
Decision Properties of Regular Languages

Given a (representation, e.g., RE, FA, of a) regular
language L, what can we tell about L?

� Since there are algorithms to convert between
any two representations, we can choose the rep
that makes the test easiest.

Membership

Is string w in regular language L?

� Choose DFA representation for L.

� Simulate the DFA on input w.

Emptiness

Is L = ;?

� Use DFA representation.

� Use a graph-reachability algorithm to test if at
least one accepting state is reachable from the
start state.

Finiteness

Is L a �nite language?

� Note every �nite language is regular (why?),
but a regular language is not necessarily �nite.

DFA method:

� Given a DFA for L, eliminate all states that
are not reachable from the start state and all
states that do not reach an accepting state.

� Test if there are any cycles in the remaining
DFA; if so, L is in�nite, if not, then L is �nite.

RE method: Almost, we can look for a � in the
RE and say its language is in�nite if there is one,
�nite if not. However, there are exceptions, e.g.
0��1 or 0�;. Thus:

1. Find subexpressions equivalent to ; by:

✦ (Basis) ; is; � and a are not.

✦ (Induction) E+F is i� both E and F are;
EF is if either E or F are; E� never is.

2. Eliminate subexpressions equivalent to ; by:

✦ Replace E + F or F + E by F whenever
E is and F isn't.

✦ Replace E� by � whenever E is equivalent
to ;.

1



3. Now, �nd subexpressions that are equivalent
to � by:

✦ (Basis) � is; a isn't.

✦ (Induction) E+F is i� both E and F are;
ditto EF ; E� is i� E is.

4. Now, we can tell if L(R) is in�nite by looking
for a subexpression E� such that E is not
equivalent to �.

Example

Consider (0 + 1;)� + 1;�.

� Step 1: ; (twice) and 1; are subexpressions
equivalent to ;.

� Step 2: 0� + 1� remains.

� Step 3: only subexpression � is equivalent to �.

� Since 0 is starred, language is in�nite.

Minimization of States

� Real goal is testing equivalence of (reps of)
two regular languages.

� Interesting fact: DFA's have unique (up to
state names) minimum-state equivalents.

✦ But proof in course reader doesn't quite
get to that point.

Distinguishable States

Key idea: �nd states p and q that are
distinguishable because there is some input w that
takes exactly one of p and q to an accepting state.

� Basis: any nonaccepting state is
distinguishable from any accepting state
(w = �).

� Induction: p and q are distinguishable if there
is some input symbol a such that �(p; a) is
distinguishable from �(q; a).

✦ All other pairs of states are
indistinguishable, and can be merged into
one state.

Example (Very Simple)

Consider:

2



0

0

1

0

1 1

Start
p q

r

� p is distinguishable from q and r by basis.

Can we distinguish q from r?

� No string beginning with 0 works, because
both states go to p, and therefore any string of
the form 0x takes q and r to the same state.

� No string beginning with 1 works.

✦ Technically, �(q; 1) = r and �(r; 1) = q are
not distinguishable. Thus, induction does
not tell us q and r are distinguishable.

✦ What happens is that, starting in either q
or r, as long as we have inputs 1, we are
in one of the accepting states, and when a
0 is read, we go to the same state forever
after.

Constructing the Minimum-State DFA

� For each group of indistinguishable states,
pick a \representative."

✦ Note a group can be large, e.g.,
q1; q2; : : : ; qk, if all pairs are
indistinguishable.

✦ Indistinguishability is transitive (why?)
so indistinguishability partitions states.

� If p is a representative, and �(p; a) = q, in
minimum-state DFA the transition from p

on a is to the representative of q's group (to
q itself if q is either alone in a group or a
representative).

� State state is representative of the original
start state.

� Accepting states are representatives of groups
of accepting states.

✦ Notice we could not have a \mixed"
(accepting + nonaccepting) group (why?).

3



� Delete any state that is not reachable from the
start state.

Example

For the DFA above, p is in a group by itself; fq; rg
is the other group.

0

Start
p

0,1
qr 1

Why Above Minimization Can't be Beaten

Suppose we have a DFA A, and we minimize it to
construct a DFA M . Yet there is another DFA N

that accepts the same language as A and M , yet
has fewer states than M . Proof contradiction that
this can't happen:

� Run the state-distinguishability process on the
states of M and N together.

� Start states of M and N are indistinguishable
because L(M ) = L(N ).

� If fp; qg are indistinguishable, then their
successors on any one input symbol are also
indistinguishable.

� Thus, since neither M not N could have
an inaccessible state, every state of M is
indistinguishable from at least one state of
N .

� Since N has fewer states than M , there are
two states of M that are indistinguishable
from the same state of N , and therefore
indistinguishable from each other.

� But M was designed so that all its states are

distinguishable from each other.

� We have a contradiction, so the assumption
that N exists is wrong, and M in fact has as
few states as any equivalent DFA for A.

� In fact (stronger), there must be a 1-1
correspondence between the states of any
other minimum-state N and the DFA M ,
showing that the minimum-state DFA for A
is unique up to renaming of the states.

4


