
Equivalence of CFG's and PDA's

The title says it all.

� We'll show a language L is L(G) for some
CFG if and only if it is N (P) for some PDA
P .

Only If (CFG to PDA)

Let L = L(G) for some CFG G = (V;�; P; S).

� Idea: have PDA A simulate LM derivations in
G, where a left-sentential form is represented
by:

1. The sequence of input symbols that A has
consumed from its input, followed by

2. A's stack, top leftmost.

� Example: If (q; abcd; S) `
*

(q; cd;ABC), then
the LSF represented is abABC.

Moves of A

� If a terminal a is on top of the stack, then
there better be an a waiting on the input. A
consumes a from the input and pops it from
the stack, if so.

✦ The LSF represented doesn't change!

� If a variable B is on top of the stack, then
PDA A has a choice of replacing B on the
stack by the body of any production with
head B.

Formal Construction of A

A = (fqg;�; V [�; �; q; S), where � is de�ned by:

1. If B is in V , then �(q; �; B) = f(q; �) j B ! �

is in Pg.

2. If a is in �, then �(q; a; a) = f(q; �)g.

Example

G = (fS;Ag; f0; 1g; P;S), where P consists of S !
AS j �; A! 0A1 j A1 j 01.

� A = (fqg; f0; 1g; f0; 1;A; Sg; �; q; S), where � is
de�ned by:

✦ �(q; �; S) = f(q; AS); (q; �)g

✦ �(q; �; A) = f(q; 0A1); (q; A1); (q; 01)g

✦ �(q; 0; 0) = f(q; �)g

✦ �(q; 1; 1) = f(q; �)g

1

Only-If Proof (i.e., Grammar) PDA)

� Prove by induction on the number of steps

in the derivation S)
*

lm

� that for any x,

(q; wx; S) `
*

(q; x; �), where

1. w� = �.

2. � is the su�x of � that begins at the
leftmost variable (� = � if there is no
variable).

� Also prove the converse, that if (q; wx; S) `
*

(q; x; �), then S)
*

w�.

� Inductive proofs in reader.

� As a consequence, if y is a terminal string,

then S)
*

y i� (q; y; S) `
*

(q; �; �), i.e., y is in
L(G) i� y is in N (A).

PDA to CFG

Assume L = N (P), where P = (Q�;�; �; q0; Z0).

� Key idea: units of PDA action have the net
e�ect of popping one symbol from the stack,
consuming some input, and making a state
change.

� The triple [qZp] is a CFG variable that
generates exactly those strings w such that P
can read w from the input, pop Z (net e�ect),
and go from state q to state p.

✦ More precisely, (q; w; Z) `
*

(p; �; �).

✦ As a consequence of above, (q; wx; Z�) `
*

(p; x; �) for any x and �.

� It's a Zen thing: [qZp] is at once a triple
involving states and symbols of P , and yet to
the CFG we construct it is a single, indivisible
object.

✦ OK; I know that's not a Zen thing, but
you get the point.

� Complete proof is in the reader. We'll just
give some examples and the idea behind the
construction.

� Example: a popping rule, e.g., (p; �) in
�(q; a; Z).

✦ [qZp]! a

2

� A rule that replaces one symbol and state by
others, e.g., (p; Y) in �(q; a; Z).

✦ For all states r: [qZr]! a[pZr]

� A rule that replaces one stack symbol by two,
e.g., (p;XY) in �(q; a; Z).

✦ For all states r and s: [qZs] !
a[pXr][rY s]

Deterministic PDA's

Intuitively: never a choice of move.

� �(q; a; Z) has at most one member for any q,
a, Z (including a = �).

� If �(q; �; Z) is nonempty, then �(q; a; Z) must
be empty for all input symbols a.

Why Care?

Parsers, as in YACC, are really DPDA's.

� Thus, the question of what languages a DPDA
can accept is really the question of what
programming language syntax can be parsed
conveniently.

Some Language Relationships

� Acceptance by empty stack is hard for a
DPDA.

✦ Once it accepts, it dies and cannot accept
any continuation.

✦ Thus, N (P) has the pre�x property : if w
is in N (P), then wx is NOT in N (P) for
any x 6= �.

� However, parsers do accept by emptying their
stack.

✦ Trick: they really process strings followed
by a unique endmarker (typically $) e.g.,
if they accept w$, they consider w to be a
correct program.

� If L is a regular language, then L is a DPDA
language.

✦ A DPDA can simulate a DFA, without
using its stack (acceptance by �nal state).

� If L is a DPDA language, then L is a CFL
that is not inherently ambiguous.

✦ A DPDA yields an unambiguous
grammar in the standard construction.

3

