Equivalence of CFG’s and PDA’s
The title says it all.

o  We'll show a language L is L(G) for some
CFG if and only if it is N(P) for some PDA
P.

Only If (CFG to PDA)

Let L = L(G) for some CFG G = (V, X, P, S).

e Idea: have PDA A simulate LM derivations in
G, where a left-sentential form is represented

by:

1. The sequence of input symbols that A has
consumed from its input, followed by

2. A’s stack, top leftmost.

e  Example: If (¢, abed, S) If (g,cd, ABC), then
the LSF represented is abABC'.

Moves of A

e If a terminal a is on top of the stack, then
there better be an @ waiting on the input. A
consumes a from the input and pops it from
the stack, if so.

0 The LSF represented doesn’t change!

e If a variable B is on top of the stack, then
PDA A has a choice of replacing B on the
stack by the body of any production with
head B.

Formal Construction of A

={¢}, 2, VUX,84q,S), where § is defined by:

1. If Bisin V, then 6(¢,¢e, B) = {(¢,0) | B — «
isin P}.

2. Ifaisin X, then 8(¢,a,a) = {(q,€)}.

Example
= ({S, A}, {0,1}, P, S), where P consists of S —
AS | & A—0AL | AL |01,

o A= ({q},{0,1},{0,1,4,5},6,4,5), where & is
defined by:

O 6(g,¢,5) = {(q,AS5), (¢, )}

O 5(q,€,A)— (¢,0A1), (¢, A1), (¢,01)}
0 6(¢,0,0)={(q,6)}

O 6(¢,1,1)={(g, )}



Only-If Proof (i.e., Grammar = PDA)

e  Prove by induction on the number of steps
%
in the derivation S l:> « that for any z,
m
%

(¢, wz,S)F (q,z,0), where

1. wf =«

2. [ is the suffix of « that begins at the
leftmost variable (§ = ¢ if there is no
variable).

%
e Also prove the converse, that if (¢, wz,S) F
%
(¢,2,03), then S = wpg.
e Inductive proofs in reader.
e  As a consequence, if y is a terminal string,
b b
then S = yiff (¢,4,5) F (g,¢,€), i, yisin
L(G) iff y is in N(A4).
PDA to CFG

Assume L = N(P), where P = (QX,, ,$, 0, Zo).

Key idea: units of PDA action have the net
effect of popping one symbol from the stack,
consuming some input, and making a state
change.

The triple [¢Zp] is a CFG variable that
generates exactly those strings w such that P
can read w from the input, pop Z (net effect),
and go from state ¢ to state p.

*
O More precisely, (¢, w, Z) F (p, €, €).
*
O  As a consequence of above, (¢, wz, Za) -
(p,#, &) for any « and o.

It’s a Zen thing: [¢Zp] is at once a triple
involving states and symbols of P, and yet to
the CFG we construct it is a single, indivisible
object.

O OK; I know that’s not a Zen thing, but
you get the point.

Complete proof is in the reader. We’ll just
give some examples and the idea behind the
construction.

Example: a popping rule, e.g., (p,€) in
8(q,a,7).

0 [¢Zp] —a



A rule that replaces one symbol and state by
others, e.g., (p,Y) in 8(q, a, 7).

O For all states r: [¢Zr] — a[pZ7]

A rule that replaces one stack symbol by two,
e.g., (p, XY)in é(q,a, 7).

O For all states » and s: [¢Zs] —
a[pXr][rYs]

Deterministic PDA’s

Intuitively: never a choice of move.

e 8(q,a,7Z) has at most one member for any ¢,
a, 7 (including a = €).

o If 8(q,¢, 7) is nonempty, then 8(q, a, Z) must
be empty for all input symbols a.

Why Care?

Parsers, as in YACC, are really DPDA’s.

Thus, the question of what languages a DPDA
can accept 1is really the question of what
programming language syntax can be parsed
conveniently.

Some Language Relationships

Acceptance by empty stack is hard for a
DPDA.

0 Once it accepts, it dies and cannot accept
any continuation.

O Thus, N(P) has the prefiz property: if w
is in N(P), then wz is NOT in N(P) for
any « % €.

However, parsers do accept by emptying their
stack.

O Trick: they really process strings followed
by a unique endmarker (typically $) e.g.,
if they accept w$, they consider w to be a
correct program.

If L is a regular language, then L is a DPDA
language.

0 A DPDA can simulate a DFA, without
using its stack (acceptance by final state).

If L is a DPDA language, then L is a CFL
that is not inherently ambiguous.

0O A DPDA yields an unambiguous
grammar in the standard construction.



