

Equivalence of CFG's and PDA's

The title says it all.

- We'll show a language L is $L(G)$ for some CFG if and only if it is $L(P)$ for some PDA P .

Only If (CFG to PDA)

Let $L = L(G)$ for some CFG $G = (V, \Sigma, P, S)$.

- Idea: have PDA A simulate LM derivations in G , where a left-sentential form is represented by:
 1. The sequence of input symbols that A has consumed from its input, followed by
 2. A 's stack, top leftmost.
- Example: If $(q, abcd, S) \xrightarrow{*} (q, cd, ABC)$, then the LSF represented is $abABC$.

Moves of A

- If a terminal a is on top of the stack, then there better be an a waiting on the input. A consumes a from the input and pops it from the stack, if so.
 - ◆ The LSF represented doesn't change!
- If a variable B is on top of the stack, then PDA A has a choice of replacing B on the stack by the body of any production with head B .

Formal Construction of A

$A = (\{q\}, \Sigma, V \cup \Sigma, \delta, q, S)$, where δ is defined by:

1. If B is in V , then $\delta(q, \epsilon, B) = \{(q, \alpha) \mid B \rightarrow \alpha \text{ is in } P\}$.
2. If a is in Σ , then $\delta(q, a, a) = \{(q, \epsilon)\}$.

Example

$G = (\{S, A\}, \{0, 1\}, P, S)$, where P consists of $S \rightarrow AS \mid \epsilon; A \rightarrow 0A1 \mid A1 \mid 01$.

- $A = (\{q\}, \{0, 1\}, \{0, 1, A, S\}, \delta, q, S)$, where δ is defined by:
 - ◆ $\delta(q, \epsilon, S) = \{(q, AS), (q, \epsilon)\}$
 - ◆ $\delta(q, \epsilon, A) = \{(q, 0A1), (q, A1), (q, 01)\}$
 - ◆ $\delta(q, 0, 0) = \{(q, \epsilon)\}$
 - ◆ $\delta(q, 1, 1) = \{(q, \epsilon)\}$

Only-If Proof (i.e., Grammar \Rightarrow PDA)

- Prove by induction on the number of steps in the derivation $S \xrightarrow[\text{lm}]^* \alpha$ that for any x , $(q, wx, S) \xrightarrow^* (q, x, \beta)$, where
 1. $w\beta = \alpha$.
 2. β is the suffix of α that begins at the leftmost variable ($\beta = \epsilon$ if there is no variable).
- Also prove the converse, that if $(q, wx, S) \xrightarrow^* (q, x, \beta)$, then $S \xrightarrow^* w\beta$.
- Inductive proofs in reader.
- As a consequence, if y is a terminal string, then $S \xrightarrow^* y$ iff $(q, y, S) \xrightarrow^* (q, \epsilon, \epsilon)$, i.e., y is in $L(G)$ iff y is in $N(A)$.

PDA to CFG

Assume $L = N(P)$, where $P = (Q\Sigma, \delta, q_0, Z_0)$.

- Key idea: units of PDA action have the net effect of popping one symbol from the stack, consuming some input, and making a state change.
- The triple $[qZp]$ is a CFG variable that generates exactly those strings w such that P can read w from the input, pop Z (net effect), and go from state q to state p .
 - ◆ More precisely, $(q, w, Z) \xrightarrow^* (p, \epsilon, \epsilon)$.
 - ◆ As a consequence of above, $(q, wx, Z\alpha) \xrightarrow^* (p, x, \alpha)$ for any x and α .
- It's a Zen thing: $[qZp]$ is at once a triple involving states and symbols of P , and yet to the CFG we construct it is a single, indivisible object.
 - ◆ OK; I know that's not a Zen thing, but you get the point.
- Complete proof is in the reader. We'll just give some examples and the idea behind the construction.
- Example: a popping rule, e.g., (p, ϵ) in $\delta(q, a, Z)$.
 - ◆ $[qZp] \rightarrow a$

- A rule that replaces one symbol and state by others, e.g., (p, Y) in $\delta(q, a, Z)$.
 - ◆ For all states r : $[qZr] \rightarrow a[pZr]$
- A rule that replaces one stack symbol by two, e.g., (p, XY) in $\delta(q, a, Z)$.
 - ◆ For all states r and s : $[qZs] \rightarrow a[pXr][rYs]$

Deterministic PDA's

Intuitively: never a choice of move.

- $\delta(q, a, Z)$ has at most one member for any q, a, Z (including $a = \epsilon$).
- If $\delta(q, \epsilon, Z)$ is nonempty, then $\delta(q, a, Z)$ must be empty for all input symbols a .

Why Care?

Parsers, as in YACC, are really DPDA's.

- Thus, the question of what languages a DPDA can accept is really the question of what programming language syntax can be parsed conveniently.

Some Language Relationships

- Acceptance by empty stack is hard for a DPDA.
 - ◆ Once it accepts, it dies and cannot accept any continuation.
 - ◆ Thus, $N(P)$ has the *prefix property*: if w is in $N(P)$, then wx is NOT in $N(P)$ for any $x \neq \epsilon$.
- However, parsers *do* accept by emptying their stack.
 - ◆ Trick: they really process strings followed by a unique endmarker (typically $\$$) e.g., if they accept $w\$$, they consider w to be a correct program.
- If L is a regular language, then L is a DPDA language.
 - ◆ A DPDA can simulate a DFA, without using its stack (acceptance by final state).
- If L is a DPDA language, then L is a CFL that is *not* inherently ambiguous.
 - ◆ A DPDA yields an unambiguous grammar in the standard construction.