Decision Properties of Regular Languages

Given a (representation, e.g., RE, FA| of a) regular
language L, what can we tell about L7

e  Since there are algorithms to convert between
any two representations, we can choose the rep
that makes the test easiest.

Membership

Is string w in regular language L7

e  Choose DFA representation for L.

e  Simulate the DFA on input w.

Emptiness
Is L = (7
e  Use DFA representation.

e  Use a graph-reachability algorithm to test if at
least one accepting state is reachable from the
start state.

Finiteness

Is L a finite language?

e Note every finite language is regular (why?),
but a regular language is not necessarily finite.

DFA method:

e Given a DFA for L, eliminate all states that
are not reachable from the start state and all
states that do not reach an accepting state.

e  Test if there are any cycles in the remaining
DFA; if so, L is infinite, if not, then L is finite.

RE method: Almost, we can look for a x in the
RE and say its language is infinite if there is one,

finite if not. However, there are exceptions, e.g.
0¢*1 or 0*(). Thus:

1.  TFind subexpressions equivalent to §§ by:

O (Basis) () is; € and a are not.

O (Induction) B+ F is iff both F and F' are;
EF is if either E or F' are; £ never is.

2. Eliminate subexpressions equivalent to §) by:

O Replace £ 4+ F or F + E by F whenever
E is and F isn’t.

O Replace E* by € whenever F is equivalent
to 0.



3.  Now, find subexpressions that are equivalent
to € by:

O (Basis) € is; a isn’t.

O (Induction) B+ F is iff both F and F' are;
ditto FF; E* is iff F is.

4. Now, we can tell if L(R) is infinite by looking
for a subexpression E* such that F is not
equivalent to e.

Example
Consider (0 + 10)* + 10*.

e Step 1: § (twice) and 10 are subexpressions
equivalent to (.

e Step 2: 0" + 1¢ remains.
e  Step 3: only subexpression € is equivalent to e.

e  Since 0 is starred, language is infinite.

Minimization of States

e Real goal is testing equivalence of (reps of)
two regular languages.

e Interesting fact: DFA’s have unique (up to
state names) minimum-state equivalents.

0 But proof in course reader doesn’t quite
get to that point.

Distinguishable States

Key idea: find states p and ¢ that are
distinguishable because there is some input w that
takes exactly one of p and ¢ to an accepting state.

e Basis: any nonaccepting state is
distinguishable from any accepting state

(w = e).

e Induction: p and ¢ are distinguishable if there
is some input symbol a such that é(p, a) is
distinguishable from é(q, a).

O  All other pairs of states are
indistinguishable, and can be merged into
one state.

Example (Very Simple)

Consider:



p 1s distinguishable from ¢ and » by basis.

Can we distinguish ¢ from r?

No string beginning with 0 works, because
both states go to p, and therefore any string of
the form Oz takes ¢ and r to the same state.

No string beginning with 1 works.

O Technically, é(q,1) = r and é(r, 1) = ¢ are
not distinguishable. Thus, induction does
not tell us ¢ and r are distinguishable.

0 What happens is that, starting in either ¢
or r, as long as we have inputs 1, we are
in one of the accepting states, and when a
0 1s read, we go to the same state forever
after.

Constructing the Minimum-State DFA

For each group of indistinguishable states,
pick a “representative.”

0 Note a group can be large, e.g.,
41,492, - . ., qx, if all pairs are
indistinguishable.

O Indistinguishability is transitive (why?)
so indistinguishability partitions states.

If p is a representative, and é(p,a) = ¢, in
minimum-state DFA the transition from p
on a is to the representative of ¢’s group (to
q 1tself if ¢ is either alone in a group or a
representative).

State state is representative of the original
start state.

Accepting states are representatives of groups
of accepting states.

0 Notice we could not have a “mixed”
(accepting + nonaccepting) group (why?).



e Delete any state that is not reachable from the
start state.
Example

For the DFA above, p is in a group by itself; {q,7}
is the other group.

Why Above Minimization Can’t be Beaten

Suppose we have a DFA A, and we minimize it to
construct a DFA M. Yet there is another DFA N
that accepts the same language as A and M, yet
has fewer states than M. Proof contradiction that
this can’t happen:

Run the state-distinguishability process on the
states of M and N together.

Start states of M and N are indistinguishable
because L(M) = L(N).

If {p, ¢} are indistinguishable, then their
successors on any one input symbol are also
indistinguishable.

Thus, since neither M not N could have
an inaccessible state, every state of M is
indistinguishable from at least one state of

N.

Since N has fewer states than M, there are
two states of M that are indistinguishable
from the same state of N, and therefore
indistinguishable from each other.

But M was designed so that all its states are
distinguishable from each other.

We have a contradiction, so the assumption
that N exists is wrong, and M in fact has as
few states as any equivalent DFA for A.

In fact (stronger), there must be a 1-1
correspondence between the states of any
other minimum-state N and the DFA M,
showing that the minimum-state DFA for A
is unique up to renaming of the states.



