
1

Parse Trees

Definitions
Relationship to Left- and
Rightmost Derivations

Ambiguity in Grammars

2

Parse Trees

Parse trees are trees labeled by
symbols of a particular CFG.
Leaves: labeled by a terminal or ε.
Interior nodes: labeled by a variable.
 Children are labeled by the right side of a

production for the parent.

Root: must be labeled by the start
symbol.

3

Example: Parse Tree
S -> SS | (S) | ()

S

SS

S)(

()

()

4

Yield of a Parse Tree

The concatenation of the labels of the
leaves in left-to-right order
 That is, in the order of a preorder

traversal.

is called the yield of the parse tree.
Example: yield of is (())() S

SS

S)(

()

()

5

Parse Trees, Left- and
Rightmost Derivations

 For every parse tree, there is a unique
leftmost, and a unique rightmost
derivation.

 We’ll prove:
1. If there is a parse tree with root labeled

A and yield w, then A =>*lm w.
2. If A =>*lm w, then there is a parse tree

with root A and yield w.

6

Proof – Part 1

Induction on the height (length of the
longest path from the root) of the tree.
Basis: height 1. Tree looks like
A -> a1…an must be a

production.
Thus, A =>*lm a1…an.

A

a1 an. . .

7

Part 1 – Induction

Assume (1) for trees of height < h, and
let this tree have height h:
By IH, Xi =>*lm wi.
 Note: if Xi is a terminal, then

Xi = wi.

Thus, A =>lm X1…Xn =>*lm w1X2…Xn
=>*lm w1w2X3…Xn =>*lm … =>*lm
w1…wn.

A

X1 Xn. . .

w1 wn

8

Proof: Part 2

Given a leftmost derivation of a
terminal string, we need to prove the
existence of a parse tree.
The proof is an induction on the length

of the derivation.

9

Part 2 – Basis

If A =>*lm a1…an by a one-step
derivation, then there must be a parse
tree A

a1 an. . .

10

Part 2 – Induction

Assume (2) for derivations of fewer
than k > 1 steps, and let A =>*lm w be
a k-step derivation.
First step is A =>lm X1…Xn.
Key point: w can be divided so the first

portion is derived from X1, the next is
derived from X2, and so on.
 If Xi is a terminal, then wi = Xi.

11

Induction – (2)

That is, Xi =>*lm wi for all i such that Xi
is a variable.
 And the derivation takes fewer than k

steps.

By the IH, if Xi is a variable, then there
is a parse tree with root Xi and yield wi.
Thus, there is a parse tree

A

X1 Xn. . .

w1 wn

12

Parse Trees and Rightmost
Derivations

The ideas are essentially the mirror
image of the proof for leftmost
derivations.
Left to the imagination.

13

Parse Trees and Any
Derivation

The proof that you can obtain a parse
tree from a leftmost derivation doesn’t
really depend on “leftmost.”
First step still has to be A => X1…Xn.
And w still can be divided so the first

portion is derived from X1, the next is
derived from X2, and so on.

14

Ambiguous Grammars

A CFG is ambiguous if there is a string
in the language that is the yield of two
or more parse trees.
Example: S -> SS | (S) | ()
Two parse trees for ()()() on next slide.

15

Example – Continued
S

SS

S S

()

S

SS

SS

()()

() ()

()

16

Ambiguity, Left- and
Rightmost Derivations

If there are two different parse trees,
they must produce two different
leftmost derivations by the construction
given in the proof.
Conversely, two different leftmost

derivations produce different parse
trees by the other part of the proof.
Likewise for rightmost derivations.

17

Ambiguity, etc. – (2)

 Thus, equivalent definitions of
“ambiguous grammar’’ are:

1. There is a string in the language that has
two different leftmost derivations.

2. There is a string in the language that has
two different rightmost derivations.

18

Ambiguity is a Property of
Grammars, not Languages

For the balanced-parentheses
language, here is another CFG, which is
unambiguous.

B -> (RB | ε
R ->) | (RR

B, the start symbol,
derives balanced strings.

R generates strings that
have one more right paren
than left.

19

Example: Unambiguous Grammar

B -> (RB | ε R ->) | (RR

Construct a unique leftmost derivation for
a given balanced string of parentheses by
scanning the string from left to right.
 If we need to expand B, then use B -> (RB if

the next symbol is “(” and ε if at the end.

 If we need to expand R, use R ->) if the next
symbol is “)” and (RR if it is “(”.

20

The Parsing Process

Remaining Input:
(())()

Steps of leftmost
derivation:

B

Next
symbol

B -> (RB | ε R ->) | (RR

21

The Parsing Process

Remaining Input:
())()

Steps of leftmost
derivation:

B
(RBNext

symbol

B -> (RB | ε R ->) | (RR

22

The Parsing Process

Remaining Input:
))()

Steps of leftmost
derivation:

B
(RB
((RRB

Next
symbol

B -> (RB | ε R ->) | (RR

23

The Parsing Process

Remaining Input:
)()

Steps of leftmost
derivation:

B
(RB
((RRB
(()RB

Next
symbol

B -> (RB | ε R ->) | (RR

24

The Parsing Process

Remaining Input:
()

Steps of leftmost
derivation:

B
(RB
((RRB
(()RB
(())B

Next
symbol

B -> (RB | ε R ->) | (RR

25

The Parsing Process

Remaining Input:
)

Steps of leftmost
derivation:

B (())(RB
(RB
((RRB
(()RB
(())B

Next
symbol

B -> (RB | ε R ->) | (RR

26

The Parsing Process

Remaining Input: Steps of leftmost
derivation:

B (())(RB
(RB (())()B
((RRB
(()RB
(())B

Next
symbol

B -> (RB | ε R ->) | (RR

27

The Parsing Process

Remaining Input: Steps of leftmost
derivation:

B (())(RB
(RB (())()B
((RRB (())()
(()RB
(())B

Next
symbol

B -> (RB | ε R ->) | (RR

28

LL(1) Grammars

As an aside, a grammar such B -> (RB | ε
R ->) | (RR, where you can always figure
out the production to use in a leftmost
derivation by scanning the given string
left-to-right and looking only at the next
one symbol is called LL(1).
 “Leftmost derivation, left-to-right scan, one

symbol of lookahead.”

29

LL(1) Grammars – (2)

Most programming languages have
LL(1) grammars.
LL(1) grammars are never ambiguous.

30

Inherent Ambiguity

It would be nice if for every ambiguous
grammar, there were some way to “fix”
the ambiguity, as we did for the
balanced-parentheses grammar.
Unfortunately, certain CFL’s are

inherently ambiguous, meaning that
every grammar for the language is
ambiguous.

31

Example: Inherent Ambiguity

The language {0i1j2k | i = j or j = k} is
inherently ambiguous.
Intuitively, at least some of the strings

of the form 0n1n2n must be generated
by two different parse trees, one based
on checking the 0’s and 1’s, the other
based on checking the 1’s and 2’s.

32

One Possible Ambiguous
Grammar

S -> AB | CD
A -> 0A1 | 01
B -> 2B | 2
C -> 0C | 0
D -> 1D2 | 12

A generates equal 0’s and 1’s

B generates any number of 2’s

C generates any number of 0’s

D generates equal 1’s and 2’s

And there are two derivations of every string
with equal numbers of 0’s, 1’s, and 2’s. E.g.:
S => AB => 01B =>012
S => CD => 0D => 012

