

Ambiguous Grammars

A CFG is *ambiguous* if one or more terminal strings have multiple leftmost derivations from the start symbol.

- Equivalently: multiple rightmost derivations, or multiple parse trees.

Example

Consider $S \rightarrow AS \mid \epsilon; A \rightarrow A1 \mid 0A1 \mid 01$. The string 00111 has the following two leftmost derivations from S :

1. $S \xrightarrow{lm} AS \xrightarrow{lm} 0A1S \xrightarrow{lm} 0A11S \xrightarrow{lm} 00111S \xrightarrow{lm} 00111$
2. $S \xrightarrow{lm} AS \xrightarrow{lm} A1S \xrightarrow{lm} 0A11S \xrightarrow{lm} 00111S \xrightarrow{lm} 00111$

- Intuitively, we can use $A \rightarrow A1$ first or second to generate the extra 1.

Inherently Ambiguous Languages

A CFL L is *inherently ambiguous* if *every* CFG for L is ambiguous.

- Such things exist; see course reader.

Example

The language of our example grammar is not inherently ambiguous, even though the grammar is ambiguous.

- Change the grammar to force the extra 1's to be generated last.

$$\begin{aligned} S &\rightarrow AS \mid \epsilon \\ A &\rightarrow 0A1 \mid B \\ B &\rightarrow B1 \mid 01 \end{aligned}$$

Why Care?

- Ambiguity of the grammar implies that at least some strings in its language have different structures (parse trees).
 - ◆ Thus, such a grammar is unlikely to be useful for a programming language, because two structures for the same string (program) implies two different meanings (executable equivalent programs) for this program.
 - ◆ Common example: the easiest grammars for arithmetic expressions are ambiguous and need to be replaced by more complex,

unambiguous grammars (see course reader).

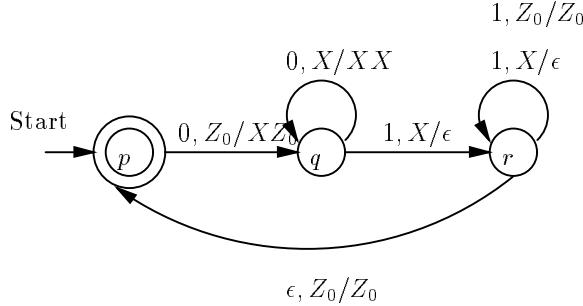
- An inherently ambiguous language would be absolutely unsuitable as a programming language, because we would not have any way of fixing a unique structure for all its programs.

Pushdown Automata

- Add a stack to a FA.
- Typically nondeterministic.
- An automaton equivalent to CFG's.

Example

Notation for “transition diagrams”: $a, Z/X_1X + 2 \cdots X_k$ = “on input a , with Z on top of the stack, consume the a , make this state transition, and replace the Z on top of the stack by $X_1X_2 \cdots X_k$ (with X_1 at the top).



- p = starting to see a group of 0's and 1's; q = reading 0's and pushing X 's onto the stack; r = reading 1's and popping X 's until the X 's are all popped.
- We can start a new group (transition from r to p) only when all X 's (which count the 0's) have been matched against 1's.

Formal PDA

$P = (Q, \Sigma, \delta, q_0, Z_0, F)$, where Q , Σ , q_0 , and F have their meanings from FA.

- δ = stack alphabet.
- Z_0 in δ = start symbol = the one symbol on the stack initially.
- δ = transition function takes a state, an input symbol (or ϵ), and a stack symbol and gives you a finite number of choices of:

1. A new state (possibly the same).
2. A string of stack symbols to replace the top stack symbol.

Instantaneous Descriptions (ID's)

For a FA, the only thing of interest about the FA is its state. For a PDA, we want to know its state and the entire content of its stack.

- It is also convenient to maintain a fiction that there is an input string waiting to be read.
- Represented by an ID (q, w, α) , where q = state, w = waiting input, and α = stack, top left.

Moves of the PDA

If $\delta(q, a, X)$ contains (p, α) , then $(q, aw, X\beta) \vdash (p, w, \alpha\beta)$.

- Extend to \vdash^* to represent 0, 1, or many moves.
- Subscript by name of the PDA, if necessary.
- Input string w is accepted if $(q_0, w, Z_0) \vdash^* (p, \epsilon, \gamma)$ for any accepting state p and any stack string γ .
- $L(P) = \text{set of strings accepted by } P$.

Example

$$\begin{aligned}
 (p, 0110011, Z_0) &\vdash (q, 110011, XZ_0) \vdash \\
 (r, 10011, Z_0) &\vdash (r, 0011, Z_0) \vdash (p, 0011, Z_0) \vdash \\
 (q, 011, XZ_0) &\vdash (q, 11, XXZ_0) \vdash (r, 1, XZ_0) \vdash \\
 (r, \epsilon, Z_0) &\vdash (p, \epsilon, Z_0)
 \end{aligned}$$

Acceptance by Empty Stack

Another one of those technical conveniences: when we prove that PDA's and CFG's accept the same languages, it helps to assume that the stack is empty whenever acceptance occurs.

- $N(P) = \text{set of strings } w \text{ such that}$
 $(q_0, w, Z_0) \vdash^* (p, \epsilon, \epsilon)$ for some state p .
 - ◆ Note p need not be in F .
 - ◆ In fact, if we talk about $N(P)$ only, then we need not even specify a set of accepting states.

Example

For our previous example, to accept by empty stack:

1. Add a new transition $\delta(p, \epsilon, Z_0) = \{(p, \epsilon)\}$.
 - ◆ That is, when starting to look for a new 0-1 block, the PDA has the option to pop the last symbol off the stack instead.
2. p is no longer an accepting state; in fact, there *are* no accepting states.

Equivalence of Acceptance by Final State and Empty Stack

A language is $L(P_1)$ for some PDA P_1 if and only if it is $N(P_2)$ for some PDA P_2 .

- Given $P_1 = (Q, \Sigma, \delta, q_0, Z_0, F)$, construct P_2 :
 1. Introduce new start state p_0 and new bottom-of-stack marker X_0 .
 2. First move of P_2 : replace X_0 by $Z_0 X_0$ and go to state q_0 . The presence of X_0 prevents P_2 from “accidentally” emptying its stack and accepting when P_1 did not accept.
 3. Then, P_2 simulates P_1 ; i.e., give P_2 all the transitions of P_1 .
 4. Introduce a new state r that keeps popping the stack of P_2 until it is empty.
 5. If (the simulated) P_1 is in an accepting state, give P_2 the additional choice of going to state r on ϵ input, and thus emptying its stack without reading any more input.
- Given $P_2 = (Q, \Sigma, \delta, q_0, Z_0, F)$, construct P_1 :
 1. Introduce new start state p_0 and new bottom-of-stack marker X_0 .
 2. First move of P_1 : replace X_0 by $Z_0 X_0$ and go to state q_0 .
 3. Introduce new state r for P_1 ; it is the only accepting state.
 4. P_1 simulates P_2 .
 5. If (the simulated) P_1 ever sees X_0 , it knows P_2 accepts, so P_1 goes to state r on ϵ input.