Ambiguous Grammars

A CFG 1s ambiguous if one or more terminal
strings have multiple leftmost derivations from the
start symbol.

e FEquivalently: multiple rightmost derivations,
or multiple parse trees.

Example

Consider S — AS |e; A — Al | 0A1 | 01.
The string 00111 has the following two leftmost
deriviations from S
1. = AS = 0A1S = 0A411S = 001115 =
Im m Im Im Im
00111
2. S= AS = AlS = 04115 = 001115 =
im Im Im Im Im
00111
e Intuitively, we can use A — Al first or second
to generate the extra 1.

Inherently Ambiguous Languages

A CFL L is inherently ambiguous if every CFG for
L 1s ambiguous.

e  Such things exist; see course reader.

Example

The language of our example grammar is not
inherently ambiguous, even though the grammar
s ambiguous.

e  Change the grammar to force the extra 1’s to
be generated last.

S— AS | e

A— 041 | B

B — Bl1]01
Why Care?

e Ambiguity of the grammar implies that
at least some strings in its language have
different structures (parse trees).

O Thus, such a grammar is unlikely to
be useful for a programming language,
because two structures for the same string
(program) implies two different meanings
(executable equivalent programs) for this
program.

O Common example: the easiest grammars
for arithmetic expressions are ambiguous
and need to be replaced by more complex,

1



unambiguous grammars (see course
reader).

e  An inherently ambiguous language would
be absolutely unsuitable as a programming
language, because we would not have any
way of fixing a unique structure for all its
programs.

Pushdown Automata

e Add a stack to a FA.
e  Typically nondeterministic.

e An automaton equivalent to CFG’s.

Example

Notation for “transition diagrams”: a, Z/X1 X +
2--- X3 = “on input a, with Z on top of the stack,
consume the a, make this state transition, and
replace the Z on top of the stack by X1 X5 - X}
(with X7 at the top).

1a ZO/ZO
0, X/XX 1,X/e

€, ZO/ZO

e p = starting to see a group of 0’s and 1’s; ¢ =
reading 0’s and pushing X’s onto the stack; r
= reading 1’s and popping X’s until the X’s
are all popped.

e We can start a new group (transition from r
to p) only when all X’s (which count the 0’s)
have been matched against 1’s.

Formal PDA
P = (Q’E” a(sa qo,ZOaF)a Where Qa Ea q0, and F

have their meanings from FA.
e , = stack alphabet.

e Zyin, = start symbol = the one symbol on
the stack initially.

e 6 = transition function takes a state, an input
symbol (or €), and a stack symbol and gives
you a finite number of choices of:



1. A new state (possibly the same).

2. A string of stack symbols to replace the
top stack symbol.

Instantaneous Descriptions (ID’s)

For a FA, the only thing of interest about the FA
is its state. For a PDA, we want to know its state
and the entire content of its stack.

e It 1s also convenient to maintain a fiction that
there 1s an input string waiting to be read.

e  Represented by an ID (¢, w, «), where ¢ =
state, w = waiting input, and « = stack, top

left.
Moves of the PDA
If 6(q,a, X) contains (p, «), then (¢, aw, X5) F
(p, w, ap).
*
e FExtend to - to represent 0, 1, or many moves.
e  Subscript by name of the PDA, if necessary.
*
e Input string w is accepted if (qo, w, Zg) F

(p,€,7v) for any accepting state p and any
stack string ~.

e L(P) = set of strings accepted by P.

Example

(p,0110011, Zo) + (g,110011, XZy) +
(r,10011, Zo) & (r,0011,Zs) + (p,0011, Zo)
(q,Oll X7) F (.11, XXZ0) b (r1, X Z0)
( ) (p’G’ZO)

l_
l_

Acceptance by Empty Stack

Another one of those technical conveniences: when
we prove that PDA’s and CFG’s accept the same
languages, it helps to assume that the stack is
empty whenever acceptance occurs.

e N(P) = set of strings w such that
*
(go,w, Zg) b (p, €, €) for some state p.
0 Note p need not be in F.

O In fact, if we talk about N(P) only,
then we need not even specify a set of
accepting states.

Example

For our previous example, to accept by empty
stack:



1. Add a new transition §(p, €, Zo) = {(p,€)}.

O That is, when starting to look for a new
0-1 block, the PDA has the option to pop
the last symbol off the stack instead.

2.  pis no longer an accepting state; in fact, there
are no accepting states.

Equivalence of Acceptance by Final State
and Empty Stack

A language is L(Py) for some PDA P, if and only
if it is N(Pz) for some PDA Ps.

e Given P, = (Q,%,, ,6,q0, Zo, I), construct Ps:

1. Introduce new start state pg and new
bottom-of-stack marker Xg.

2. First move of Ps: replace Xy by Zp Xy
and go to state gy. The presence of X
prevents Ps from “accidentally” emptying
its stack and accepting when P; did not
accept.

3.  Then, P, simulates P1; i.e., give P, all the
transitions of P;.

4. Introduce a new state r that keeps
popping the stack of Po until it is empty.

5. If (the simulated) P; is in an accepting
state, give Py the additional choice of
going to state r on € input, and thus
emptying its stack without reading any
more input.

e Given P, = (Q,%,, ,6,q0, Zo, I), construct P:

1. Introduce new start state pg and new
bottom-of-stack marker Xg.

2. First move of P;: replace Xy by Zp Xy
and go to state gg.

3. Introduce new state r for Py; it is the
only accepting state.

4. Py simulates Ps.

5. If (the simulated) Py ever sees Xy, it
knows P accepts, so P, goes to state r
on ¢ input.



