Cleaning Up Grammars

We can “simplify” grammars to a great extent.
Some of the things we can do are:

1. Get rid of useless symbols — those that do
not participate in any derivation of a terminal
string.

2. Get rid of e-productions — those of the form
variable — e.

O  Well sort of; you lose the ability to
generate € as a string in the language.

3. Get rid of unit productions — those of the
form variable — variable.

4. Chomsky normal form — only production
forms are variable — two variables and
variable — terminal.

Useless Symbols

In order for a symbol X to be useful, it must:

1. Derive some terminal string (possibly X is a
terminal).

2.  Be reachable from the start symbol;i.e., S ;
aXf.

e Note that X wouldn’t really be useful if « or
3 included a symbol that didn’t satisfy (1),
so it is important that (1) be tested first, and
symbols that don’t derive terminal strings be
eliminated before testing (2).

Finding Symbols That Don’t Derive Any
Terminal String
Recursive construction:

Basis: A terminal surely derives a terminal string.

Induction: If A is the head of a production whose
body is X1 X5 - X}, and each X; is known to
derive a terminal string, then surely A derives a
terminal string.

e  Keep going until no more symbols that derive
terminal strings are discovered.

Example

AC | C1.

e Round 1: 0 and 1 are “in.”

e Round 2: B — 1 says Bisin.



e Round 3: A — 0B says A is in.
e Round 4: S — AB says S is in.
e Round 5: Nothing more can be added.

e  Thus, C can be eliminated, along with any
production that mentions it, leaving S — AB;

A—0B; B — 1| A0.

Finding Symbols That Cannot Be Derived
From the Start Symbol

Another recursive algorithm:

Basis: S is “in.”

Induction: If variable A is in, then so is every

symbol in the production bodies for A.

e  Keep going until no more symbols derivable
from S can be found.

Example

S— AB; A—0B; B— 1| A0.

e Round 1: Sisin.

e Round 2: A and B are in.

e Round 3: 0 and 1 are in.

e Round 4: Nothing can be added.

e In this case, all symbols are derivable from 5,
so no change to grammar.

e  Reader has an example where not only are
there symbols not derivable from S, but you
must eliminate first the symbols that don’t
derive terminal strings, or you get the wrong
grammar.

Eliminating ¢-Productions

A variable A 1s nullable if A ; €. Find them by a
recursive algorithm:

Basis: If A — ¢ is a production, then A 1s

nullable.

Induction: If A is the head of a production
whose body consists of only nullable symbols, then

A 1s nullable.

e Once we have the nullable symbols, we can
add additional productions and then throw
away the productions of the form A — ¢ for
any A.



e IfA — X;X5 - X} is a production, add all
productions that can be formed by eliminating
some or all of those X;’s that are nullable.

0 But, don’t eliminate all k if they are all
nullable.

Example

If A— BC' is a production, and both B and C' are
nullable, add A — B | C.

Eliminating Unit Productions

1.
2.

Eliminate useless symbols and e-productions.

Discover those pairs of variables (A, B) such
*
that A = B.

[0 Because there are no e-productions, this
derivation can only use unit productions.

0 Thus, we can find the pairs by computing
reachablity in a graph where nodes =
variables, and arcs = unit productions.

%
Replace each combination where A = B = «
and « is other than a single variable by A —
o.

O Ie., “short circuit” sequences of unit
productions, which must eventually
be followed by some other kind of
production.

Remove all unit productions.

Chomsky Normal Form

0.

Get rid of useless symbols, e-productions, and
unit productions (already done).

Get rid of productions whose bodies are mixes
of terminals and variables, or consist of more
than one terminal.

Break up production bodies longer than 2.

Result: All productions are of the form A —
BC or A —a.

No Mixed Bodies

1.

For each terminal a, introduce a new variable
Ag, with one production A, — a.

Replace a in any body where it is not the
entire body by A,.

0 Now, every body is either a single
terminal or it consists only of variables.

3



Example

A — 0B1 becomes Ag —0; A1 — 1; A — AgBA;.

Making Bodies Short

If we have a production like A — BCDE, we
can introduce some new variables that allow the
variables of the body to be introduced one at a
time.

e A body of length k requires & — 2 new
variables.

e FExample: Introduce F' and G; replace A —
BCDE by A— BF; F - CG; G— DE.
Summary Theorem

If L is any CFL, there is a grammar G that
generates L — {e}, for which each production is
of the form A — BC or A — a, and there are no
useless symbols.

CFL Pumping Lemma

Similar to regular-language PL, but you have to
pump two strings in the middle of the string, in
tandem (i.e., the same number of copies of each).
Formally:

e VCFLL

e dinteger n

e Vzin L, with|z|>n

e Juvwry = z such that jowz| < n and |vz| >0

e Vi>0, wlwzlyisin L.

Outline of Proof of PL

e  Let there be a Chomsky-normal-form CFG for
L with m variables. Pick n = 2™.

e  Because CNF grammars have bodies of no
more than 2 symbols, a string z of length
> n must have some path with at least m + 1
variables.

e  Thus, some variable must appear twice on the
path.

O Compare with the DFA argument about a
path longer than the number of states.



Focus on some path that is as long as any
path in the tree. In this path, we can find
a duplication of some variable A among the
bottom m + 1 variables on the path.

0 Let the lower A derive w and the upper A
derive vwz.

CNF guarantees us that |[vwz| < n and ve #
€.

By repeatedly replacing the lower A’s tree by
the upper A’s tree, we see uv*wx'y has a parse
tree for all ¢ > 1.

0 And replacing the upper by the lower
shows the case ¢ = 0; i.e., uwy is in L.

Example

L = {0*" | k is any integer} is not a CFL.

Suppose it were. Then let n be the PL
constant for L.

Consider z = 0"". We can write z = UvVWTY,
with Jvwz| < n and |vz| > 0.

Then wvvwzzy is in L. But n? <
luvvwzzy] < n? +n < (n + 1)%, so there is
no perfect square that |[uvvwzzy| could be.

By “proof by contradiction,” L is not a CFL.



