Parse Trees

- Parse trees are trees labeled by symbols of a particular CFG.
- \bullet Leaves: labeled by a terminal or ϵ .
- ◆Interior nodes: labeled by a variable.
 - Children are labeled by the right side of a production for the parent.
- Root: must be labeled by the start symbol.

Example: Parse Tree

Yield of a Parse Tree

- The concatenation of the labels of the leaves in left-to-right order
 - That is, in the order of a preorder traversal.

is called the *yield* of the parse tree.

Parse Trees, Left- and Rightmost Derivations

- For every parse tree, there is a unique leftmost, and a unique rightmost derivation.
- We'll prove:
 - 1. If there is a parse tree with root labeled A and yield w, then $A = >*_{lm} w$.
 - 2. If $A = >^*_{lm} w$, then there is a parse tree with root A and yield w.

Proof - Part 1

- Induction on the height (length of the longest path from the root) of the tree.
- ◆Basis: height 1. Tree looks like
- $A \rightarrow a_1...a_n$ must be a production.
- ♦ Thus, $A = >*_{lm} a_1...a_n$.

Part 1 – Induction

- Assume (1) for trees of height < h, and let this tree have height h:</p>
- \bullet By IH, $X_i = >^*_{Im} W_i$.
 - Note: if X_i is a terminal, then
 X_i = w_i.
- ↑ Thus, $A = >_{lm} X_1...X_n = >^*_{lm} W_1X_2...X_n$ = $>^*_{lm} W_1W_2X_3...X_n = >^*_{lm} ... = >^*_{lm}$ $W_1...W_n$.

 W_n

 W_1

Proof: Part 2

- Given a leftmost derivation of a terminal string, we need to prove the existence of a parse tree.
- The proof is an induction on the length of the derivation.

Part 2 - Basis

If $A = >^*_{lm} a_1...a_n$ by a one-step derivation, then there must be a parse tree

Part 2 – Induction

- ◆Assume (2) for derivations of fewer than k > 1 steps, and let A = >*_{lm} w be a k-step derivation.
- First step is $A = >_{lm} X_1...X_n$.
- **Key point**: w can be divided so the first portion is derived from X_1 , the next is derived from X_2 , and so on.
 - ◆ If X_i is a terminal, then w_i = X_i.

Induction – (2)

- ◆That is, $X_i = >^*_{lm} w_i$ for all i such that X_i is a variable.
 - And the derivation takes fewer than k steps.
- ◆By the IH, if X_i is a variable, then there is a parse tree with root X_i and yield w_i.
- Thus, there is a parse tree

 W_1

11

Parse Trees and Rightmost Derivations

- The ideas are essentially the mirror image of the proof for leftmost derivations.
- Left to the imagination.

Parse Trees and Any Derivation

- The proof that you can obtain a parse tree from a leftmost derivation doesn't really depend on "leftmost."
- First step still has to be $A => X_1...X_n$.
- ◆And w still can be divided so the first portion is derived from X₁, the next is derived from X₂, and so on.

Ambiguous Grammars

- ◆A CFG is ambiguous if there is a string in the language that is the yield of two or more parse trees.
- ◆Example: S -> SS | (S) | ()
- Two parse trees for ()()() on next slide.

Example - Continued

Ambiguity, Left- and Rightmost Derivations

- ◆ If there are two different parse trees, they must produce two different leftmost derivations by the construction given in the proof.
- Conversely, two different leftmost derivations produce different parse trees by the other part of the proof.
- Likewise for rightmost derivations.

Ambiguity, etc. – (2)

- Thus, equivalent definitions of "ambiguous grammar" are:
 - 1. There is a string in the language that has two different leftmost derivations.
 - 2. There is a string in the language that has two different rightmost derivations.

Ambiguity is a Property of Grammars, not Languages

For the balanced-parentheses language, here is another CFG, which is unambiguous.

B, the start symbol,

R ->) | (RR

derives balanced strings.

Example: Unambiguous Grammar

$$B \rightarrow (RB \mid \epsilon \quad R \rightarrow) \mid (RR)$$

- Construct a unique leftmost derivation for a given balanced string of parentheses by scanning the string from left to right.
 - If we need to expand B, then use B -> (RB if the next symbol is "(" and ϵ if at the end.
 - If we need to expand R, use R ->) if the next symbol is ")" and (RR if it is "(".

Remaining Input:

(())()

Next symbol Steps of leftmost

derivation:

$$B \rightarrow (RB \mid \epsilon \quad R \rightarrow) \mid (RR)$$

$$R \rightarrow) | (RR$$

Remaining Input:

())()

Next symbol Steps of leftmost

derivation:

(RB

$$B \rightarrow (RB \mid \epsilon \quad R \rightarrow) \mid (RR)$$

```
Remaining Input: Steps of leftmost derivation:

| Mathematical Content of the property of the
```

$$B \rightarrow (RB \mid \epsilon \quad R \rightarrow) \mid (RR)$$

$$B \rightarrow (RB \mid \epsilon \quad R \rightarrow) \mid (RR)$$

Steps of leftmost Remaining Input: derivation: B (RB Next ((RRB symbol (()RB (())B $B \rightarrow (RB \mid \epsilon \quad R \rightarrow) \mid (RR)$

```
Remaining Input:
                              Steps of leftmost
                                 derivation:
                                            (())(RB)
                              B
                               (RB
Next
                               ((RRB
symbol
                               (()RB
                               (())B
      B \rightarrow (RB \mid \epsilon \quad R \rightarrow) \mid (RR)
```

Remaining Input: Steps of leftmost derivation:

```
Next
symbol
```

```
B (())(RB
```

$$B \rightarrow (RB \mid \epsilon \quad R \rightarrow) \mid (RR)$$

Remaining Input: Steps of leftmost derivation:

```
Next
symbol
```

$$B \rightarrow (RB \mid \epsilon \quad R \rightarrow) \mid (RR)$$

LL(1) Grammars

- ◆As an aside, a grammar such B -> (RB | € R ->) | (RR, where you can always figure out the production to use in a leftmost derivation by scanning the given string left-to-right and looking only at the next one symbol is called LL(1).
 - "Leftmost derivation, left-to-right scan, one symbol of lookahead."

LL(1) Grammars – (2)

- Most programming languages have LL(1) grammars.
- LL(1) grammars are never ambiguous.

Inherent Ambiguity

- ◆ It would be nice if for every ambiguous grammar, there were some way to "fix" the ambiguity, as we did for the balanced-parentheses grammar.
- Unfortunately, certain CFL's are inherently ambiguous, meaning that every grammar for the language is ambiguous.

Example: Inherent Ambiguity

- ◆The language {0ⁱ1^j2^k | i = j or j = k} is inherently ambiguous.
- ◆Intuitively, at least some of the strings of the form 0ⁿ1ⁿ2ⁿ must be generated by two different parse trees, one based on checking the 0's and 1's, the other based on checking the 1's and 2's.

One Possible Ambiguous Grammar

$$A -> 0A1 \mid 01$$

$$B -> 2B \mid 2$$

$$C -> 0C \mid 0$$

A generates equal 0's and 1's

B generates any number of 2's

C generates any number of 0's

D generates equal 1's and 2's

And there are two derivations of every string with equal numbers of 0's, 1's, and 2's. E.g.:

$$S => AB => 01B => 012$$

$$S => CD => 0D => 012$$